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Overview of the problem:

Approximate symmetric solutions to the many-

body problem

1

i

∂

∂t
ψN(t, x1, · · ·xN) = HNψN(t, x1, · · ·xN)

ψN(0, x1, · · ·xN) = (or ∼)φ0(x1)φ0(x2) · · ·ψ0(xN)

where

HN =
N∑
j=1

∆xj −
1

N

∑
i<j

vN(xi − xj)

N is large but fixed, xk ∈ R3, v ∈ S, and 0 <

β ≤ 1 and vN(x) = N3βv(Nβx). Approximate

ψN with combinations of solutions to a non-

linear PDE in much fewer variables
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One answer: NLS and Gross-Pitaevskii equa-

tions

ψN(t, x1, · · ·xN) ∼ φ(t, x1)φ(t, x2) · · ·φ(t,N)

where φ satisfies

1

i

∂

∂t
φ−∆φ+ c|φ|2φ = 0

The coupling constant changes from

β < 1 (c =
∫
v)

to β = 1 (c = scattering length of v).

Rigorous work by Erdös, Schlein and Yau.
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A proposed more detailed answer than NLS:

”Hartree-Fock-Bogoliubov equations”.

The approximation involves not only a φ(t, x)

but also a function k(t, x, y).

Something like this is well-known. Usually, φ

is taken to be a solution to NLS, while k is

determined by an elliptic equation involving φ.

TDHFB equations for Bosons also address this,

and are not well-known. They are a coupled

system of Schrödinger type equations in 3 + 1

variables and 6 + 1 variables.

The equations were derived by M. Grillakis and

me (2013) and are closely related to those de-

rived independently by Bach, Breteaux, T.

Chen, Fröhlich and Sigal .
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They are similar in spirit to the Hartree-Fock-

Bogoliubov equations used in the Physics lit-

erature for Fermions.

Our work is based on earlier work with D. Mar-

getis.



HFB equations share common features with

BBGKY.

Background: BBGKY and the work of Erdös,

Schlein and Yau.

For ψ satisfying

1

i

∂

∂t
ψN(t, x1, · · ·xN) = HNψN(t, x1, · · ·xN)

Consider ψ̄N(t,x)ψN(t,y), average out most

variables, and look at the marginal density ”ma-

trices”

γ
(k)
N (t,xk,yk)

=
∫
ψ̄N(t,xk,xN−k)ψN(t,yk,xN−k)dxN−k
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These satisfy a hierarchy of equations, for all
N γ

(k)
N ”matrices”:(

1

i

∂

∂t
+ ∆x1 −∆y1

)
γ̄

(1)
N (t, x1; y1)

=
N − 1

N

∫
vN(x1 − x2)γ̄(2)

N (t, x1, x2; y1, x2)dx2

−
N − 1

N

∫
vN(y1 − y2)γ̄(2)

N (t, x1, y2; y1, y2)dy2

(
1

i

∂

∂t
+
(

∆x1,x2 −
1

N
vN(x1 − x2)

)

−
(

∆y1,y2 −
1

N
vN(y1 − y2)

))
γ̄

(2)
N (t, x1, x2; y1, y2)

=
N − 2

N

∫
vN(x1 − x3)γ̄(3)

N (t, x1, x2, x3; y1, y2, x3)dx3

+
N − 2

N

∫
vN(x2 − x3)γ̄(3)

N (t, x1, x2, x3; y1, y2, x3)dx3

−
N − 2

N

∫
vN(y1 − y3)γ̄(3)

N (t, x1, x2y3; y1, y2, y3)dy3

−
N − 2

N

∫
vN(y2 − y3)γ̄(3)

N (t, x1, x2y3; y1, y2, y3)dy3

· · ·
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Formally, as N →∞,

γ
(k)
N → γ(k)

satisfies Gross-Pitaevskii hierarchy(
1

i

∂

∂t
+ ∆x1 −∆y1

)
γ̄(1)(t, x1; y1)

= cγ̄(2)(t, x1, x1; y1, x1)

− cγ̄(2)
N (t, x1, y1; y1, y1)

