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I. Background on shifts

Zd Subshifts

Notations: given positive integers d,N :

• A := {0,1, . . . , N − 1}, a finite alphabet

• An element of AZd is pictured as a way of

filling the Zd lattice with symbols

• For d = 1, x in AZd is x = . . . x−1x0x1 . . . ,

with all xi in A and xi = x(i)

• For d = 2, x in AZd is a planar array of

symbols, etc.
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• AZd is a metric space, dist(x, y) = 1
k+1,

where k = min{||v|| : x(v) 6= y(v)}

• There is a shift action σ of Zd on AZd by

homeomorphisms. For v ∈ Zd, the shift

homeomorphism σv is defined by

(σvx)(u) = x(u+ v), u ∈ Zd

• For example, for d = 1 and y = σ1x:

if . . . x−1x0x1 · · · = . . .003 . . . , then

. . . y−2y−1y0 · · · = . . .003 . . . .

• If Y is a closed σ-invariant subset of AZd,
then (Y, σ|Y ) is a subshift (or just shift). I

may use the same letter for the shift or its

domain.

3



• For any subshift Y , there exists a set L
of finite configurations such that Y = XL:

the set of all x in AZd satisfying:

for every finite subset C of Zd and u ∈ Zd,

x|(u+C) /∈ L.

If it is possible to choose L to be some

finite set F then Y is a shift of finite type

(SFT).

• Example: d = 1, A = {0,1}, F = {00}.
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Block codes

Let Y be a subshift on alphabet A.

Let Y ′ be a subshift on alphabet A′.
Let Un = {v ∈ Zd : ||v|| ≤ n}.

• A block code is a function φ : Y → Y ′ for

which there exists Φ : AUn → A′ with

(φx)(v) = Φ(x|v+Un) for all v ∈ Zd.

• Example: Y = Y ′ = {0,1}Z and

(φx)i = xi + xi+1 (mod 2)

• φ is a 1-block code if (φx)(v) = Φ(x|v)

• The continuous shift-commuting maps be-

tween subshifts are exactly the block codes.
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Sofic Shifts

• A sofic shift is a subshift which is a quotient

of an SFT.

• For example: SFT = XF , on alphabet {a, b, c}
with F = {ba, bb, cc}. (I.e.a point in X is an

arbitrary concatatenation of the words a

and bc.) Define Y as the image under the

one-block code a 7→ 1, b 7→ b, c 7→ b. If abna

occurs in Y , then n must be even. Y = XL
where

L = {ab2n+1a : n ∈ N} .

Y (the “even system”) is sofic and not

SFT.
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II. Overview: Zd SFTs and sofic shifts,
d = 1 vs. d ≥ 2

For Z SFTs:

• There are computable, fine invariants.

• Invariants and structure have an algebraic
quality.
(Any SFT is topologically isomorphic to
XB for some matrix B. Various algebraic
invariants of B give invariants of topologi-
cal isomorphism for XB.)

• Qualitatively, mixing Z SFTs have a homo-
geneous structure, rich in subsystems and
quotients.

• Generally problems of SFTs reduce easily
to problems of mixing SFTs.
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For Zd SFTs, d ≥ 2:

• Zd SFTs, including mixing Zd SFTs, are

qualitatively heterogeneous.

• Zd SFT problems do not reduce to prob-

lems of mixing Zd SFTs.

• Essentially nothing can be computed for a

general arbitrary Zd SFT if d ≥ 2.

(Berger, Robinson, Kari, ... )

• The landscape of general possibilities is

recursion-theoretic.

Hochman-Meyerovitch and Hochman give

constructive results and techniques of gen-

erality unprecedented in this area.
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III. Entropy

Let us pause to consider two examples of the

power of the new constructive techniques

Given a Zd subshift (X,σ|X):

let Bn = {v ∈ Zd : 0 ≤ vi ≤ n − 1,1 ≤ i ≤ d}.
The entropy of this shift (as a Zd action) is

h(σ|X) = lim
n

1

nd
log card{x|Bn : x ∈ X} .

This is the main numerical measure of the

complexity of a subshift.

