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Overview of the problem:

Approximate symmetric solutions to the many-
body problem

10
Za%\f(t,fﬂl, rxy) = Hyyn(t,z1, - 2N)

YN (O, x1,---zn) = (Or ~)po(x1)Po(x2) - - - Yo(TN)

where

N
1
HN: Z AZU]'_NZUN(QZ'L'_%])

j=1 i<j
N is large but fixed, z, € R3, v € S, and 0 <
B <1 and vy(z) = N3By(NPz). Approximate
Y with combinations of solutions to a non-
linear PDE in much fewer variables



One answer: NLS and Gross-Pitaevskii equa-
tions

YNt @1, zn) ~ o z1)o(E x2) - @(E, N)
where ¢ satisfies
16— Ao+ cloPo=0
1 0t

The coupling constant changes from

B<1l(c=[v)
to B8 =1 (¢ = scattering length of v).

Rigorous work by Erdos, Schlein and Yau.



A proposed more detailed answer than NLS:
"Hartree-Fock-Bogoliubov equations”.

The approximation involves not only a ¢(t,x)
but also a function k(¢,x,vy).

Something like this is well-known. Usually, ¢
iIs taken to be a solution to NLS, while k is
determined by an elliptic equation involving ¢.

TDHFEB equations for Bosons also address this,
and are not well-known. They are a coupled
system of Schrodinger type equations in 3+ 1
variables and 6 + 1 variables.

T he equations were derived by M. Grillakis and
me (2013) and are closely related to those de-
rived independently by Bach, Breteaux, T.
Chen, Frohlich and Sigal .



They are similar in spirit to the Hartree-Fock-
Bogoliubov equations used in the Physics lit-
erature for Fermions.

Our work is based on earlier work with D. Mar-
getis.



HFB equations share common features with
BBGKY.

Background: BBGKY and the work of Erdos,
Schlein and Yau.

For 7 satisfying

10
;&wN(tawla"'xN) — HN”(pN(t,ZB]_,"'CUN)

Consider ¥Yn(t,x)yn(t,y), average out most
variables, and look at the marginal density " ma-

trices”

’YA](\]]’{) (t7 Xk Yk)
— /&N(ta Xk XN—k)wN(ta Yk XN—k)dXN—k



These satisfy a hierarchy of equations, for all
N 7](\’f) "matrices’ :
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( -+ Al’l Ay1> ’YN)(t T, y].)

i Ot
N -1 —(2
=N vy (z1 — wz)%(v)(t,m,wz; Y1, 2)dxo
N -1 —(2
— vn (Y1 — yz)%(v)(t,fvlyyz: Y1, Y2)dy2
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N —2 —(3
— v (Y2 — ys)%(\r ) (t, 21, 203, Y1, Y2, ¥3) dy3




Formally, as N — oo,

7§ = 48

satisfies Gross-Pitaevskii hierarchy

10 —
(;a + Agpq — AZyl> 7(1)(t7 T1;91)
= C’?(z)(t;xlyxl;ylaxl)

—(2 :
— C’YZ(\/')(t7ajl)y11 ylayl)

which admits solutions

V) = ¢(t, 21)B(t, y1)
72 = ¢(t, 21)d(t, 22)B(t, y1) B(t, y2)
where
10 >,
T he well-known work of Elgart, Erdos, Schlein

and Yau: this is true for 8 < 1 with ¢ = [,
and c scattering length of v for g = 1.



Heuristically, the change of coupling constant
when 8 = 1 comes from the fact that the true

form of 7](\[2) IS closer to

5,(2)

N

=¢(t,z1)p(t, x2) fn(T1,22)
o(t, y1)o(t, y2) Fn (Y1, y2)

and fp accounts for correlations.



In previous work, fy (related to our k) is de-
termined by an elliptic equation

( will always refer to objects determined
by this type of elliptic equation, while blue
will be reserved to objects determined through
HFB.)

The HFB equations are a coupled system of
Schrodinger-type PDEs for for ¢ (denoted ¢,
representing ""the condensate”), 'y = I (a
Fock space 7](\,1) matrix)

and An(t,xz1,x2) = A(t,x1,x5) which plays the
role of

but also allows the correlations to form dynam-

ically in time.



The HFB equations are derived in Fock space,
which has been used in order to get estimates
for the rate of convergence of the approxima-
tion to the exact solution.

