
SCALAR PRODUCTS, NORMS AND METRIC SPACES

1. Definitions

Below, “real vector space” means a vector space V whose field of scalars is R,
the real numbers. The main example for MATH 411 is V = Rn. Also, keep in
mind that “0” is a many splendored symbol, with meaning depending on context.
It could for example mean the number zero, or the zero vector in a vector space.

Definition 1.1. A scalar product is a function which associates to each pair
of vectors x, y from a real vector space V a real number, < x, y >, such that the
following hold for all x, y, z in V and α in R:

(1) < x, x > ≥ 0, and < x, x > = 0 if and only if x = 0.
(2) < x, y > = < y, x >.
(3) < x+ y, z > = < x, z > + < y, z >.
(4) < αx, y > = α < x, y >.

The dot product is defined for vectors in Rn as x ·y = x1y1 + · · ·+xnyn. The
dot product is an example of a scalar product (and this is the only scalar product
we will need in MATH 411).

Definition 1.2. A norm on a real vector space V is a function which associates
to every vector x in V a real number, ||x||, such that the following hold for every x
in V and every α in R:

(1) ||x|| ≥ 0, and ||x|| = 0 if and only if x = 0.
(2) ||αx|| = |α|||x||.
(3) (Triangle Inequality for norm) ||x+ y|| ≤ ||x||+ ||y||.

The standard Euclidean norm on Rn is defined by ||x|| =
√
x · x. There are other

useful norms, as we’ll see.

Definition 1.3. A metric space is a set X together with a function d which
associates to each pair of points x, y from X a real number, d(x, y), such that the
following hold for all x, y, z in X:

(1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x).
(3) (Triangle Inequality) d(x, z) ≤ d(x, y) + d(y, z).

Above, that function d is the distance function, also called the metric. An
example of a distance function is the usual distance between vectors x, y in Rn:

d(x, y) = ||x− y|| =
√
< x− y, x− y > .

2. Relations

What we see in the familiar examples above is perfectly general:

(1) Given a scalar product < ·, · > on a real vector space V , the definition
||x|| = √< x, x > define a norm on V .
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(2) Given a norm || · || on V , the definition d(x, y) = ||x− y|| defines a distance
function making V a metric space.

These two claims are checked simply by verifying that the defining properties hold.
For example, to show property (1) of a metric space is true for the function d(x, y) =
||x − y||, you note that it easily follows from property (1) for the norm. All the
other properties are likewise easy to check, except for checking that the triangle
inequality for the norm holds when ||x|| is defined by

√
< x, x >. For this, you

prove the Cauchy Schwarz Inequality first, then make the argument. The proof of
the Cauchy Schwarz Inequality only uses the properties listed in the definition of
the scalar product.

3. Important norms on Rn

To consider more than one norm, we use a little more notation. For x in Rn,
define the following three norms:

||x||1 = |x1|+ · · ·+ |xn|

||x||2 =
√

(x1)2 + · · ·+ (xn)2

||x||∞ = max{|x1|, |x2|, . . . , |xn|} .

The norm || · ||2 is also called the standard norm, or the Euclidean norm. The
norm || · ||∞| is also called the supremum norm, or the sup norm.

Associated to each of these norms is the distance function it defines. Let us call
these respectively d1, d2, d∞. The distance d2 is the Euclidean distance – it is the
standard idea of distance on Rn, known to Euclid (when n ≤ 3).

Exercise. Draw the “unit circle” for each of these three metrics for the case R2,
where “unit circle” means the set of points which are distance 1 from the origin.

4. Convergence

For a sequence x1, x2, . . . of points in a metric space X, convergence of the
sequence to a point x in X is denoted limk→∞ xk = x. We define this to be true if
and only if

lim
k→∞

dist(xk, x) = 0 .

Going back to MATH 410: this last condition means that for any ε > 0, there is a
number M such that

k > M =⇒ dist(xk, x) < ε .

We will see below that the distances d1, d2, d∞ define the same notion of con-
vergence on Rn: if limk→∞ dist(xk, x) = 0 if d is any one of these three, then
limk→∞ dist(xk, x) = 0 if it is one of the others as well.

5. Some inequalities

For real numbers x1, . . . , xn: considering cross terms we see

|x1|2 + · · ·+ |xn|2 ≤ (|x1|+ · · ·+ |xn|)2

and therefore, taking square roots,√
|x1|2 + · · ·+ |xn|2 ≤ |x1|+ · · ·+ |xn| .
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We can add couple of easily verified inequalities to get:

max
i
|xi| ≤

√
|x1|2 + · · ·+ |xn|2 ≤ |x1|+ · · ·+ |xn| ≤ nmax

i
|xi| .

In the notation of norms, we can write the last line as

||x||∞ ≤ ||x||2 ≤ ||x||1 ≤ n||x||∞ .

We see that given any two of these norms, || · ||i and || · ||j say, that there is a
positive constant C such that ||x||i ≤ C||x||j for all x. Consequently, whenever

lim
k
dj(xk, x) = 0

it must also be true that
lim
k
di(xk, x) = 0

which means that convergence of a sequence to x in the dj metric implies conver-
gence of the sequence to x in the di metric.

So! If we want to check convergence of a sequence of points in Rn, we can use
any of the three criteria, at our convenience

A closely related equivalent criterion for convergence of a sequence xk to a point
x in Rn is componentwise convergence, as discussed in the text of Fitzpatrick.

6. Some remarks

Definition 6.1. Two norms (call them || · ||a and || · ||b) on a real vector space V
are equivalent if there exist positive numbers C1, C2 such that for all x in V ,

||x||a ≤ C1||x||b , and

||x||b ≤ C2||x||a .
Here is a fact. Any two norms on Rn are equivalent! So, all norms on Rn determine
the same notion of convergence – this is not a special property of the particular
three norms we looked at above. Proving that would be an interesting exercise
within your powers after we finish the early part of the course on metric space
topology.

The definitions of scalar product and norm generalize to infinite dimensional
vector spaces, and especially to spaces of functions. That is one reason for spelling
out the chain of logic here.

There are many metrics which do not arise from norms. For example, if we take
a subset of a metric space, with the same definition for distance, it is again a metric
space. For example, the circle in R2 with the standard metric is a metric space.

Also, in contrast to the situation for norms, there are (vastly) many metrics on
Rn which are not equivalent.