· · ·

which admits solutions

γ̄(1) = φ(t, x1)φ̄(t, y1)

γ̄(2) = φ(t, x1)φ(t, x2)φ̄(t, y1)φ̄(t, y2)

where (
1

i

∂

∂t
+ ∆

)
φ− c|φ|2φ = 0

The well-known work of Elgart, Erdos, Schlein

and Yau: this is true for β < 1 with c =
∫
v,

and c scattering length of v for β = 1.
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Heuristically, the change of coupling constant

when β = 1 comes from the fact that the true

form of γ(2)
N is closer to

γ̄
(2)
N

=φ(t, x1)φ(t, x2)fN(x1, x2)

φ̄(t, y1)φ̄(t, y2)fN(y1, y2)

and fN accounts for correlations.
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In previous work, fN (related to our k) is de-

termined by an elliptic equation(
−∆ +

1

2N
vN(x)

)
fN(x) = 0

lim
x→∞ fN(x) = 1

(Green will always refer to objects determined

by this type of elliptic equation, while blue

will be reserved to objects determined through

HFB.)

The HFB equations are a coupled system of

Schrödinger-type PDEs for for φN (denoted φ,

representing ”the condensate”), ΓN = Γ (a

Fock space γ
(1)
N matrix)

and ΛN(t, x1, x2) = Λ(t, x1, x2) which plays the

role of φN(t, x1)φN(t, x2)fN(x1, x2),

but also allows the correlations to form dynam-

ically in time.
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The HFB equations are derived in Fock space,

which has been used in order to get estimates

for the rate of convergence of the approxima-

tion to the exact solution.

First one for marginal densities γ(k)
N : Rodnian-

ski and Schlein (2009).

First one for L2(RN) through Fock space: Gril-

lakis, M, Margetis (2010).

Efficient direct estimates in L2(RN) (using Fock

space type estimates) Lewin, Nam and Schlein

(2015).

Inspired by older work of Hepp (1974), Ginibre

and Velo (1979).
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One model (analysts’ Fock space), which sug-

gests useful analogies:

F = L2(Rn)

Ω = e−
|x|2

2

a∗i =
1√
2

(
−
∂

∂xi
+ xi

)

ai =
1√
2

(
∂

∂xi
+ xi

)
[ai, a

∗
j ] = δij

Exponentials of skew-Hermitian linear and quadratic

expressions in creation and annihilation oper-

ators are well-known to analysts. (I learned

them from Folland’s book ”Harmonic analysis

in phase space”).
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Switch to physicists’ symmetric Fock space

(different space, same algebra)

F = {(ψ0, ψ1(x1), ψ2(x1, x2), ψ3(x1, x2, x3), · · · )}

with l2(L2) inner product and norm. For

f ∈ L2(R3) the (unbounded, closed, densely

defined) creation operator a∗(f) : F → F and

annihilation a(f̄) : F → F are defined by(
a∗(f)ψn−1

)
(x1, x2, · · · , xn) =

1
√
n

n∑
j=1

f(xj)ψn−1(x1, · · · , xj−1, xj+1, · · ·xn)

and (
a(f)ψn+1

)
(x1, x2, · · · , xn) =√

n+ 1
∫
ψ(n+1)(x, x1, · · · , xn)f(x)dx
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Also, define the operator valued distributions

a∗x and ax defined by

a∗(f) =
∫
f(x)a∗xdx

a(f) =
∫
f(x)axdx

These satisfy the canonical relations

[ax, a
∗
y] = δ(x− y)

[ax, ay] = [a∗x, a
∗
y] = 0

HN : F → F defined by

HN =
∫
a∗x∆axdx−

1

2N

∫
v(x− y)a∗xa

∗
yaxaydxdy

HN is a diagonal operator on F which acts on

each component ψn as a PDE Hamiltonian

HN,n =
n∑

j=1

∆xj −
1

N

∑
i<j

v(xi − xj)
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Let φ ∈ L2(R3) Define

A(φ) = a(φ)− a∗(φ)

e−
√
NA(φ) (= Weyl operator)

(Stone-von Neumann representation of the ”Heisen-

berg group” = L2(Rn,C) × R with symplectic

inner product =
∫
fḡ)

Let Ω = (1,0,0, · · · ) ∈ F and

e−
√
NA(φ)Ω

= e−N/2

1, · · · ,
(
Nn

n!

