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In this lecture:

• All spaces are compact metrizable.

• (X, T ) denotes a homeomorphism,

T : X → X, with htop(T ) < ∞.

• MT is the space of T -invariant Borel prob-

abilities.

• A subshift (Y, S) is the restriction of the

full shift on a finite alphabet to a closed

invariant subsystem.

• A symbolic extension of (X, T ) is a subshift

(Y, S) with a continuous surjection

ϕ : Y → X such that Tϕ = ϕS.
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EXAMPLES: (X, T ) has a symbolic extension

if T admits Markov partitions (Adler-Weiss,

Sinai, Bowen, Fried) or more generally if T is

expansive (Reddy).

Symbolic extensions can be a tool for studying

(X, T ) (e.g. via Markov partitions).

Symbolic extensions will emerge as a general

tool for exploring the complexity of systems

(X, T ).

QUESTION [Auslander 89] If htop(T ) < ∞,

must (X, T ) have a symbolic extension?
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DEFN The (topological) residual entropy of
T is hres(T ) = inf{htop(S)} − htop(T ),
where the inf is over the symbolic extensions
of T .

THM [BFF, D1] For 0 < α < ∞, 0 ≤ β ≤ ∞,
there exist T with htop(T ) = α, hres(T ) = β.

“Intuitively”: hres(T ) > 0 reflects nonuniform
emergence of entropy on refining scales.

EXAMPLE 1 (extreme) htop = log2 with
hres(T ) = ∞ follows from

• At a scale ε, T looks like (has n, ε orbits like)
the 2-shift;

• there is a constant c > 0 such that for every
scale ε, for every periodic orbit O of T , there
is some scale δ < ε (depending on O) at which
the orbit resolves into a system with entropy
≥ c.
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There are more results in [BFF, D1], e.g.

[BFF] T is C∞ =⇒ hres(T ) = 0 .

Questions left open included

1. For 1 ≤ k < ∞,

if T is Ck, must hres(T ) = 0?

2. Given T with hres(T ) < ∞, must there exist

a symbolic extension (Y, S) of (X, T ) such

that htop(S) = htop(T ) + hres(T )?

In [BD] we investigate entropy obstructions to

symbolic extensions at the level of measures.

This leads to

• The answer to Question 1 is NO. [DN]

• The answer to Question 2 is NO. [BD]

• Clarification of “intuitively”. [BD]

• A master entropy invariant. [D2]
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Extension entropy. Consider a homeomor-

phism T of a compact metric space X. Given

a symbolic extension ϕ : (Y, S) → (X, T ) define

its extension entropy function

h
ϕ
ext : MT → [0,∞)

µ 7→ max{h(S, ν) : ϕν = µ} .

Symbolic extension entropy. Given (X, T ),

we define its symbolic extension entropy func-

tion to be the function hT
sex : MT → [0,∞)

which is the infimum of all h
ϕ
ext arising from

symbolic extensions ϕ of (X, T ). (So, either

hT
sex is bounded or is identically ∞.)

(Abbreviating, we call hT
sex the sex entropy func-

tion of T .) When hT
sex is bounded, hT

sex(µ) gives

a quantitative measure of the emergence of

complexity on finer scales “near” the support

of µ.
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For every (X, T ), we will give a functional an-

alytic characterization of the functions on MT

which can arise as h
ϕ
ext for symbolic extension ϕ

of (X, T ), and also a functional analytic charac-

terization of hT
sex. This will reveal a remarkably

rich and subtle structure.

Entropy structure. An entropy structure for

(X, T ) is an allowed nondecreasing sequence of

nonnegative functions hn on MT , converging

to the entropy function h.

The sequence (hn) will describe the emergence

of entropy on refining scales. The general de-

termination of “allowed” is achieved in [D2]

(Tomasz’s talk). In [BD] it is important to

work with (hn) which also has the property that

the functions hn and hn+1−hn are uppersemi-

continuous (u.s.c.). Here is one example of an

allowed (hn) which gives the right intuition and

suffices in many cases.
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Suppose the system (X, T ) admits a refining
sequence of partitions Pn with small bound-
aries (the boundary of the closure of each par-
tition element has µ-measure zero for every µ

in MT ), and with the maximum diameter of
elements of Pn going to zero as n → ∞. De-
fine hn(µ) = h(µ, Pn). Then the sequence (hn)
is an entropy structure for (X, T ).