First one for marginal densities 7](\1;): Rodnian-
ski and Schlein (2009).

First one for L2(R¥Y) through Fock space: Gril-
lakis, M, Margetis (2010).

Efficient direct estimates in L2(R¥) (using Fock
space type estimates) Lewin, Nam and Schlein
(2015).

Inspired by older work of Hepp (1974), Ginibre
and Velo (1979).
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One model (analysts’ Fock space), which sug-
gests useful analogies:

F = L*(R"™)
x?
Q= e 2

1 0

*1 —
la;, a3] = 6;;
Exponentials of skew-Hermitian linear and quadratic
expressions in creation and annihilation oper-

ators are well-known to analysts. (I learned
them from Folland’s book "Harmonic analysis

in phase space”).
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Switch to physicists’ symmetric Fock space
(different space, same algebra)

F = {(¥o,¥1(x1),¥2(x1,22),9¥3(x1, 22, 23), -+ )}

with [2(L?) inner product and norm. For
f € L?(R3) the (unbounded, closed, densely
defined) creation operator a*(f) : F — F and
annihilation a(f) : F — F are defined by

(@™ ()Yn—1) (x1,20, - ,2n) =
1 n
NG 21 flj)bn—1(z1, - 251,541, 2n)

n ‘—
j_

and

(a’(fy(pn—l—l) (xla LDy ,:En) —
Vi1 [ Y@, o) f@)de
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Also, define the operator valued distributions
ar. and a; defined by

() = [ J@)a}de
a(N) = [ F(@)axda

T hese satisfy the canonical relations

laz, CLZ] =6(x —y)
laz, ay] = [aF, a;] =0

N . F — F defined by

Hy = / *Aagdr — — / v(x — y)aza,azaydrdy

Hps is a diagonal operator on F which acts on
each component ¢, as a PDE Hamiltonian

Z Ay, ——Zv(a:Z

z<]

13



Let ¢ € L2(R3) Define
A(9) = a(¢) — a™ ()
e~ VNA() (= Weyl operator)

(Stone-von Neumann representation of the " Heisen-
berg group” = L2(R" C) x R with symplectic
inner product & [ fg)

Let = (1,0,0,---) € F and

o~ VNAD) o

N 1/2
— o—N/2 (17... ’<N_> qb(acl)---gb(a:‘n),---)

n!

IS @ coherent state, similar to a wave packet
in classical PDEs/analysis.
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Introduce the pair excitation function k(¢,z,vy)
via
]‘ 1. k k
B = 5/ (k(t, x,y)azay — k(t,x, y)a,xa,y) dxdy

eB — metaplectic representation

of the “real” symplectic matrix,
0 k ch(k) sh(k)
ex = - N7
p(k o) (sh(k) ch(k)
called Bogoliubov transformations by
mathematical physicists. Here

(k) (t,,y) = 6 — ) + SR ok +- -

In the analysts’ Fock space, this is related to
it (A+[z*)  and the lens transform.
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Interesting to note that the theory of Bogoli-
ubov transformations or metaplectic represen-
tation evolved independently in Physics and
Math.

Shale's 1962 paper " Linear symmetries of free
Boson fields” makes no reference to Bogoli-
ubov.

Bogoliubov’'s 1947 paper makes no reference
to the Stone and Von Neumann theorem from
1931. This states that any two unitary irre-
ducible representations of the (finite dimen-
sional) Heisenberg group (with an additional
assumption) are conjugated by (the implemen-
tation/representation of a) Bogoliubov trans-
formation.
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Formal derivation of HFB equations

Start with initial conditions which are pure ten-
sor products

o~ VNA($0) O

N 1/2
— o—N/2 (1, . <N_> bo(x1) -+ do(zn), - )

n!

or more general initial conditions which include
correlations

o~V NA($0) B(ko) ) — (?,27,-++)

(similar to the above, but also include th(k) (x;, x1)).
Evolve these under the exact Hamiltonian

W, = etHNe=VNA($0) Blko)

and impose two PDEs for ¢ and k sO Wegqcet IS
approximated, in Fock space, by

—VNA()) ,~Bk(1) &

wapproa: — €
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Early papers: Hartree equation for ¢ plus an
equation for k with coefficients depending on
¢. Provide a Fock space approximation for
B < 1/3 (Grillakis, M) and 8 < 1/2 (Kuz). Ex-
tended/adapted by Nam and Napiorkowski
for Hartree states (fixed N).