)1/2

φ(x1) · · ·φ(xn), · · ·


is a coherent state, similar to a wave packet

in classical PDEs/analysis.
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Introduce the pair excitation function k(t, x, y)

via

B =
1

2

∫ (
k(t, x, y)axay − k(t, x, y)a∗xa

∗
y

)
dxdy

eB = metaplectic representation

of the “real” symplectic matrix,

exp

(
0 k
k 0

)
=

(
ch(k) sh(k)
sh(k) ch(k)

)
called Bogoliubov transformations by

mathematical physicists. Here

ch(k)(t, x, y) = δ(x− y) +
1

2
k̄ ◦ k + · · ·

In the analysts’ Fock space, this is related to

eit (∆+|x|2), and the lens transform.
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Interesting to note that the theory of Bogoli-

ubov transformations or metaplectic represen-

tation evolved independently in Physics and

Math.

Shale’s 1962 paper ”Linear symmetries of free

Boson fields” makes no reference to Bogoli-

ubov.

Bogoliubov’s 1947 paper makes no reference

to the Stone and Von Neumann theorem from

1931. This states that any two unitary irre-

ducible representations of the (finite dimen-

sional) Heisenberg group (with an additional

assumption) are conjugated by (the implemen-

tation/representation of a) Bogoliubov trans-

formation.
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Formal derivation of HFB equations

Start with initial conditions which are pure ten-

sor products

e−
√
NA(φ0)Ω

= e−N/2

1, · · · ,
(
Nn

n!

)1/2

φ0(x1) · · ·φ0(xn), · · ·


or more general initial conditions which include

correlations

e−
√
NA(φ0)eB(k0)Ω = (?, ??, · · · )

(similar to the above, but also include th(k)(xi, xk)).

Evolve these under the exact Hamiltonian

Ψexact = eitHNe−
√
NA(φ0)eB(k0)Ω

and impose two PDEs for φ and k so Ψexact is

approximated, in Fock space, by

Ψapprox = e−
√
NA(φ(t))e−B(k(t))Ω
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Early papers: Hartree equation for φ plus an

equation for k with coefficients depending on

φ. Provide a Fock space approximation for

β < 1/3 (Grillakis, M) and β < 1/2 (Kuz). Ex-

tended/adapted by Nam and Napiorkowski

for Hartree states (fixed N).

Hartree states approach: Lewin, Nam and

Schlein.



Alternative approach: Benedikter, de Oliveira
and Schlein (2015), as well as Bocatto, Ce-
natiempo and Schlein (2017), : Impose the
expected GP equation for φ and define k by an
explicit formula.

For β = 1, the formula is in the spirit of

k(t, x, y) = −Nφ(t, x)φ(t, y)w(N(x− y)

where (
−∆ +

1

2
v

)
(1− w) = 0

while for β < 1 this has to be modified but is
similar in spirit.
Then Ψapprox = e−

√
NA(φ(t))e−B(k(t))Ω provides

an approximation for Ψexact in the sense of
marginal densities if β = 1. Also Ψapprox mod-
ified by an additional unitary transformation
provides a Fock space norm approximation if
β < 1.

k accounts for correlations, and these have to
be present in the initial conditions.
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Our approach: the Hartree-Fock-Bogoliubov

PDEs:

‖eitHe−
√
NA(φ0)e−B(k(0))Ω− e−

√
NA(φ(t))e−B(k(t))Ω‖

= ‖eB(k(t))e
√
NA(φ(t))eitHe−

√
NA(φ0)e−B(k(0))Ω−Ω‖

This leads to

U(t) = eB(k(t))e
√
NA(φ(t))eitHe−

√
NA(φ0)e−B(k(0))

which satisfies an evolution equation in Fock

space: (
1

i

∂

∂t
−Hred

)
U(t)Ω = 0

Ured(0)Ω = Ω

( Hred = ” reduced Hamiltonian”, can be com-

puted explicitly.)
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U(t)Ω = Ω would correspond to an exact solu-
tion, which would follow if Ω satisfied the same
equation as Ured(t)Ω, namely(

