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I. Countable state Markov shifts. Loop
shifts.

Let A be an N × N matrix over Z+. A is the
adjacency matrix of a directed graph, GA;
A(i, j) is the number of edges from i to j.

XA denotes the space of doubly infinite se-
quences x of edges, such that for all n the
initial vertex of xn equals the terminal vertex
of xn−1. The cylinders
C(x, n) := {y ∈ XA : yi = xi,−n ≤ i ≤ n}
are a basis of open sets for the topology on
XA.

In this talk: A is irreducible (for each pair i, j
there is a path from i to j) and aperiodic (the
g.c.d. of periods of loops is one). So, (XA, σA)
is mixing. We allow A to be finite (then, with
index set some integer N rather than N).

Now “Markov shift” means countable (possi-
bly finite) state, finite entropy, mixing Markov
shift.
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The Markov shifts are tools for studying other

dynamics, and are also topological dynamical

systems themselves.

Given a power series f(z) =
∑∞

n=1 fnzn, its loop

shift σf is the Markov shift whose graph has

a base vertex v such that the number of first

return paths of length n for v is fn, and every

vertex except v has a unique incoming edge

and a unique outgoing edge.

Say σf is a loop shift of (XA, σA) if there is a

vertex v in GA such that the number of first

return paths to v is fn. Then the loop shift

embeds naturally as a subsystem of (XA, σA).

This embedded loop shift supports every er-

godic σA-invariant measure which assigns pos-

itive measure to an edge adjoining v.
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II. Classes of Markov shift, defined by
their loop shifts

Let σf be any loop shift of a Markov shift σA

with entropy h(S) = log(λ) < ∞. Recall the
definitions: σA is

• Transient (T) if f(1/λ) < 1

• Recurrent (R) if f(1/λ) = 1

• Positive Recurrent (PR) if f(1/λ) = 1 and
f ′(1/λ) < ∞

• Strong Positive Recurrent (SPR) if
lim sup(fn)1/n < λ.

Then T ∩ R = ∅ and R ⊂ PR ⊂ SPR. The
recurrent, not positive recurrent, shifts are Null
Recurrent (NR).
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The PR Markov shifts are the finite entropy

Markov shifts with a measure of maximal en-

tropy.

But it is the SPR Markov shifts which are the

real “countable state shifts of finite type”, with

several characterizations:

• There is a meromorphic extension of the

zeta function of σf to a disc of radius >

1/λ.

• A measure of maximal entropy exists and

is exponentially recurrent

• Every proper closed subsystem has strictly

smaller entropy.
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III. Entropy Conjugacy (EC) and
Almost Isomorphism (AI)

For a self isomorphism S of a Borel space X,
define its entropy as the sup of h(S, µ) over
the S-invariant Borel probabilities µ. Say a set
E is entropy-negligible (for S) if ∃ε > 0 such
that µ(X \E) = 1 for every S-invariant ergodic
Borel probability µ with h(S, µ) > h(S)− ε.

Say a set is entropy-full if its complement is
entropy negligible.

DEFINITION (Buzzi) Systems S and T are en-
tropy conjugate if there is a Borel isomorphism
of their actions on entropy full sets.

Buzzi showed certain interesting classes of smooth
or piecewise smooth maps are entropy conju-
gate to SPR shifts.

Rufus Bowen gave a different (not equivalent)
definition for “entropy conjugacy” (see end of
this talk).
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A magic word for a 1-block code φ between
Markov shifts, φ : XA → XB, is a word W for
XB with the following properties:

(1) If y ∈ XB and W occurs infinitely often on
both negative and positive coordinates of y,
then x is in the range of φ.

(2) If y[i, j] = WUW = and φ(x) = y, then on
the coordinates of [i, j] where U occurs, the
word in x is determined by U .

DEFINITION Markov shifts σA, σB are almost
isomorphic (AI) if there exists a Markov shift
σC, and injective 1-block codes from XC into
XA and XB, each with a magic word.

Every Markov shift is AI to any of its loop
shifts.

For SPR shifts: AI implies Entropy Conjugacy
(by a map which is continuous on an entropy
full set in a very nice way).
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Here is the countable-state generalization of

the Adler-Marcus Theorem for finite state Markov

shifts (shifts of finite type).

THEOREM (BBG 2006) SPR Markov shifts

of equal entropy are AI.

COROLLARY (BBG 2006) SPR Markov shifts

of equal entropy are EC.

So, what about EC for PR, we asked.

Mike Hochman answered, with much more.
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IV. Hochman and Universality

DEFINITIONS

For a Borel system S, a set F is t-full if it

is Borel with full measure for every ergodic

nonatomic S invariant probability µ such that

h(µ, T ) < t.

A t-slice of a Borel system S is its restriction to

a t-full set with zero measure for every ergodic

invariant probability of entropy ≥ t.

DEFINITION A Borel system S is t-universal

if a t-slice of any Borel system embeds as a

Borel subsystem of S.

Hochman [H] showed

THEOREM A mixing Markov shift of entropy

h is h-universal.
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Corollaries

• If S and T are h universal, then they have

h-slices restricted to which they are Borel

conjugate.

• If h is the sup of entropies of Markov shifts

contained in S, then S is h-universal.

