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The problems:

• Which SFTs can commute?

• Must an expansive automorphism of an ir-

reducible SFT be itself an SFT?

• Must the periodic points of a surjective

one dimensional cellular automaton map be

dense?
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Definitions

• An automorphism of a continuous map f

is a homeomorphism U commuting with f

(Uf = fU).

• Continuous maps f, F are topologically

conjugate (f ∼ F ) if ∃F ∼ f,G ∼ g with

FG = GF .

• Continuous maps f, g can commute if ∃F ∼
f,G ∼ g with FG = GF .

• σA is the twosided edge shift of finite type

(SFT) defined by the square Z+ matrix A.

• S is SFT if S ∼ σA, for some A.
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Which maps can commute with SFTs? [Nasu]

Which SFTs can commute?

CONJECTURE: Suppose S and T are mix-
ing SFTs. Then for all large i, j, Si and T j

can commute.

If S, T are commuting bijections and ∀n > 0
|Fix(Sn)| <∞ and |Fix(Tn)| <∞, then Per(S) =
Per(T ). Thus low-order periodic point obstruc-
tions sometimes imply two maps cannot com-
mute: e.g.,

• if |Fix(σA)| = 1 and |Fix(σB)| = 0, then σA
and σB cannot commute

• σ[2] and σ[3] cannot commute

However, there is no set theoretic periodic point
obstruction to the conjecture.
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Commuting SFTs

from commuting matrices

Note: AB = BA does not guarantee that σA,

σB can commute. (E.g. [A] = 2, B = [3]).

However:

Proposition. Suppose A,B are commuting

Z+ matrices. Then there are homeomorphisms

S, T such that ST = TS and SiT j ∼ σAiBj for

i, j > 0.

The proposition follows from remarks on a con-

struction of Nasu in his 1995 AMS Memoir,

which created an elaborate “textile systems”

apparatus for studying endomorphisms and au-

tomorphisms of an SFT. In this memoir and

successor papers, Nasu achieved major results,

especially on automorphisms of onesided SFTs.

We go on to explain the Proposition.
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Suppose A and B are n× n matrices over Z+,

with AB = BA. View A and B as adjacency

matrices for two directed graphs, with disjoint

edge sets and a common vertex set {1,2, . . . n}.
Say e.g. an ab path from i to j is an A edge

from i to some k followed by a B edge from

that k to j. “AB = BA” means that for each

pair i, j the number of ab paths from i to j

equals the number of ba paths from i to j.

Thus we can build a set W of Wang tiles
a //

b′

��

b

��a′ //

such that each ab path is the top/right of ex-

actly one tile and each ba path is the left/bottom

of exactly one tile. (In the tile pictured, a, a′

are A-edges and b, b′ are B-edges.)
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Thus each Wang tile
a //

b′

��

b

��a′ //

is determined by either of the paths
a //

b

��

or

b′

�� a′ //

Now let the tile sides be unit length and let

W be the space of infinite Wang tilings of the

plane with W, with tile corners on Z2.

6



//

��

//

��

//

��

//

��

//

�� ��//

��

//

��

//

��

//

��

//

�� ��//

��

//

��

//

��

//

��

//

�� ��//

��

//

��

//

��

//

��

//

�� ��//

��

//

��

//

��

//

��

//

�� ��// // // // //

E.g., above is a finite piece of a point in W ,
with edge-name labels suppressed. For v ∈ Z2,
let αv denote the shift map on W in direction
v.
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The bijections cited two slides back show the

dashed-line sides below are determined by the

solid diagonal squares. Thus α(1,−1) is expan-

sive and conjugate to the SFT σAB.
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Likewise the solid squares below determine the
rest, and α(1,−2) ∼ σAB2.
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Given the commuting matrices A,B we showed

how to embed σAiBj into a commuting fam-

ily of maps when (i, j) = (1,1) or (i, j) =

(1,2). The argument is the same for i > 0, j >

0. The proof also works for onesided SFTs,

for which Nasu has a converse: commuting

onesided SFTs can be presented by commut-

ing Z+ matrices.

Now we turn to algebraic invariants which can

be realized by such commuting A,B, modulo

passing to higher powers.

For a k × k Z+-matrix A, set GA = lim−→
A

Zk .