1

i

∂

∂t
−Hred

)
Ω = 0

This, of course, is not possible

In reality, Ω satisfies(
1

i

∂

∂t
−Hred

)
Ω =−HredΩ

=(X0, X1, X2, X3, X4,0, · · · )

(Xi = Xi(φ, k), can be computed explicitly).
Impose two equations in two unknowns (φ and
k).(

1

i

∂

∂t
−Hred

)
Ω =−HredΩ

=(X0,0,0, X3, X4,0, · · · )
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X1 = 0 and X2 = 0.

are the time-dependent Hartree-Fock-Bogoliubov

equations in abstract form.

Based on just this one can see that the ex-

pected number of particles〈
e−
√
NA(φ(t))e−B(k(t))Ω,N e−

√
NA(φ(t))e−B(k(t))Ω

〉
(where N =

∫
a∗xaxdx is the number operator),

as well as the energy〈
e−
√
NA(φ(t))e−B(k(t))Ω,He−

√
NA(φ(t))e−B(k(t))Ω

〉
and energy are preserved by the approximate

evolution. (Explicit formulas are also avail-

able). Also, the equations are E.L. equations

for
∫
X0.

Similar results were obtained by Bach, Breteaux,

Chen, Fröhlich and Sigal.
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In their most concrete elegant form , the HFB

equations are expressed in terms of the ”gen-

eralized marginal density matrices” (fix some

of the variables, average in the rest)

Lm,n(t, x1, . . . , xm; y1, . . . , yn) :=
1

N
n+m

2

〈
ax1, ·, axme

−
√
NAe−BΩ, ay1, ·, ayne

−
√
NAe−BΩ

〉

Also, it turns out that

L0,1(t, x) = φ(t, x)

L1,1(t, x, y) = φ(t, x)φ(t, y) +
1

N
(sh(k) ◦ sh(k))(t, x, y)

:= Γ(t, x, y)

L0,2(t, x, y) = φ(t, x)φ(t, y) +
1

2N
sh(2k)(t, x, y)

:= Λ(t, x, y)

and all the higher L matrices can be expressed

in terms of these.
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Explicitly, the three Hartree-Fock-Bogoliubov

equations are:(
1

i

∂

∂t
−∆x1

)
L0,1(t, x1)

= −
∫
vN(x1 − x2)L1,2(t, x2;x1, x2)dx2

(
1

i

∂

∂t
+ ∆x1 −∆y1

)
L1,1(t, x1; y1)

=
∫
vN(x1 − x2)L2,2(t, x1, x2; y1, x2)dx2

−
∫
vN(y1 − y2)L2,2(t, x1, y2; y1, y2)dy2

(BBGKY, with Li,i = γ
(i)
N !)(

1

i

∂

∂t
−∆x1 −∆x2 +

1

N
vN(x1 − x2)

)
L0,2(t, x1, x2)

= −
∫
vN(x1 − y)L1,3(t, y;x1, x2, y)dy

−
∫
vN(x2 − y)L1,3(t, y;x1, x2, y)dy
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The similarity with BBGKY has been exploited

by Jacky Chong in his thesis. Following work

by T. Chen, Pavlovic and Tzirakis on the

G-P hierarchy, he obtained Morawetz and in-

teraction Morawetz type estimates for solu-

tions to HFB.
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More explicit form of HFB: First equation(
1

i
∂t −∆x1

)
φ(x1)

= −
(∫

(vN(x1 − y)Γ(y, y)) dy
)
φ(x1)

−
∫
vN(x1 − y)Γ(y, x1)φ(y)dy

+
∫
vN(x1 − y)Λ(x1, y)φ(y)dy
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In the pure tensor product case (k = 0), if one

forgets the coupling and sets

Γ(t, x, y) = φ(t, x)φ(t, y)

