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The sections on jointly periodic points are largely

taken from a paper with Bryant Lee in Ex-

perimental Mathematics, 2007. The programs

used for that paper are on my website.

The sections on subsystems and quotients are

taken from B-Pavlov-Schraudner, “Multidimen-

sional sofic shifts without separation and their

factors” Transactions AMS to appear, on my

website.
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I. Jointly periodic points of onto cellular
automata: density?

Let f denote a surjective endomorphism of
(XN , σN), i.e., an onto one-dimensional cellu-
lar automaton. A point is jointly periodic if it
is periodic under both f and the shift.

A periodic point of the shift is at least preperi-
odic for f , but is not necessarily periodic for f .
For example, for σ2 on alphabet {0,1}, let f be
defined by (fx)i = xi + xi+1 (mod 2). There
are two fixed points for σ2, and f maps both
to the fixed point ...00000... . The fixed point
...111111... is not periodic for f .

In the case f is injective, then f is bijective,
an automorphism of σN . Thus for every k,
the finite set of points in shift orbits of size k

(i.e. having least period k under the shift) is
mapped to itself by f . In this case, the shift-
periodic points are the same as the f-periodic
points.
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Given that f is a surjective 1-dimensional c.a.

map, f is uniformly finite to one. Let M =

maxx|f−1x| <∞.

If f is any shift-commuting map, and maps a

point of least period n to a point of least period

k, then k divides n, and on the orbit of x, f is

n/k-to-1.

So, if n is not divisible by a prime less than

or equal to M , then f maps the finite set of

points of least shift-period n into itself. So, at

the very least, there will be infinitely many n

for which a point of shift-period n will be also

periodic under f . But how rich is this set of

jointly periodic points?

A topological measure of largeness for a set

is density. The collection of jointly periodic

points x is dense iff for every word on N sym-

bols there is a jointly periodic point x in which

that word occurs.
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Question

Are the jointly periodic points of f dense?

Since the shift-periodic points are dense, the

answer is yes if f is injective. The answer is still

yes if f is right or left closing (B-Kitchens) or

if f has a point of equicontinuity (Blanchard-

Tisseur).

Otherwise nothing is known (!). In particular

we do not know whether the possibly larger set

of f-periodic points must be dense.

I also do not know a counterexample for a

higher-dimesional surjective cellular automaton.

But perhaps someone at this conference ...

There are some experimental results on the

question [B-Lee]. First I’ll indicate the proof

of joint density when f is closing.
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Closing maps An endomorphism of an SFT is

right closing if it is injective on unstable sets

(never collapses left asymptotic points). For

left closing, replace unstable,left with stable,

right.

This is the class of factor maps about which

we have some real theorems and know a lot.

Conversely, we have very little understanding

of factor maps which are not closing, especially

when they are iterated as c.a.
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Proof sketch Suppose f is a right closing c.a.
map For large enough k, the map ψ which is
a composition of f with the kth power of the
shift is now defined as a block code on non-
negative coordinates. So, it can be viewed as
an endomorphism of the one sided full shift.
We so view it.

Because ψ is right closing, the map ψ is an
open map on the onesided shift space. Be-
cause it is open and n is large, ψ is forwardly
expansive. Therefore it is a onesided SFT. It is
also mixing because the full shift with which it
commutes is. (We use results of Parry, Nasu,
Kurka, B-Fiebigs.)

Now consider the map φ = ψσ. It is again a
onesided MSFT (e.g., by the LR textile pic-
ture, or directly). Check: if a point is peri-
odic for φ, then it is periodic for σ, hence is
jointly periodic. But the periodic points of the
onesided mixing SFT φ are dense. QED
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Experimental issues

1. The number of maps grows superexponen-

tially with the span.

The number of endomorphisms of σN of span

at most k is NNk
. Let inj(k,N) and surj(k,N)

denote the number of injective and surjective

endomorphisms of span k. Kim and Roush

showed

lim
k

1

k
log log inj(N, k) = logN

and therefore the same superexponential growth

rate holds for surj(k, n).

At the same time, the surjective c.a. of span

k are a very tiny fraction of all c.a. of span k.
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Problem. Find a sharper statement about the

numbers inj(k,N) and surj(k,N), and their ra-

tio as k →∞.

In part, this problem is “because it’s there”. I

know no direct application to another problem.