For X = {0, . . . , N−1}Zd, the entropy is simply

logN .

It is easy to compute the entropy of a Z SFT.

For d ≥ 2: there are not many exact com-

putations of entropy for systems “in nature”;

and no Turing machine can compute h(σF) for

arbitrary finite F.
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DEFN: A recursive sequence is the output of a

Turing machine – intuitively, a sequence pro-

duced by any kind of algorithm you could imag-

ine a computer implementing.

The classes of possible entropies:

• For Z SFTs: the logs of a well understood

class of algebraic integers. (Lind)

• For Zd SFTs, d ≥ 2: the numbers α =

limnαn, where (αn)n∈N is a decreasing re-

cursive sequence of rational numbers.

(Hochman-Meyerovitch)

• For d-dimensional cellular automata maps:

the numbers α = lim infnαn, where (αn)n∈N
is a recursive sequence of rational numbers.

(Hochman)
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IV. Subsystems

Mixing

• A Zd subshift (X,σ) is mixing if any two

legal finite configurations can occur at all

but finitely many separations.

• That is, for all x, y in X, for all n we have

for all but finitely many u ∈ Zd there exists

w ∈ X such that

w|Bn = x|Bn and w|u+Bn = y|Bn.

• Generally problems of Z SFTs reduce easily

to problems of mixing Z SFTs.

• For d ≥ 2, the mixing condition splinters

into a host of different conditions.
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Subsystems of Z SFTs

Nontrivial mixing Z SFTs have a homogeneous
structure, rich in subsystems and quotients:

• Krieger Embedding Theorem =⇒ if (X,σX)
is a mixing Z SFT and (Y, σY ) is a Z sub-
shift with no periodic points and h(σY ) <
h(σX), then (Y, σY ) is topologically conju-
gate to a subshift contained in (X,σX).

• Jewett-Krieger Theorem: every finite en-
tropy measurable Z-system is realized by a
uniquely ergodic Z-subshift

• Given a proper subsystem of a mixing Z
SFT, all the embeddings above can be cho-
sen with images missing that subsystem.

“There’s always room
at the Krieger Hotel.”

12



Subsystems of Z Sofic Shifts

• A mixing Z sofic shift X contains an in-

creasing union of mixing Z SFTs Xn with

limn h(Xn) = h(X).

• So the subsystem results of the last page

for mixing Z SFTs also hold for mixing Z
sofic shifts.

So: a nontrivial mixing Z SFT or sofic shift

contains a vast family of pairwise disjoint min-

imal subsystems with entropy close to h(σX).
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Subsystems of Zd Shifts, d ≥ 2

• For a large subclass of the mixing Z2 SFTs

S: any smaller entropy Z2 subshift without

periodic points can be embedded into S.

• Again for a large subclass of the mixing Zd

SFTs S, Robinson and Sahin have proved

existence of subshifts carrying completely

positive entropy or Bernoulli measures.

• There is also an analogue of the Jewett

Krieger Theorem for Zd shifts, d ≥ 2.

Moreover there is a result on richness of sub-

systems which applies to ALL Zd SFT/sofic

shifts:
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THEOREM (Desai) For d ≥ 2 and a given Zd

shift S:

• If S is SFT, then S contains SFTs with

entropies dense in [0,h(S)].

• If S is sofic, then S contains SFTs with

entropies dense in [0,h(S)].

• In either case every number in [0, h(S)] is

the entropy of a subsystem.

So there are a lot of subsystems.

But they cannot in general be separated:
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THEOREM (B-Pavlov-Schraudner) Given d ≥
2 and M ∈ R, there is a mixing Zd sofic shift S

with the following properties.

• h(S) > M and S is mixing

• S contains a unique minimal subsystem,

which is a fixed point for the shift action.

*****************************

THEOREM (B-Pavlov-Schraudner) Given d ≥
2 and M ∈ R, there is a mixing Zd SFT S with

the following properties.

• h(S) > M and S is mixing

• S contains a zero entropy sofic shift which

intersects every subshift in S.
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V. Quotient (Factor) Maps

Z SFTs and Z sofic shifts also enjoy a rich

supply of quotient maps.