Not every system (X, T ) admits such a se-
quence Pn. However, if the periodic point set
of T is zero-dimensional (e.g. countable) and
X is finite-dimensional, then there is such a
sequence [Kulesza]. We will give one general
construction later.

The uppersemicontinuity of hn and of hn+1−hn

follows here from the small boundaries because
the inf of continuous functions is u.s.c., e.g.

hn(µ) = inf
k

1

k
Hµ

( k−1∨
i=0

T−iPn

)
.
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Superenvelopes. Suppose (hn) is an entropy

structure with all hn − hn−1 u.s.c. A bounded

function E on MT such that every E − hn is

nonnegative u.s.c. is called a superenvelope of

the entropy structure. (For notational reasons,

we also allow the constant function E ≡ ∞ as

a superenvelope.)

The main result of [BD] is the

Sex Entropy Theorem: a bounded function

on MT is the extension entropy function of

a symbolic extension of (X, T ) if and only if

it is affine and a superenvelope of the entropy

structure. (This does not depend on the choice

of entropy structure.)
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Corollary hT
sex is the minimum superenvelope

of the entropy structure (hn).

Corollary If hT
sex is bounded, then for a residual

subset of MT , hT
sex(µ) = h(µ).

The Sex Entropy Theorem is one of two in-
gredients which move many questions about
sex entropy into the realm of pure functional
analysis. The other ingredient is a realization
theorem:

THEOREM [DS] Let (hn) be a sequence of
affine nonnegative u.s.c. functions on a metriz-
able Choquet simplex, with nonnegative u.s.c.
differences, converging to a bounded function
h. Then (hn) is an entropy structure for a dy-
namical system.

The entropy structure characterization of hT
sex

leads to a illuminating recursive characteriza-
tion of hT

sex.
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Inductive Characterization of hsex

Let g̃ denote the u.s.c. envelope of a function
g (the inf of the continuous functions larger
than g). Convention: g̃ ≡ ∞ if sup g = ∞.

Let H = (hn) be an entropy structure, hn → h.
Begin with the tail sequence τn = (h − hn),
which decreases to zero. We will define by
transfinite induction a transfinite sequence uH

of functions uα on MT . Set
• u0 ≡ 0
• uα+1 = limk( ˜uα + τk)
• uβ = the u.s.c. envelope of sup{uα : α < β},
if β is a limit ordinal.

THEOREM uα = uα+1 ⇐⇒ uα + h = hsex,
and such an α exists among countable ordinals
(even if hsex ≡ ∞).

The convergence above can be transfinite, and
this indicates the subtlety of the emergence of
complexity on ever smaller scales. However
the characterization is also of practical use for
constructing examples.
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[In the actual talk the examples to follow were

sketched as blackboard pictures.]
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EXAMPLE 2 Let the Choquet simplex MT

have as its set Me
T of ergodic measures a se-

quence µn such that limn µn = µ1. Here Me
T is

a closed set, and in this case it suffices to apply

the inductive construction to the restriction of

hsex to Me
T . Define hn restricted to Me

T to be

1µ1 + · · ·+ 1µn

(the sum of indicator functions of µ1, . . . , µn).

Now the tail τn is

1µn+1 + 1µn+2 + · · ·

and the u.s.c. envelope of τn is τn + h1. Then

u1 := lim
n

τ̃n = lim
n

(τn + h1) = h1 .

The terms of the sequence h1 + τn are already

u.s.c., so

u2 := lim
n

( ˜u1 + τn) = lim
n

(h1 + τn) = u1 .

Thus on Me
T we have hsex = h+h1. Since h ≡

1 and max(h+h1) = 2, the residual entropy of

T is 1.
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EXAMPLE 3 In the previous example, we had

0 = u0 6= u1 = u2. Let us indicate a modifica-

tion such that 0 = u0 6= u1 6= u2 = u3. Keep

the sequence of measures µn just as before.

Now for each of µk, k > 1, add a sequence

(µkj), 1 ≤ j < ∞, with limj µkj = µk. Enu-

merate all these measures as ν1, ν2, . . . and let

hn = 1ν1 + · · ·+ 1νn. Indeed the previous in-

duction does run one step longer and we get

• u(µkj) = 0 for all those new measure µkj

• u(µk) = u1(µk) = 1 for k = 2,3, . . .