Hartree states approach: Lewin, Nam and
Schlein.



. Benedikter, de Oliveira
and Schlein (2015), as well as Bocatto, Ce-
natiempo and Schlein (2017), : Impose the
expected GP equation for ¢ and define k£ by an
explicit formula.

For 5 =1, the formula is in the spirit of

where

while for 8 < 1 this has to be modified but is
similar in spirit.

Then Wappror = e~ VNAWGD)e~BR()Q provides
an approximation for Wg,.t in the sense of
marginal densities if 3 =1. Also Wgppror Mod-
ified by an additional unitary transformation

provides a Fock space norm approximation if
8 <1.

k accounts for correlations, and these have to
be present in the initial conditions.
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Our approach: the Hartree-Fock-Bogoliubov
PDEs:

||€it'H€—\/NA(¢O)€_B(k(O))Q — €_mA(¢(t>)e_B(k(t))QH
B(k(1)) ,VNA($(1)) it H ,—VNA(¢0) ,—B(k(0)) o _ Q||

= [e

T his leads to
U(t) = Bk()) o VNA(D(L)) pitH ,.—V N A(¢g) ,—B(k(0))

which satisfies an evolution equation in Fock
space:

10
— — Ut)S2 =0
(iat Hred) ()
Ured(O)Q:Q

( Hyeq =" reduced Hamiltonian, can be com-
puted explicitly.)
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U((t)2 = Q2 would correspond to an exact solu-
tion, which would follow if €2 satisfied the same
equation as Uyeq(t)$2, namely

This, of course, is not possible

In reality, €2 satisfies

10
(;_at — %red) Q —_— — HredQ
:(X07 X17 X27 X37 X47 Oa T )

(X; = X;(¢p,k), can be computed explicitly).
Impose two equations in two unknowns (¢ and
k).

:(XO7 07 07 X37 X47 07 T )
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X1 =0 and Xo = 0.

are the time-dependent Hartree-Fock-Bogoliubov
equations in abstract form.

Based on just this one can see that the ex-
pected number of particles

(~VRAG~BHD G pre—VIAGD)~BHDG)

(where N = [ala,dx is the number operator),
as well as the energy

(= VRAGD) BIO)Q, 3=V NAGD) ~BHD) )

and energy are preserved by the approximate

evolution. (Explicit formulas are also avail-
able). Also, the equations are E.L. equations
for | Xp.

Similar results were obtained by Bach, Breteaux,
Chen, Frohlich and Sigal.
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In their most concrete elegant form , the HFB
equations are expressed in terms of the "gen-
eralized marginal density matrices” (fix some
of the variables, average in the rest)

,Cm,n(t,ail, ML YLy e, Yn) L=

Also, it turns out that

K’O,l(t7 ZB) — ¢(t7 CL‘)
£11(62,y) = 6(t,)9(t,y) + - (Sh(E) 0 Sh(k))(t,,9)
=T (tz,v)

1
K’O,Q(tv L, y) — Qb(t, QZ)Qb(t, y) + ﬁ5h<2k)(t7 L, y)
= A(t, z,y)

and all the higher £ matrices can be expressed
in terms of these.

22



Explicitly, the three Hartree-Fock-Bogoliubov
equations are:

10
(—— — Aa;1> Lo1(t, z1)
10

— —/UN(:cl — x2)£1,2(t,332i r1,T2)dr

10
(za + Az — Ayl) L1,1(,21;91)

= /UN(:L‘1 —x2) L2 o(t, 21,22, y1,22)dx>o
— /’UN(?J1 —y2)L22(t, x1,Y2; Y1, Yy2)dy>

(BBGKY, with £;; = ny ')

1 1
(;% — A AJZQ —|— NUN($]_ — 332)) L"O,Q(ta Z1, :UQ)
= — /’UN(x]_ — y)£1,3(tay; $17$27y)dy

— /’UN(xQ —y)L13(t,y; 1,22, y)dy
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The similarity with BBGKY has been exploited
by Jacky Chong in his thesis. Following work
by T. Chen, Pavlovic and Tzirakis on the
G-P hierarchy, he obtained Morawetz and in-
teraction Morawetz type estimates for solu-
tions to HFB.
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More explicit form of HFB: First equation
(%&g — Aa;1> ¢(x1)
= — ([ onGer = wm) dy) (1)
~ [ on (@1 = D (v, 210 (w)dy
1 /UN(xl — PN (z1,y)d(y)dy
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In the pure tensor product case (k = 0), if one
forgets the coupling and sets