However, the counts at k+ 1 are more or less

unaffected by those at k. So, saying something

sharper seems to require a deeper understand-

ing of the structure of injective and surjective

c.a.
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2. The number of periodic points of σN grows

exponentially.

To find the points of period k for the shift

which are f-periodic, we track the forward or-

bit of a point and see when there is a repe-

tition. This involves keeping a tagged list of

words of length k in memory and changing tags

as f acts. There are 2k words of length k.

So, we encounter serious limits on the k we

can explore, due to memory constraints, even

if N = 2. Increasing k by 1 roughly doubles

the memory requirement.
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The library of maps from Hedlund et al

In 1963, Hedlund, Appel and Welch produced
a list of all onto endomorphisms f of σ2 of span
at most 5. (For which publication is still not
allowed ... )

Let us say that f is m-dense at period k if
every word of length m occurs in some jointly
periodic point with shift period k; and f is m-
dense if every word of length m occurs in some
jointly periodic point.

We know left or right permutative c.a. are
onto and closing and thus have jointly periodic
points dense. Modulo symmetries (w.r.t. our
periodic point questions), there were 64 span
4 c.a. not permutative in an end variable.

There are 141,792 surjective c.a. of span 5.
Hedlund et al grouped them into classes of
some regularity and a remaining set of 200
maps, generated by 26 “sporadic” maps and
some operations.
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Experimental results for the density

conjecture

All the span 4 surjective c.a. on the 2-shift are

13-dense, and are 10-dense at some k ≤ 24.

All the sporadic span 5, surjective c.a. of σ2

are are 10-dense at k = 24.

There were similar results for small samples

of types of map. Given this and the previous

work, we elevated the question to a conjecture:

Conjecture [B-Lee]

The jointly periodic points of any one-dimensional

cellular automaton are dense.
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II. How many spatially periodic points are

jointly periodic?

We continue with an onto one-dim. c.a. map.

Definition.

νk(f, σN) = |{x ∈ Fix(σN)k : x is f − periodic}|
and

ν(f, σN) = limk νk(f, σN)1/k.

νk(f, σN) counts the points of period k for σN
which are jointly periodic.

ν(f, σN) captures the growth rate.

For example, if f is injective, then ν(f, σN) =

N .

Note, νk(f, σN) does not change if f is replaced

by f i(σN)j, for any i > 0 and j ≥ 0.
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Looking at a fairly large sample (including all

span 4 onto endomorphisms of the 2-shift),

out to shift orbit periods of 19 to 26, we see

no obvious difference between maps which are

closing or not, or permutative or not. There

are some rigorous arguments in certain classes

to show ν(f, σN) > 1, or ν(f, σN) = N .

Question.

Is ν(f, σN) > 1 for every onto c.a. f?

Question.

Is ν(f, σN) ≥
√
N for every onto c.a. f?

The last question reflects a random maps heuris-

tic (if some structure doesn’t force more peri-

odicity, then we see at infinitely many periods

at least about the periodicity we’d expect of

a random map). An answer yes is consistent

with our data, which are suggestive but not

compelling. (But if we could see k = 50 ... )
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We investigated ν(f,N) with two programs.

The first program (among other things) com-

putes νk(f,N). We looked out to k about 27

for all those sporadic span 5, all those non-

permutative span 4, and a sampling of other

types of c.a. The data are consistent with an

answer yes to the last (“
√
N”) question. For

the k the root of νk(f,N), looking at N = 2

(the 2-shift), we see numbers generally in the

range [1.4,2]. It would be much more telling if

we could see to k = 50. Running the program

at k = 26 used about 1.8 gigabytes of memory.
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To look further, we developed a program which
randomly picks a word of length k, and then
computes the preperiod and eventual period of
the corresponding periodic point. Typically we
could for a given f investigate points to period
about k = 37 without crashing. But the crash-
in-practice k varied with the map, from 33 to
50.

We saw data consistent with the random maps
heuristic: roughly, a high likelihood that the
point would fall into a cycle of size something
like 2

√
k, with significant dropoff in the size

of unlikely eventual periods. We ran size 10
samples for many maps.

Again, this data is suggestive and consistent
with the random maps heuristic, but not com-
pelling.

The program is available at my website or the
Experimental Mathematics website. Brendan
Berg is updating it to the current version of C.