THEOREM

1. If X is a Z sofic shift, and Y is a mixing Z
SFT with h(X) > h(Y ), then Y is a quo-

tient of X.

2. If Y is a Z SFT and h(Y ) ≥ logN , then Y

has as a factor the full shift on N symbols.

Johnson and Madden asked whether (2) gen-

eralizes to Zd SFTs. Their work, as extended

by Desai, proved the conclusion of (2) for a Zd

SFT Y with the “corner gluing” mixing condi-

tion when h(Y ) > logN .
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If S is a quotient of T , then disjoint subsys-

tems of T pull back to disjoint subsystems of

S. So we see that if S has poorly separated

subsystems, then it cannot factor onto a T

with well separated subsystems, such as a full

shift. The BPS examples for subsystems thus

not surprisingly have some pathological prop-

erties with regard to their possible factors.

THEOREM (BPS) Given d ≥ 2 and M ∈ R,

there is a Zd sofic shift S with the following

properties.

• h(S) > M

• S contains a unique minimal subsystem,

which is a fixed point for the shift action.

• And with regard to quotients:
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• Any subshift quotient Y of S satisfies the

following:

– If Y is SFT, then Y is a fixed point.

– Y is not block-gluing (i.e. not mixing on

block shapes with uniform separation).

– Y supports no σ-invariant measure which

is of completely positive entropy.

– Y does have a subshift factor of topo-

logically completely positive entropy.

• S can be chosen mixing, except that in this

case we can’t control top. c.p.e. of non-

trivial factors for d ≥ 3.

There are similar slightly weaker results for S

SFT. The key to the proof for d ≥ 3 is a the-

orem of Hochman.
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Effective Systems

Hochman has defined an Effective Symbolic
System (ESS) to be a Zd subshift σL such that
the defining set L of forbidden finite configu-
rations is the output of a Turing machine.

THEOREM (Hochman) For each d ≥ 3, up to
topological conjugacy the following classes of
Z subshift are the same:

• Z subshifts isomorphic to σe1 for some Zd
sofic shift σ

• The class of ESS’s.

(With SFT in place of sofic, the class of ESS’s
becomes just slightly more narrow.)

Heuristically: not only are we faced with many
bad examples: in fact every (bad) thing we
could possibly imagine happening, does hap-
pen.
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VI. A Hint of Proof

We can indicate how Hochman’s subdynamics

theorem lets one easily construct a nonmixing

sofic example S for d = 3.

• Construct an effective Z subshift W such

that arbitrarily large blocks of 0’s occur

syndetically in all points, and every W word

occurs with positive frequency in every point.

• By Hochman: for i = 1,2,3, pick a Z3 sofic

shift Ti for which σei is a copy of W .

• Then in each coordinate of T1 × T2 × T3,

for each M ∈ N, strings of M consecutive

zeros occur syndetically.
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• Let W be the quotient of T1 × T2 × T3 by
the map which replaces a symbol (a, b, c)
with 0 if any of a, b, c is zero, and otherwise
replaces (a, b, c) with 1.

• For every M and w ∈ W , every finite con-
figuration in W occurs inside some large
block configuration on which the boundary
is covered by M-thick slabs of zeros.

• Define S by freely allowing the replacement
of 1 in a configuration with symbols from
{1,2, ..., k} for k large.

• Easily:

– h(σX) > M (for large enough k)

– σX has a unique minimal subsystem, 0Z
3
.

– The only SFT which is in X or in a
quotient of X is a fixed point.
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The nonexistence of factors with meas.th. c.p.e.

measures uses the disjointness result of Glas-

ner, Thouvenot and Weiss.

***************************

VI. The Playground

We have entered a certain period in this topic

where one can imagine some wildly general re-

cursion theoretic obstruction to Zd SFT/sofic

behavior, and then try to show there is no other

obstruction.

The Hochman-Meyerovitch/Hochman techniques

are very concrete — given the oracle Turing

machine.

However: while the very general landscape of

Zd SFTs and sofic shifts seems quite recursion

theoretic, this will not hold for special impor-

tant classes, at least in the same generality.
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