• If S, T are Markov shifts of equal entropy

h, then they have h-slices on which they

are Borel conjugate. S and T are entropy

conjugate if and only if [both are recurrent,

or neither is recurrent].

Note the second item. h universal systems are

all over the place.
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What is left to ask after such a decisive result?

[Hochman]:

For Markov shifts of equal entropy,

1. Can the t-slices for the Theorem be cho-

sen such that between these slices the Borel

conjugacy is a homeomorphism?

(Hochman’s Borel isomorphisms, for a nonatomic

ergodic probability µ, are continuous AFTER

restriction to a set of µ measure 1.)

2. Is there a Borel conjugacy between the re-

strictions of S, T to the complements of their

periodic points? (“almost Borel isomorphism”)

(The sets to which Hochman restricts are not

constructed to support the infinite invariant

measures.)
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V. Almost Borel isomorphism

Theorem (BBG)

SPR Markov shifts of equal entropy are Borel

isomorphic on the complement of the periodic

points.

(And, the isomorphism is continuous on an

entropy-full set.)

Proof ingredients:

• SPR of equal entropy are AI

• Krieger’s embedding theorem

• Cantor-Bernstein type argument

• some trickery
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VI. Exploring AI (and SDE)

We would like to understand better AI and its
context for Markov shifts. As usual, we reduce
to the study of loop shifts.

For a loop shift σf with base vertex v, set
pn = the number of points of period n;
qn = the number of points of least period n;
tn = the number of length n paths from v to
v.
Define series ζ, t, p, q for σf :

• ζ(z) = exp(
∑∞

n=1
1
npnzn) = 1

1−f(z)

• t(z) =
∑∞

n=1 tnzn = 1
1−f(z) − 1

• p(z) =
∑∞

n=1 pnzn = zf ′(z)
1−f(z)

• q(z) =
∑∞

n=1 qnzn .

13



For power series f, g :

f ≤ g means fn ≤ gn for all n.

DEFINITION Loop shifts σf , σg are Shift Dom-

inant Equivalent (SDE) if there exists n > 0

such that (coefficientwise) zntf(z) > tg(z) and

zntg(z) > tf(z).

Always: for Markov shifts,

AI =⇒ SDE =⇒ equal entropy.

Converses depend on the class of the Markov

shift:
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.

Above,

• A = B means that the equivalence rela-
tions A, B are the same

• A << B means a B-equivalence class can
contain uncountably many A-equivalence
classes

• At the three implication arrows, we don’t
know if AI = SDE, or if SDE << AI.
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In progress: there may be series characteriza-

tions of AI. Given σf , let e(f,N) denote the se-

ries zN/(1−f(z)). Let q(e) denote the q-series

for a series e(z). To be checked:

EXPECTED T.F.A.E. for loop shifts σf , σg.

1. They are AI.

2. There exists N such that q(e(f,N)) ≤ q(g)

and q(e(g,N)) ≤ q(f).

3. There exists N such that p(e(f,N)) ≤ p(g)

and p(e(g,N)) ≤ p(f).
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VII. Bowen’s entropy conjugacy definition
and conjecture.

DEFINITION [Bowen,1977, Topological En-
tropy for Noncompact Sets] Let S, T be contin-
uous maps on compact metric spaces. Then
S, T are entropy conjugate if they have restric-
tions to “entropy-full” sets which are topolog-
ically conjugate.

REMARK. Bowen demands more of entropy
conjugacy (than Buzzi does), in two ways.
1. Bowen requires topological (not just Borel)
conjugacy after restriction
2. Bowen’s entropy-negligible sets are defined
as for Buzzi, but with a different definition
of entropy (later). Bowen’s entropy negligible
sets are entropy-negligible in Buzzi’s sense, but
not conversely in general.

CONJECTURE [Bowen] Mixing shifts of finite
type (finite state Markov shifts) of equal en-
tropy are entropy conjugate.
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This conjecture of Bowen (for EC in his sense)

is to my knowledge still open.

Curiously, off the shelf symbolic dyanmics gives

a strong though partial constructive result.

Associated to a mixing SFT of entropy log(λ)

is an ideal class in the ring Z[1/λ]. Given λ,

there are finitely many possible ideal classes.

Using results from [Boyle-Marcus-Trow 1987]:

mixing SFTs with the same entropy and ideal

class are entropy conjugate in the sense of

Bowen.

For some entropies, (e.g. λ ∈ N or λ = (1 +√
5)/2), there is just one ideal class, and there-

fore all mixing SFTs of that entropy are en-

tropy conjugate in the sense of Bowen.
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Here is a version of Bowen’s definition of the

entropy of a set G, in the case that G is a sub-

set of a finite state subshift T . It is a dynam-

ical analogue of Hausdorf dimension designed

to apply to noncompact sets.

Suppose α > 0 and N ∈ N.

Say an N, k cylinder is one of the form

C = {y : yi = xi,−N ≤ i ≤ k}, for some k > N .

Then define dα(C) = α−k.

For a cover C of G by countably many N, k

cylinders, define d(α, C) =
∑

C∈C dα(C).

Define d(N,M,α)(G) as the infimum of d(α, C)
over covers C of G by N, k cylinders with k > M .

Finally, the entropy of G is log(α0), where

α0 = inf{α : lim
N

lim
M

d(N,M,α)(G) < ∞} .

19