• u(µ1) = u2(µ1) = 2.

Then hsex = h + u = 1 + u.

Similarly one can get higher orders of accumu-

lation, and transfinite orders (with more care-

ful control over the size of h at the different

ergodic measures).
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EXAMPLE 4 This will give an “easy” exam-

ple of a system with finite entropy but with

infinite residual entropy.

We choose a system (again by [DS]) with a se-

quence (µn) of distinct ergodic measures dense

in Me
T , where Me

T has no isolated points. On

Me
T take

hn = 1µ1 + · · ·+ 1µn

Now maxh = htop(T ) = 1. However, every

tail τn equals 1 on a dense subset of Me
T , so

u1 = limn τ̃n ≡ 1 on Me
T .

Repeating, we find

u2 = limn ˜τn + u1 ≡ 2 on Me
T ; then

u3 = limn τ̃n ≡ 3 on Me
T ; etc.

We get uα ≡ ∞ for α = ℵ0, the first infinite

ordinal, so the residual entropy is infinite.
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EXAMPLE 5 Here without proof is an ex-

ample of a system (X, T ) for which the max of

hsex(T ) exceeds the sup of hsex(T ) over ergodic

measures.

Let the ergodic measures topologically look

like the following subset of the plane:

{(0,0), (1,0)} ∪ {(1/2,1/k) : k = 1,2,3, ...}
so that the measures corresponding to the points

(1/2,1/k) converge to a measure µ which is the

average of two ergodic measures. Enumerate

all these measures as µ1, µ2, . . . and on Me
T set

hn = 1µ1 + · · ·+ 1µn

and extend to all measures via ergodic decom-

position of measure theoretic entropy.

Then the maximum of hsex is 2, achieved at

µ, and at every ergodic measure hsex is 1. In

particular there is no “ergodic decomposition”

for sex entropy.
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Example 6.

We sketch an example of a system (X, T ) where

htop(T ) = 1 and hsex(T ) = 1, but there is no

symbolic extension ϕ : (Y, S) → (X, T ) with

htop(S) = 1.

More precisely, appealing to [DS], we describe

an entropy structure (hn) on a Choquet sim-

plex K. The ergodic measures (extreme points

of K) are two sequences a1, a2, . . . and b1, b2, . . .

, where lim an = b1 and lim bn = c :=
∑

2−nan.

Note c is not an extreme point. jWe determine

the entropy structure by dictating that on the

extreme points, hn is the sum of the indicator

functions of b1, ..., bn.

Now suppose that a symbolic extension ϕ :

(Y, S) → (X, T ) exists with with htop(S) = 1.

We will argue to a contradiction.
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Let E denote the affine superenvelope of (hn)

given by the entropy extension function h
ϕ
ext.

Now E ≤ htop(S) = 1. Since E ≥ h, we have

E(bn) = 1 for all n. Since E is u.s.c., we have

E(c) = 1. Since E is affine and E ≤ 1 it follows

that E(an) = 1 for all n. Now for any n ≥ 1,

E − hn is zero at b1, but

lim
k

(E − hn)(ak) = 1 > 0 = (E − hn)(b1) .

Therefore E − hn is not u.s.c., which contra-

dicts its being a superenvelope of (hn).
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More Consequences of the Sex Entropy
Theorem.
Define hres(µ) = hsex(µ)− h(µ).
Suppose hsex is bounded (i.e. not ≡ ∞).Then

• hres and hsex are u.s.c.

• The sup of hsex can exceed the sup over the
ergodic measures (but the max will be achieved
on the closure of the ergodic measures).

• (Sex Entropy Variational Principle)
hsex(T ) = maxµ hsex(µ) , where
hsex(T ) := inf{htop(S) : S is a sym. ext. of T}

• The infimum of the topological entropies of
symbolic extensions of (X, T ) need not be re-
alized by any symbolic extension of (X, T ).

• If MT is a Bauer simplex (i.e. the ergodic
measures form a closed set), then hsex is affine,
and is realized as the extension entropy func-
tion for some symbolic extension.
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Topological tail entropy

This is the term we use for h∗(T ), the “condi-

tional topological entropy” of Misiurewicz.