F(t 2, y) = ¢(t,2)o(t,y)
A, z,y) = (¢, ) o(t, y)

the RHS of the previous equation is just

— (UN % |gb|2) ¢, and the equation would just be
Hartree:

(10, — D)o+ (vy *162) o =0
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Second equation, which rules out k£ = O:

1 1
(;at — Dz — Dppy + N’UN(xl — xg)) A(z1,22)

- — (/ N (T — y)symr(y,y)dy) N(x1,x2)
_ / (vN(a:1 — y))sym(/\(a;l,y)r(y,@)) dy

sym

+2 [dy{(on(e1 - 1), [6W)Ps(1)(2) |

(f(@1,22)sym = fz1,72) + f(22,71)).
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In a hypothetical tensor product case,

C(t,z,y) = o(t,2)p(t, y)
A(t, z,y) = ot z)P(t, y)

the RHS would be
—(vn*|8|2) (z1) P (21) d(x2) — (N *|9]2) (2) p(z2) P(71),

but the potential forces correlations to form
and rules out tensor product solutions.

The expectation is that A, for ¢ > 0, should
behave like

even if A(O,z,y) = ¢o(x)9o(y).
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(%(‘% — Aajl + Awg) F(3717 ZUQ)
= - [ dy{vn (a1 — Ya—symN a1, Ay, 22) } +

- /dy{vzv(:vl — y)a—s(F(wl,y)F(y,wz)
+ F<y,y>F<x1,x2>)}

+2 [ dy {on(@1 = Pamsymlo@)Pé(e1)d(2)

Again, if Kk = 0, this is just the Hartree equa-
tion.

HFB are a generalization of the Hartree equa-
tion which includes the mechanism for correla-
tion formation. They do not have C°° solutions
(uniformly in N). This is a natural "existence
with low regularity” problem. The windovxi be-
tween the minimum regularity needed (H?2 for

11
¢, H22 for A and ' and the maximum regu-
larity allowed seems to be very small.
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If = A = 0 and some of the signs (and scal-
ing) are changed, this is HFB for Fermions.



Conserved quantities: Conservation of the num-
ber of particles and energy

The total number of particles (divided by N)
IS

1
/I_(t,a:,aj)da: — ||§b(t)||%2(dx) + NHSh(k)(t)H%Q(dxdy)

This allows, in principle, for ||sh(&)(DI1Z ;)

to become as large as N in finite time, which
seems wrong, if one believes

1
where ¢ satisfies NLS with H2 data, and w is

bounded and w(Nz) ~ - if N|z| is large.
N|z|

The estimates that follow will show that in
fact,

||Sh(k)(t)||Loo([0,T])L2(dxdy) < C(T) (indep of N)
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The energy is
/Vm -Vl (t, z, y)‘ _ dac + (positive)
— ||v¢<t>||L2(dm) V2SN 2y

+ ﬁ”vySh(k) ||L2(da:dy) + (pOSitiUG)

In particular,

PO L2(d4zy T IVOD 242y < C

1 1
N 12¢dzayy T 1V22IVy2A@ 12 42d) < C

uniformly in time and N, and in fact

1 1
[1Va 2V A | 2 guayy < O + )
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This is significant because1 NLS is locally well-
posed locally in time in H2 (but not below) in
341 dimensions.

Therefore, well-posedness for HFB requires at
1/2
least V.

and Vi/?Vi/2ng € L2

and Vi/?vi/?rg e 2.

The theorem to be stated in the next few slides
(for B < 1) requires initial conditions of regu-
larity within epsilon of these conserved quan-
tities. The conserved energy for [ scales like
HQ, while the conserved energy for A scales
like Hl. The low regularity of A comes from k

NGt ,y) = 6(6,2)8(t,y) + 5 _SN(2K) (1,2, )
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and

1 1 1
T lIVal2IVyl2sh ()l 2 grayy < ©
uniformly in time. But there is " extra regular-
ity in V.