Λ(t, x, y) = φ(t, x)φ(t, y)

the RHS of the previous equation is just

−
(
vN ∗ |φ|2

)
φ, and the equation would just be

Hartree:(
1
i ∂t −∆

)
φ+

(
vN ∗ |φ|2

)
φ = 0
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Second equation, which rules out k = 0:(
1

i
∂t −∆x1 −∆x2 +

1

N
vN(x1 − x2)

)
Λ(x1, x2)

= −
(∫

vN(x1 − y)symΓ(y, y)dy
)

Λ(x1, x2)

−
∫ (

vN(x1 − y)
)
sym

(
Λ(x1, y)Γ(y, x2)

)
sym

dy

+ 2
∫
dy

{(
vN(x1 − y)

)
sym
|φ(y)|2φ(x1)φ(x2)

}

(
f(x1, x2)sym = f(x1, x2) + f(x2, x1)

)
.
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In a hypothetical tensor product case,

Γ(t, x, y) = φ(t, x)φ(t, y)

Λ(t, x, y) = φ(t, x)φ(t, y)

the RHS would be

−(vN∗|φ|2)(x1)φ(x1)φ(x2)−(vN∗|φ|2)(x2)φ(x2)φ(x1),

but the potential forces correlations to form

and rules out tensor product solutions.

The expectation is that Λ, for t > 0, should

behave like

Λ(t, x, y) ∼ φ(t, x)φ(t, y)(1−N1−βω(Nβ(x− y)

even if Λ(0, x, y) = φ0(x)φ0(y).
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(
1

i
∂t −∆x1 + ∆x2

)
Γ(x1, x2)

= −
∫
dy
{
vN(x1 − y)a−symΛ(x1, y)Λ(y, x2)

}
+

−
∫
dy

{
vN(x1 − y)a−s

(
Γ(x1, y)Γ(y, x2)

+ Γ(y, y)Γ(x1, x2)
)}

+ 2
∫
dy
{
vN(x1 − y)a−sym|φ(y)|2φ(x1)φ(x2)

}
Again, if k = 0, this is just the Hartree equa-

tion.

HFB are a generalization of the Hartree equa-

tion which includes the mechanism for correla-

tion formation. They do not have C∞ solutions

(uniformly in N). This is a natural ”existence

with low regularity” problem. The window be-

tween the minimum regularity needed (H
1
2 for

φ, H
1
2,

1
2 for Λ and Γ and the maximum regu-

larity allowed seems to be very small.
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If φ = Λ = 0 and some of the signs (and scal-

ing) are changed, this is HFB for Fermions.



Conserved quantities: Conservation of the num-
ber of particles and energy

The total number of particles (divided by N)
is∫

Γ(t, x, x)dx = ‖φ(t)‖2
L2(dx) +

1

N
‖sh(k)(t)‖2

L2(dxdy)

This allows, in principle, for ‖sh(k)(t)‖2
L2(dxdy)

to become as large as N in finite time, which
seems wrong, if one believes

k(t, x, y) =∼ Nφ(t, x)φ(t, y)w(N(x− y)

∼
φ(t, x)φ(t, y)

|x− y|

where φ satisfies NLS with H
1
2 data, and w is

bounded and w(Nx) ∼ 1
N |x| if N |x| is large.

The estimates that follow will show that in
fact,

‖sh(k)(t)‖L∞([0,T ])L2(dxdy) ≤ C(T ) (indep of N)
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The energy is∫
∇x · ∇yΓ(t, x, y)

∣∣∣
x=y

dx+ (positive)

= ‖∇φ(t)‖2
L2(dx) +

1

2N
‖∇xsh(k)‖2

L2(dxdy)

+
1

2N
‖∇ysh(k)‖2

L2(dxdy) + (positive)

In particular,

‖φ(t)‖L2(dx) + ‖∇φ(t)‖L2(dx) ≤ C
‖Γ(t)‖L2(dxdy) + ‖∇x∇yΓ(t)‖L2(dxdy) ≤ C

‖Λ(t)‖L2(dxdy) + ‖|∇x|
1
2|∇y|

1
2Λ(t)‖L2(dxdy) ≤ C

uniformly in time and N , and in fact

‖|∇x|
1
2+ε|∇y|

1
2+εΛ(t)‖L2(dxdy) ≤ C(1 + t)δ
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This is significant because NLS is locally well-

posed locally in time in H
1
2 (but not below) in

3+1 dimensions.

