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1. Introduction

Over four papers in 1990-91, Kim and Roush

created a structure for studying shift equiva-

lence and strong shift equivalence of positive

matrices over dense subrings of R. Especially

R and Q.

This talk is based on a 50 page joint work with

Kim and Roush, on the Arxiv. It contains a

complete and generalized version of the theory,

along with full, detailed proofs accessible to

newcomers. It is all about matrices, not using

dynamics.

Before we consider the topic, we’ll review strong

shift equivalence and its context. All rings and

semirings are assumed to contain 1. A matrix

over a semiring S is a matrix with entries in S.
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2. Strong shift equivalence

Let S be a semiring with {0,1} (e.g. R,Z,Z+, . . . ).

Williams [1973] defined :

Matrices A,B over S are elementary strong

shift equivalent over S (ESSE-S)

if they are square and there exist matrices U, V

over S such that

A = UV and B = V U .

A,B are strong shift equivalent over S
(SSE-S) if there exists a chain

A = A0, A1, . . . , A` = B

with Ai−1 and Ai ESSE-S for 0 < i ≤ `.
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Why did Williams define SSE?

• Up to topological conjugacy, every shift of

finite type (SFT) is an “edge SFT” σA,

defined by a square matrix A over Z+.

• SFTs are fundamental for symbolic dynam-

ics.

• σA and σB are isomorphic (topologically

conjugate) iff A,B are SSE-Z+.
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The trouble with SSE-Z+.

However, SSE for Z+ (or even R+) is a very

hard relation to understand.

Given A and B: looking for the ESSE chain

A = A0, A1, . . . , A` = B

we know NO a priori bound on that length `

(the “lag”) or the sizes of the matrices Ai.

It is still not known if there exists an algorithm

which takes matrices A,B and decides whether

they are SSE-Z+. (Even if A,B are 2× 2 !)

So, Williams introduced a more tractable rela-

tion, shift equivalence.
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2. Shift equivalence

DEFN Square matrices A,B are shift equiva-

lent over S (SE-S) if ∃ matrices U, V over S
and ` ∈ N such that

A` = UV B` = V U

AU = UB BV = V A

Always: SSE-S implies SE-S. Also

• SE-Z+ is decidable (Kim-Roush).

• SE-Z+ turns out to be reasonably tractable,

and closely related to significant applica-

tions in symbolic dynamics
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3. Algebraic meaning of SE-S

Suppose A,B are matrices over a ring S.

• If S is a field, then A,B are SE-S iff the

nonnilpotent parts of their Jordan forms

agree.

• If S = Z, there are additional invariants

(but they are managable).

• SE-S of A,B is equivalent to the isomor-

phism of certain associated S[t, t−1] mod-

ules.

(There is a “conceptual” algebraic object

classifed by SE-S.)
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Example: if S is a field or PID (e.g. Z), and

A,B over S each have just one nonzero eigen-

value, with algebraic multiplicity one, then they

are SE-S iff those eigenvalues are equal.

Let us see how relations simplify in the main

cases.

DEFN A real matrix is primitive if it is square

nonnegative and and some power is positive.

For SSE over Z+ (or over S+, for a subring

S of R) the fundamental case to understand is

SSE of primitive matrices.

(This is quite analogous to the Perron-Frobenius

theory of nonnegative matrices.)
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Suppose A,B are primitive matrices over S, a

subring of R.

• T.F.A.E. for A,B: SE over S, SE over S+

• If also S is a field, or PID (e.g. R,Z), or

Dedekind domain, then SE over S and SSE

over S are equivalent.

So in the most important cases the only issue

is how SSE-S+ fits.
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4. Algebraic meaning of SSE-S

For any ring S (we always assume 1 ∈ S), the

equivalence relation SSE-S is generated by the

following relations on square matrices over S:

• conjugacy over S (A ∼ UAU−1), and

• “nilpotent extensions”:(
A X
0 0

)
∼ A ∼

(
0 X
0 A

)
For example, if A = XY and B = Y X, we

can find nilpotent extensions of A,B which are

conjugate:(
I 0
Y I

)(
A X
0 0

)
=

(
0 X
0 B

)(
I 0
Y I

)

For a general ring (even in R) which is not a

Dedekind domain, I know nothing more about

how SSE over S refines SE over S. I can’t

provide an example of matrices SE over S but

not SSE over S.
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5. Classifying shifts of finite type.