One can also show, if the initial conditions are
sufficiently smooth,

NV2Vysh(2k) [ 12 gpq,) S (1 t)NPower

This was done by Jacky Chong for g < 2/3,
but the argument also works for 3 < 1. An
interpolation argument shows

1 1
[V l2 4V 2 AN L2y < O+ 8)°
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The main result.
T he norms

Fix o > 5, so that 2a8 < 1. 0 < T < 1 and ¢(t)
= characteristic function of [0, T].
N7 (N)
=|| < Vg >Y< Vy > C(t)/\||L2(dt)L6(dx)L2(dy)
+ || < Va2 ><Vy >% e oo(ar) £2(da) L2 (dy)
+ same norm with x and y reversed
+ sup | <V > c(t)N(t, z,x + w)HLQ(dtd:c)

1
+ sup [ “c (DA, 2@ + Wl 2(ara)

Np(T)

:H < V;,; >a< Vy >a C(t)I_HLQ(dt)L6(dx)L2(dy)
<+ same norms with = and y reversed

| < Vo >3<Vy >% c(O)T || Loo(ar) £2(da) L2 (dy)
1 1
1 sup I <V >"2|V2e()F (@ 2,z + )l p2¢atd0)
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N7 (¢)
=l < Va > c(®)éll 1204) 16 ()
+ | < Va > c(®) @l oo (ar) £2(da)



T he non-linear theorem:

Assume v is a Schwartz function with v sup-
ported in the unit ball, such that |v| < w with w
a Schwartz function. Then there exists, Ng € N
and 1y such that, if 0 <T <1 and N > No,

N7 (N) + Ny (M) 4+ Ny (¢)
S < Ve >%<Vy STA, )]l + | < Ve >T<Vy ST
+ || < Vz > ¢(0, )] ;2

Similar estimates hold for differences, and deriva-
tives which commute with the potential.

It is not clear if something like this holds for

B=1.

The RHS evaluated at T (rather than 0) grows
sub-linearly in time, so this provides global es-
timates.
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To prove this, X 5P Spaces are needed.

Denote

1
(2

so that he symbol of S is 7 + [£|2 + |n|? Recall

INlxs = Il <7+ €17 4+ > >° A &M L2 (ardedn)
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The theorem follows from linear estimate:

Let

1
SA = N’UN(QE — YN+ F

A(0) = Aq

Then for all & > O sufficiently small, the fol-
lowing holds, uniformly in N.

Nr(N) S5l < Va >%<Vy > Agl|
+ || < Vg >%< Vy >° c(t)F||X_%+5

1
+ max{|| < Vg >*< Vy >472 C(t)FHX—%—(S’

1
| < Vg >%T2<Vy > c(t)FHX_%_(S}

1 1
The presence of X4 on the RHS, and |0¢4% on
the LHS, is unusual. They are related.
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Ingredients in the proof:

Let (30, — Ayy 4 Day) T =0.

Estimating |[I"(¢, z, 2)|| 2 (4¢4,) USING SPace-time
Fourier transform: going back to estimates for
the wave equation from the early 90s Klainerman-
M, Beals-Bezard. More recently T. Chen-
Pavlovic, X. Chen -Holmer . Another ap-
proach for

|||_(t, L, CC)HLP/Q(dt)LQ/Q(d:L’) S T ollsehatten norm
due to Frank and Sabin.

The two methods give different types of results
( except in 141 dimensions, where they almost
agree).
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If (%at — Ay — A;EQ) A = 0, estimates for
||/\(t,:c,ac)||L2(dtdm) can also be obtained using
the space-time Fourier transform using " old”
techniques. Explicitly, If SA = 0 then

sup | VI PN, 3, + 2 L2 (dtdz)
S |||V|a1:/2|V|;/2/\o(fE>y)||L2(d;cdy)
Also, if a > %, § > 0 then
sup | <V >%A(t,z, 2+ Z)||L2(dtd:c)
S < Ve >*< Vy >% Al y1/249
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Estimates for

1
sup [[|0|* (A, @, @ +w)ll r2(41a2)

are new:
Let ¢ = x[g.1], @ > 5, and let A(t,z,y), F(t,z,y)
such that
. oo .
A = PNy + / c(t — s)ez(t_S)AF(s, ds
— O

(this agrees with Duhamel for ¢ € [0,1]). Then
there exists € > 0 such that

1
sup ||‘8t|4 (At z,z + w)) || 12
S| < Vz >%< Vy > Agll 72
+ | < Ve >¥<Vy >*FI| 14
X2