16



More ambitiously, what does the distribution of

ν(f, σN) over surjective c.a. f of span k look

like, as k →∞? Can we say at least ν(f, σN) ≥√
N with asymptotic (in k) probability 1?
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We know four ways to demonstrate ν(f, SN) is

large:

1. find a large shift fixed by f (or more gen-

erally by a power of f)

2. let f be a group endomorphism (e.g. [Mar-

tin, Odlyzko and Wolfram 1984]

3. use the algebra of a polynomial presenting

f in very special cases [F.Rhodes, 1988]

4. finding equicontinuity points.

In all but the first case we force ν(f, σN) = N .
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Conjecture.

There exist f such that ν(f, σN) < N .

From our data, it seems obvious that the con-

jectured inequality is typical. (Equality holds

in the algebraic case and some other classes.)

And it looks unthinkable that the conjecture

could be wrong.

So, this is not a bold conjecture, but rather

a proclamation of ignorance, that we cannot

give a proof for any example.

But surely one of the distinguished professors

or ready-for-prime-time young minds of this

conference ...
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IV. Subsystems of mixing Zd SFTs and
sofic shifts

Mixing

• A Zd subshift (X,σ) is mixing if any two
legal finite configurations can occur at all
but finitely many separations.

• That is, for all x, y in X, for all n we have
for all but finitely many u ∈ Zd there exists
w ∈ X such that
w|Bn = x|Bn and w|u+Bn = y|Bn.

• Generally problems of Z SFTs reduce easily
to problems of mixing Z SFTs.

• For d ≥ 2, the mixing condition splinters
into a host of different conditions. Homo-
geneity is lost. Mixing alone is much less
meaningful.
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Subsystems of Z SFTs

Nontrivial mixing Z SFTs have a homogeneous

structure, rich in subsystems and quotients:

• Krieger Embedding Theorem =⇒ if (X,σX)

is a mixing Z SFT and (Y, σY ) is a Z sub-

shift with no periodic points and h(σY ) <

h(σX), then (Y, σY ) is topologically conju-

gate to a subshift contained in (X,σX).

• Jewett-Krieger Theorem: every finite en-

tropy measurable Z-system is realized by a

uniquely ergodic Z-subshift

• Given any proper subsystem of a mixing

Z SFT, all the embeddings above can be

chosen disjoint from that subsystem.
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“There’s always room at the Krieger

Hotel.”



Subsystems of Z Sofic Shifts

• A mixing Z sofic shift X contains an in-

creasing union of mixing Z SFTs Xn with

limn h(Xn) = h(X).

• So the subsystem results of the last page

for mixing Z SFTs also hold for mixing Z
sofic shifts.

So: a nontrivial mixing Z SFT or sofic shift

contains a vast family of pairwise disjoint sub-

systems with entropy close to h(σX). Apart

from considerations involving periodic points,

mixing Z SFT and sofic shifts are equally rich

in subsystems.

The heart of this richness is that a mixing

SFT contains a rich collection of disjoint mix-

ing SFTs as subsystems.
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Subsystems of mixing Zd SFTs

• For a special but large subclass of the mix-

ing Z2 SFTs S: any smaller entropy Z2

subshift without periodic points can be em-

bedded into S. [Lightwood]

• Again for a large subclass of the mixing Zd

SFTs S, Robinson and Sahin have proved

existence of subshifts carrying completely

positive entropy or Bernoulli measures.

• There is also an analogue of the Jewett

Krieger Theorem for Zd shifts, d ≥ 2. [Rosen-

thal]
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Moreover there is one result on richness of sub-

systems which applies to ALL Zd SFTs:

THEOREM (Desai) For d ≥ 2 and a given Zd

shift S:

• If S is SFT, then S contains SFTs with

entropies dense in [0,h(S)].

Let’s sketch the simple proof, for a Z2 SFT.

Clearly it is enough to show those entropies

are ε-dense for every ε > 0.
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Proof. Let X be a Z2 SFT with entropy

h(X) > 0. Let Y be the SFT X×L, where L is

the set of translates ` of the lattice NZ2 inside

Z2. So, L contains N2 elements. A point in Y

can be pictured as a point in X in which sym-

bols in the associated ` are covered red. The

shift action on L by Z2 is such as to respect

the coloring. So, we can view Y as having two

types of symbols: copies of symbols of X; ad

symbols of X colored red.