Given an entropy structure, the topological tail

entropy has a quick description:

h∗(T ) = lim
n
||h− hn||sup .

It is a difficult theorem of Downarowicz [D2]

that the RHS of this equation agrees with the

original definition of Misiurewicz.

T is asymptotically h-expansive if h∗(T ) = 0.

(E.g. a zero-dimensional system is asymptot-

ically h-expansive if and only if it embeds as

a subsystem of some countable product S of

subshifts such that htop(S) < ∞.) Misiurewicz

showed the entropy function h : MT → R is

u.s.c. when T is asymptotically h-expansive

(so, there are measures of maximal entropy).
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In the setting of residual entropy, the asymp-

totically h-expansive systems form the one re-

ally special and distinguished class.

THEOREM

Let (hn) be an entropy structure for (X, T ).

T.F.A.E.

(1) hsex = h

(2) hn converges to h uniformly.

(3) (X, T ) has a symbolic extension ϕ which is

a principal extension (i.e. h
ϕ
ext = h)

(4) T is asymptotically h-expansive.

SEX ENTROPY AND SMOOTHNESS

How compatible is the complexity of residual

entropy with smoothness?

If (X, T ) is C∞, then [Buzzi following Yomdin]

T is asymptotically h-expansive, and therefore

hsex = h.

21



THEOREM [DN] A generic C1 non-hyperbolic
(i.e. non-Anosov) area preserving diffeomor-
phism of a compact surface has no symbolic
extension (i.e. residual entropy = ∞).

THEOREM [DN] For r > 1 and any compact
Riemannian manifold of dimension > 1, there is
a Cr-open set of Cr diffeomorphisms in which
the diffeomorphisms with positive topological
residual entropy are a residual set.

In the last theorem, D & N obtain (by generic
constructions of homoclinic tangencies) a spe-
cific lower bound for the residual entropy, which
they expect to be actually an equality for typ-
ical nonhyperbolic Cr systems (2 ≤ r < ∞).
They also conjecture a specific finite upper
bound for the topological sex entropy of any
Cr map (2 ≤ r < ∞):

hsex(T ) ≤
[
R(f)dim(X)

] r

r − 1
, where

R(f) = lim
n

(1/n) logmax ||(Tn)′|| .
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Proof of the Sex Entropy Theorem.

[Not actually included in the talk due to time.]

The hardest part is the construction of the

symbolic extension matching the given affine

superenvelope. This goes by a proof in the

zero dimensional case and (in the case where

we must use the more general entropy struc-

ture above) a reduction to that case. The

hardest part is the zero dimensional argument

which splits into four parts, given the barest of

sketches below.

Part 1. Define a “simplified word oracle”: a

relatively simple axiomatized object related to

words from a presentation of (X, T ) as an in-

verse limit of subshifts.

Part 2. From the SWO construct a closely

related symbolic extension. (Not hard.)
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Part 3. From an affine superenvelope con-

struct an SWO. (The hardest part). As in

[D1], we relate words to measures by inter-

preting a measure as approximated by a long

word B, and considering B as a measure on

a periodic orbit . . . BBB . . . . Estimates involve

information theoretic lemmas (esp. as in [D1]

a conditional version of a lemma of Blanchard-

Glasner-Host) and separation theorems of the

following sort:

Fact. Suppose h and f are functions defined

on a Choquet simplex, h < f , h is affine u.s.c.

and f is l.s.c. Then there is a continuous affine

function g such that h < g < f .

Part 4: Check that the constructed symbolic

extension has extension entropy function match-

ing the given affine superenvelope. Uses more

functional analysis and the Ledrappier-Walters

Relative Variational Princple.
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General Entropy Structure.

We conclude with the promised definition of

an entropy structure which will work in any

system.

Given (X, T ), take a strictly ergodic zero en-

tropy nonperiodic (Z, R) with unique invari-

ant measure λ. An easy consequence of the

deep work of Elon Lindenstrauss on mean di-

mension, following his earlier work with Benjy

Weiss, is that the product (X ×Z, T ×R) does

have a refining sequence of partitions with small

boundaries. We can then define an entropy

structure (h′n) on this product system as be-

fore. Now for our entropy structure on (X, T )

we use (hn) where hn(µ) := h′n(µ× λ).
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