_1
+ || < Vg >¥< Vy >472 F||X_1t2€

Notice there are no time derivatives on the

RHS or the data.
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Imposing estimates (say L2) of time derivatives
of the data is restrictive:

If

1 1
(gﬁt — Dy — Dy + N?)N(w — y)) A(t,z,y) =0

A0) = Ag

then

1 1 5
FON o= (Be+ 8y = oxGe—n) | Ro € L

Ao smooth does not satisfy this (uniformly in
N). Correlation must be present in the initial
conditions, such as

where
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The main difficulties in proving the linear the-
orem come from

%UN(CE —y) = N3B_1U(NB(CU —y)).

Recall

1
SA = N’UN(QE — YN+ F

Strichartz estimates (say L2(dt) L% (d(x—vy))L2(d(z+
y)) would be easy, but if we differentiate,

S < Vz > Vy >YA
1
:N(<Vx > Vy >%on(z—y)) AN+ -

~o(z—y)ftz+y) +-

(f(t,x +vy) = A(¢, w""y x+y)) Away from the
paraboloid, the space time Fourier transform
of < Vi >*< Vy > A includes the term

f(r.&+m)
T4 €)% 4 02
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No matter how nice f is,

f(r.&+mn)
<74 €)%+ |nl* >°
T+ €2 4 |n|?
will not be in L2 is § > + so the contribution

Z_ 47
1
from this term is only in X4~ ¢ in the region
where & — n is big.

The PDE cannot be treated the usual way,
estimating the solution in an X1/2 type space,
and the RHS in an X~ 1/2,



This theorem is proved by using more sophis-
ticated norms which also take frequency local-
ization into account (so that derivatives can
hit the high frequency terms):

N(/\) p— || < Vg; >O{< Vy >a P|£_T/|>N6/C(t)/\||X%_
« «
I < Ve >T<Vy > P nare@AI 1

+ || < Vi >< Vy > P|€in|§NB/c(t)/\||Lz(dt)L6(dw)L2(dy)

+ I < Vo >*<Vy > Py v €N oo ary L2(de) 12(dy
+ same norm with = and y reversed
+sup || <V > (N @ +w, z — W)l p24td0)
1/4
+ sup ||‘5t‘ c(ONE z + w,x — ) 12(4140)
_]_ o 8%
-+ HC(t)/\HX%_ + N || < Vi >"< Vy > P|§—77\§NB/,|§—I—T,

(B< B <1)
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In other words, the high (> NB/) frequency part

1
of A can be estimated in X2 |, and this implies
both the Strichartz and collapsing estimates.

In the low frequency part (|¢ —n| < NP), the

Strichartz estimates are obtained through X%
+ Sobolev techniques, while the collapsing es-
timates can be seen directly in Fourier space.
In the model case, if

1
SA = Né(w —yflt,z+y)

(vvhere flt,x+1vy) = A(t, 5’7‘2"?/, 5”"?)) is solved in
[0, 1] by

U= / Tt (Bt A5 (1 — y)e(s) f(s, x + y)dy

then

N

cf(7,€)

’P|€—77|§Nﬁc(t)/\(t’ X, )
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Future work:

Using work of Jacky Chong in the case g <
2/3 globally in time, it is very likely that one
can show, for g < 1,

|eitHe=VNAG0) ~BU(0) q _ ~VNAG®) ~Bk(1)
tPower

< CN#

As stated above, the Fock space errors are

of the same nature as those of Bocatto, Ce-

natiempo and Schlein, as well as very re-

cent L? estimates of Brennecke, Nam, Na-

piorkowski, and Schlein. The main differ-

ence is that the proof is based on estimates

to a PDE, and there is more freedom in the

choice of initial conditions.
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Also, e may not be optimal. The issue is

to get large time estimates for the solutions to
HFB. The problem is completely open.

A hard question: what are the large time decay
properties ¢ from HFB (uniformly in N)7?

The problem involves both difficulties for NLS
( Lin and Strauss, greatly simplified by new
techniques) and Schrodinger with a potential.
In the critical case § =1, the potential
N3B=1y(NB(x —y)) € L3 uniformly in N. This
IS more singular than the case considered by
Journé, Soffer and Sogge.
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