Define a nested finite chain of SFTs

Y = Y0, Y1, ..., Ym inductively: if possible, pick

in Yk two N × N squares with the same red

boundary configuration, and disallow one of

them, to define Yk+1. The process stops at

Ym when every red boundary can be filled in

uniquely. For N large: the entropy of Ym is

small, and the entropy drops from Yk to Yk+1
are small for all k define an SFT Y1 in Y by

disallowing an N × N word with a given red

boundary.
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Suppose ε > 0. For N large, the entropy of

YM is less than ε, and so are the entropy drops

h(Yk) − h(Yk+1). The map from Y to X for-

getting color is finite to one and thus entropy

preserving. This gives a set of subshifts in X

whose entropies are ε-dense in [0, h(X)].

A subshift W in an SFT X is a decreasing limit

of SFTs Wn with h(Wn) converging to h(W ).

So, for any ε we can find a set of SFTs in S

with entropies ε-dense in [0, h(X)]. QED

Note, this simple proof of dense entropies never

actually computes an entropy. This is good,

because of course in general we cannot.



From the previous result, one easily constructs

for any number in [0, h(S)] a subshift of S with

that entropy.

So, any positive entropy Z2 SFT has many

subsystems, including many SFT of large en-

tropy. But they cannot in general be sepa-

rated.

I want to show a construction of a positive

entropy Zd sofic shift, d ≥ 2, whose only mini-

mal subsystem is a fixed point. Thus, any two

of its subsystems have nonempty intersection.

(There are stronger related results, and impli-

cations for quotient maps. Michael Schraudner

discussed much of this on Monday.)

The proof uses new constructive results (next

slide). It is an example of the strength of the

new results, for providing general constructive

tools.
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Effective Systems

Hochman has defined an Effective Symbolic
System (ESS) to be a Zd subshift σL such that
the defining set L of forbidden finite configu-
rations is the output of a Turing machine.

THEOREM (Hochman) For each d ≥ 3, up to
topological conjugacy the following classes of
Z subshift are the same:

• Z subshifts isomorphic to σe1 for some Zd
sofic shift σ

• The class of ESS’s.

(With SFT in place of sofic, the class of ESS’s
becomes just slightly more narrow.)

The sofic result was improved to d ≥ 2 by Du-
rand, Romashchenko and Shen, “Fixed-point
tile sets and their applications”. Again, there
is a mildly weaker statement for SFTs.
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VI. A Hint of Proof

The construction (d = 2).

• Construct an effective Z subshift W such

that arbitrarily large blocks of 0’s occur

syndetically in all points, and every W word

occurs with positive frequency in every point.

[Standard ergodic theory exercise.]

• For i = 1,2, pick a Z2 sofic shift Ti for

which σei is a copy of W .

• Then in each coordinate of T1 × T2, for

each M ∈ N, strings of M consecutive zeros

occur syndetically.
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• Let W be the quotient of T1 × T2 by the
map which replaces a symbol (a, b) with 0 if
either of a, b is zero, and otherwise replaces
(a, b) with 1.

• For every M and w ∈ W , every finite con-
figuration in W occurs inside some large
block configuration on which the boundary
is covered by M-thick slabs of zeros.

• Define S by freely allowing the replacement
of 1 in a configuration with symbols from
{11,12, ...,1k} for k large.

• Easily:

– h(σX) > M (for large enough k)

– σX has a unique minimal subsystem, 0Z
2
.

– The only SFT which is in X or in a
quotient of X is a fixed point.
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Note how convenient the general theorem is

for giving us a tool for now-simple construc-

tion. We do not have to make an ingenious

our intricate argument.

The system S constructed may look too degen-

erate to be satisfying. For example, replacing

each 1i with 1 produces a factor map from S

onto the zero entropy system W . Such defects

can be repaired.
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For example, if in S we replace the symbol 11

with 0, then we get a new sofic shift, of equal

entropy, but now without any zero entropy

factor other than the system consisting of a

fixed point. Alternately, we could do some-

thing more complicated and produce a mixing

system.

The construction, together with some informa-

tion about the general method for producing

the sofic system with the prescribed directional

subshift, produces an example of a positive en-

tropy Zd SFT d ≥ 2, all of whose subsystems

must intersect a given zero entropy subshift.

It is an open question as to whether, in the

SFT case, this zero entropy subshift can be a

fixed point.
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