Regard GA as an ordered group, with the nat-

ural order: GA is the dimension group of A.
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Proposition. Suppose σA is a mixing SFT and

φ : GA → GA is an isomorphism commuting

with Â all of whose eigenvalues are algebraic

integers. There is a Z matrix B presenting

the action of φ such that BA = AB. Suppose

the spectral radius λB is a simple root of χB;

λB > 1; and λB is the number by which B

multiplies the Perron eigenvector of A. Then

for all large i, Bi is positive, commutes with A.

The proof is routine dimensiongroupology and

generalizes to finitely many commuting φj. This

gives many families of commuting SFTs.

When commuting matrices produce commut-

ing SFTs, their dimension groups are the same;

so, modulo determination of lower powers which

commute, we won’t get further commuting

SFTs directly from commuting matrices.
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SFTs σA and σB can commute without being
algebraically related in any way I see:

EXAMPLE (Nasu 95): σAT = TσA, T ∼ σB,

• A =

(
2 1
1 1

)

• χB(x) = (x+ 1)2(x3 − 2x2 + x+ 1).

(σA and T do not even have the same measure
of maximal entropy.)

Nasu gave a complicated algorithm which, given
an automorphism U of an irreducible SFT, will
find a matrix B such that σB ∼ U , *IF* U is
SFT. The example above came from applying
the algorithm to a particular automorphism.

It would be interesting to see any systematic
construction of commuting SFTs which need
not be algebraically related.
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Question (Nasu 1989). Must an expan-

sive automorphism of an irreducible SFT

be itself SFT?

EXAMPLE (D. Fiebig, 1996) A reducible

SFT S with an expansive automorphism U which

is not SFT.

Here, S consists of two fixed points p, q and

two connecting orbits from p to q. Concretely,

the fixed points and connecting orbits are

p = . . .000 . . . , . . .0002111 . . . ,

q = . . .111 . . . , . . .0003111 . . . .

U = S, except that U = S−1 on one of the

connecting orbits. U is expansive and totally

chain transitive but not SFT. D.F. (easily) also

elaborated this example to positive entropy.

We have a result which at least, after all this

time, addresses a meaningful case of the ques-

tion.
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THEOREM (B. 2004) A strictly sofic AFT

(almost finite type) shift S cannot commute

with a mixing SFT T .

Above, “mixing” can be replaced by “chain

recurrent”. A sofic shift is AFT if it a fac-

tor of an irreducible SFT by a biclosing map,

that is, a map which is one to one outside a

proper closed set. (Krieger showed this map is

canonical). The AFT sofic shifts enjoy various

properties and seem to be the one big, natural

class of nice sofic shifts.
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Periodic points of onto cellular automata.

Let f denote a surjective endomorphism of a

full shift σ[N ], i.e., an onto one-dimensional

cellular automata.

Question.

Are the periodic points of f dense?

The answer is yes if f is right or left closing

(B-Kitchens) or if f has a point of equiconti-

nuity (Blanchard-Tisseur). Otherwise nothing

is known.

The sequel follows experimental mathematics

with Bryant Lee (paper on my web page, along

with the computer program for exploring), look-

ing at periodic and preperiodic data for the

action of f on points of given σN period.
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(Martin, Odlyzko and Wolfram [1984] explained

the pattern of jointly periodic points when f is

a group endomorphism.)

Definition.

νk(f, σN) = |{x ∈ Fix(σN)k : x is f − periodic}|,
and

ν(f, σN) = limk νk(f, σN)1/k.

Above, logN is the growth rate of the periodic

points of the full shift (on N symbols), and

log ν (where ν = ν(f, σN)) is the growth rate

of the jointly periodic points. Trivially ν ≤ N .

Our experimental evidence (suggestive but not

compelling) leads to ...
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Question.
Is ν(f, σN) > 1 for every onto c.a. f?

Question.
Is ν(f, σN) ≥

√
N for every onto c.a. f?

For all large primes p, an onto c.a. f maps the
set of points of period p into itself. So, the
last question reflects a random maps heuris-
tic: if a pattern doesn’t force more periodicity,
then we see i.o. at least about the periodic-
ity we’d expect of a random map. An answer
yes is consistent with our data, which are sug-
gestive but (with the bound 26) certainly not
compelling.

Conjecture.
There exist f such that ν(f, σN) < N .

From our data, it seems obvious that the con-
jectured inequality is typical. (Equality holds
in the algebraic case and some other classes.)
But we can’t give a proof for any example.
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