Therefore, well-posedness for HFB requires at

least ∇1/2
x φ0

and ∇1/2
x ∇1/2

y Λ0 ∈ L2

and ∇1/2
x ∇1/2

y Γ0 ∈ L2.

The theorem to be stated in the next few slides

(for β < 1) requires initial conditions of regu-

larity within epsilon of these conserved quan-

tities. The conserved energy for Γ scales like

H2, while the conserved energy for Λ scales

like H1. The low regularity of Λ comes from k

Λ(t, x, y) = φ(t, x)φ(t, y) +
1

2N
sh(2k)(t, x, y)
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and

1√
N
‖|∇x|

1
2|∇y|

1
2sh(2k)‖L2(dxdy) ≤ C

uniformly in time. But there is ”extra regular-

ity” in N .



One can also show, if the initial conditions are

sufficiently smooth,

‖‖∇x∇ysh(2k)‖L2(dxdy) . (1 + t)Npower

This was done by Jacky Chong for β < 2/3,

but the argument also works for β < 1. An

interpolation argument shows

‖|∇x|
1
2+ε|∇y|

1
2+εΛ‖L2(dxdy) ≤ C(1 + t)δ
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The main result.

The norms

Fix α > 1
2, so that 2αβ < 1. 0 < T < 1 and c(t)

= characteristic function of [0, T ].

NT (Λ)

=‖ < ∇x >α< ∇y >α c(t)Λ‖L2(dt)L6(dx)L2(dy)
+ ‖ < ∇x >α< ∇y >α c(t)Λ‖L∞(dt)L2(dx)L2(dy)
+ same norm with x and y reversed

+ sup
w
‖ < ∇ >α c(t)Λ(t, x, x+ w)‖L2(dtdx)

+ sup
w
‖
∣∣∣∂t∣∣∣14c(t)Λ(t, x, x+ w)‖L2(dtdx)

ṄT (Γ)

=‖ < ∇x >α< ∇y >α c(t)Γ‖L2(dt)L6(dx)L2(dy)
+ same norms with x and y reversed

‖ < ∇x >α< ∇y >α c(t)Γ‖L∞(dt)L2(dx)L2(dy)

+ sup
w
‖ < ∇ >α−

1
2 |∇|

1
2c(t)Γ(t, x, x+ w)‖L2(dtdx)
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NT (φ)

=‖ < ∇x >α c(t)φ‖L2(dt)L6(dx)

+ ‖ < ∇x >α c(t)φ‖L∞(dt)L2(dx)



The non-linear theorem:

Assume v is a Schwartz function with v̂ sup-

ported in the unit ball, such that |v̂| ≤ ŵ with w

a Schwartz function. Then there exists, N0 ∈ N
and T0 such that, if 0 < T < T0 and N ≥ N0,

NT (Λ) + ṄT (Γ) +NT (φ)

. ‖ < ∇x >α< ∇y >α Λ(0, ·)‖L2 + ‖ < ∇x >α< ∇y >α Γ(0, ·)‖L2

+ ‖ < ∇x >α φ(0, ·)‖L2

Similar estimates hold for differences, and deriva-

tives which commute with the potential.

It is not clear if something like this holds for

β = 1.

The RHS evaluated at T (rather than 0) grows

sub-linearly in time, so this provides global es-

timates.
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To prove this, Xs,b spaces are needed.

Denote

S =
1

i
∂t −∆x −∆y

so that he symbol of S is τ + |ξ|2 + |η|2 Recall

‖Λ‖Xδ = ‖ < τ + |ξ|2 + |η|2 >δ Λ̂(τ, ξ, η)‖L2(dτdξdη)

36



The theorem follows from linear estimate:

Let

SΛ =
1

N
vN(x− y)Λ + F

Λ(0) = Λ0

Then for all δ > 0 sufficiently small, the fol-

lowing holds, uniformly in N .

NT (Λ) .δ ‖ < ∇x >α< ∇y >α Λ0‖
+ ‖ < ∇x >α< ∇y >α c(t)F‖

X
−1

2+δ

+ max{‖ < ∇x >α< ∇y >α−
1
2 c(t)F‖

X
−1

4−δ
,

‖ < ∇x >α−
1
2< ∇y >α c(t)F‖

X
−1

4−δ
}

The presence of X−
1
4 on the RHS, and |∂t|

1
4 on

the LHS, is unusual. They are related.
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Ingredients in the proof:

Let
(

1
i ∂t −∆x1 + ∆x2

)
Γ = 0.

Estimating ‖Γ(t, x, x)‖L2(dtdx) using space-time

Fourier transform: going back to estimates for

the wave equation from the early 90s Klainerman-

M, Beals-Bezard. More recently T. Chen-

Pavlovic, X. Chen -Holmer . Another ap-

proach for

‖Γ(t, x, x)‖
Lp/2(dt)Lq/2(dx) . ‖Γ0‖Schatten norm

due to Frank and Sabin.

The two methods give different types of results

( except in 1+1 dimensions, where they almost

agree).
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If
(

1
i ∂t −∆x1 −∆x2

)
Λ = 0, estimates for

‖Λ(t, x, x)‖L2(dtdx) can also be obtained using

the space-time Fourier transform using ”old”

techniques. Explicitly, If SΛ = 0 then

sup
z
‖|∇|1/2

x Λ(t, x, x+ z)‖L2(dtdx)

. ‖|∇|1/2
x |∇|1/2

y Λ0(x, y)‖L2(dxdy)

Also, if α > 1
2, δ > 0 then

sup
z
‖ < ∇x >α Λ(t, x, x+ z)‖L2(dtdx)

. ‖ < ∇x >α< ∇y >α Λ‖
X1/2+δ
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Estimates for

sup
w
‖
∣∣∣∂t∣∣∣14c(t)Λ(t, x, x+ w)‖L2(dtdx)

are new:

Let c = χ[0,1], α >
1
2, and let Λ(t, x, y), F (t, x, y)

such that

Λ = eit∆Λ0 +
∫ ∞
−∞

c(t− s)ei(t−s)∆F (s, ·)ds

(this agrees with Duhamel for t ∈ [0,1]). Then

there exists ε > 0 such that

sup
w
‖
∣∣∣∂t∣∣∣14 (Λ(t, x, x+ w)) ‖L2

. ‖ < ∇x >α< ∇y >α Λ0‖L2

+ ‖ < ∇x >α< ∇y >α F‖
X
−1+ε

2

+ ‖ < ∇x >α< ∇y >α−
1
2 F‖

X
−1+2ε

4

Notice there are no time derivatives on the

RHS or the data.
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Imposing estimates (say L2) of time derivatives

of the data is restrictive:

If(
1

i
∂t −∆x −∆y +

1

N
vN(x− y)

)
Λ(t, x, y) = 0

Λ(0) = Λ0

then

1

i
∂tΛ

∣∣∣
t=0

=
(

∆x + ∆y −
1

N
vN(x− y)

)
Λ0 ∈ L2

Λ0 smooth does not satisfy this (uniformly in

N). Correlation must be present in the initial

conditions, such as

Λ0(x, y) = φ0(x)φ0(y)(1−Nβ−1w(Nβ(x− y))

where (
−∆ +

1

2
v

)
(1− w) = 0
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The main difficulties in proving the linear the-
orem come from
1
NvN(x− y) = N3β−1v(Nβ(x− y)).

Recall

SΛ =
1

N
vN(x− y)Λ + F

Strichartz estimates (say L2(dt)L6(d(x−y))L2(d(x+
y)) would be easy, but if we differentiate,

S < ∇x >α< ∇y >α Λ

=
1

N
(< ∇x >α< ∇y >α vN(x− y)) Λ + · · ·

∼ δ(x− y)f(t, x+ y) + · · ·
(f(t, x + y) = Λ(t, x+y

2 , x+y
2 )). Away from the

paraboloid, the space-time Fourier transform
of < ∇x >α< ∇y >α Λ includes the term

f̃(τ, ξ + η)

τ + |ξ|2 + |η|2
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No matter how nice f̃ is,

< τ + |ξ|2 + |η|2 >δ
f̃(τ, ξ + η)

τ + |ξ|2 + |η|2

will not be in L2 is δ ≥ 1
4, so the contribution

from this term is only in X
1
4−ε in the region

where ξ − η is big.

The PDE cannot be treated the usual way,

estimating the solution in an X1/2 type space,

and the RHS in an X−1/2.



This theorem is proved by using more sophis-

ticated norms which also take frequency local-

ization into account (so that derivatives can

hit the high frequency terms):

N (Λ) = ‖ < ∇x >α< ∇y >α P|ξ−η|&Nβ′c(t)Λ‖
X

1
2−

+ ‖ < ∇x >α< ∇y >α P|ξ+η|&Nβ′c(t)Λ‖
X

1
2−

+ ‖ < ∇x >α< ∇y >α P|ξ±η|.Nβ′c(t)Λ‖L2(dt)L6(dx)L2(dy)

+ ‖ < ∇x >α< ∇y >α P|ξ±η|.Nβ′c(t)Λ‖L∞(dt)L2(dx)L2(dy)

+ same norm with x and y reversed

+ sup
w
‖ < ∇ >α c(t)Λ(t, x+ w, x− w)‖L2(dtdx)

+ sup
w
‖
∣∣∣∂t∣∣∣1/4

c(t)Λ(t, x+ w, x− w)‖L2(dtdx)

+ ‖c(t)Λ‖
X

1
2−

+N−1‖ < ∇x >α< ∇y >α P|ξ−η|.Nβ′,|ξ+η|.Nβ′c(t)Λ‖
X

1
2−

(β < β′ < 1)
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In other words, the high (> Nβ′) frequency part

of Λ can be estimated in X
1
2−, and this implies

both the Strichartz and collapsing estimates.

In the low frequency part (|ξ − η| . Nβ), the

Strichartz estimates are obtained through X
1
4

+ Sobolev techniques, while the collapsing es-
timates can be seen directly in Fourier space.
In the model case, if

SΛ =
1

N
δ(x− y)f(t, x+ y)(

where f(t, x+y) = Λ(t, x+y
2 , x+y

2 )
)

is solved in
[0,1] by

u =
∫ ∞
−∞

ei(t−s)(∆x+∆y)δ(x− y)c(s)f(s, x+ y)dy

then ∣∣∣∣∣P|ξ−η|.Nβ
˜c(t)Λ(t, x, x)

∣∣∣∣∣ .
∣∣∣∣∣c̃f(τ, ξ)

∣∣∣∣∣
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Future work:

Using work of Jacky Chong in the case β <

2/3 globally in time, it is very likely that one

can show, for β < 1,

‖eitHe−
√
NA(φ0)e−B(k(0))Ω− e−

√
NA(φ(t))e−B(k(t))Ω‖

≤ C
et
power

N
1−β

2

As stated above, the Fock space errors are

of the same nature as those of Bocatto, Ce-

natiempo and Schlein, as well as very re-

cent L2 estimates of Brennecke, Nam, Na-

piorkowski, and Schlein. The main differ-

ence is that the proof is based on estimates

to a PDE, and there is more freedom in the

choice of initial conditions.
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Also, et
power

may not be optimal. The issue is

to get large time estimates for the solutions to

HFB. The problem is completely open.

A hard question: what are the large time decay

properties φ from HFB (uniformly in N)?

The problem involves both difficulties for NLS

( Lin and Strauss, greatly simplified by new

techniques) and Schrödinger with a potential.

In the critical case β = 1, the potential

N3β−1v(Nβ(x − y)) ∈ L
3
2 uniformly in N . This

is more singular than the case considered by

Journé, Soffer and Sogge.
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