Williams gave us:

• Theorem (Annals of Math 1973)

SE-Z+ =⇒ SSE-Z+ .

• Conjecture (Annals of Math 1974)

SE-Z+ =⇒ SSE-Z+ .

Eventually counterexamples were constructed

(Kim Roush 1992,1999), based on a lovely al-

gebraic topological structure created by Wag-

oner (“strong shift equivalence space”). The

counterexamples used special conditions, espe-

cially, zero trace.

What we thoroughly lack are general sufficient

conditions for SSE-Z+.
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6. SSE over subsemirings of R

To probe the Z+ problem, we attack a related

problem.

From here: S is a nondiscrete subring of R, and

S+ = S ∩ [0,∞).

PROBLEM When are positive matrices over

S SSE over S+?

How entangled are the algebraic and positiv-

ity obstructions? There are other motivations

for the problem. We have no counterexam-

ple to the possibility that SE-S always implies

SSE-S+ for positive matrices.

Theorem (Kim-Roush) A primitive matrix over

S with positive trace is SSE-S+ to a positive

matrix.
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7. Three part approach to SSE-S+ of pos-
itive matrices.

(I) Understand SSE over R+ via paths of pos-
itive real matrices.

(II) Use (I) to get conditions in which
SSE-S =⇒ SSE-S+ .

(III) Understand SSE-S, especially, when do we
have SE-S =⇒ SSE-S ? (Always?)

************

For example, suppose consider positive real
matrices with exactly one nonzero eigenvalue.
(I) [KR, 90s] done.
(II) [BKR] True for all S.
(III) Done iff S is Dedekind.

************

I have nothing more for (III).
Let’s consider in order (I), (II).
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8. (I), over R+: The Central Result

The Central Result (90s, KR)

Suppose (At), 0 ≤ t ≤ 1, is a path of posi-

tive conjugate n× n real matrices.

Then A0 and A1 are SSE over R+.

**************

Sketch of a proof:
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1. Given t < 1 and ε > 0 small enough,

At+ε = V −1AtV with V close to I.

2. That conjugacy At → V −1AtV is a com-

position of conjugacies implemented by basic

elementary matrices E close to I.

3. With E ≥ 0, C > 0 and E close to I,

there is an ESSE over R+:

(E) (E−1C) = C

(E−1C) (E) = E−1CE .

4. So for small ε = εt > 0 ,

t ≤ s < t+ ε =⇒ As and At are SSE-R+.

Likewise for t− ε < s ≤ t.

5. By compactness, there’s a finite subcover

of [0,1] by such neighborhoods (t − εt, t + εt);

therefore A0 and A1 SSE-R+.
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9. (I): More results

COR. of Central Result (Chuysurichay, 2011)

Suppose A is positive n × n over R. Let C be

the set of positive real n × n matrices which

are conjugate to A.

Then C intersects only finitely many SSE-R+

classes.

PROOF. Use a result from semialgebraic ge-

ometry. Since C is the solution set of finitely

many polynomial inequalities and equalities in

finitely many real variables (the matrix entries),

C has only finitely many connected compo-

nents. Apply the Central Result. QED

Example(C. 2011) For some A, the minimal

lag required for SSE between matrices in C is

unbounded.

The finiteness result, despite the unbounded

lags, indicates some power of the path method.
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More from (Kim Roush, 90s):

THM Suppose A > 0 and conjugate to a ma-

trix

λ 0 0
0 0 0
0 0 M

 with M nilpotent. Let C be

the set of positive matrices conjugate conju-

gate to A.

Then C is path connected.

LEMMA 1 If A,B are positive and SSE-R,

then A,B are resp. SSE-R+ to positive A′, B′

which are conjugate over R.

THM 2 If A,B are positive and SSE over R,

and each has just one nonzero eigenvalue, then

A,B are SSE over R+.
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(I) Some new results [BKR].

• (Ia) Suppose (At), 0 ≤ t ≤ 1, is a path of

positive, shift equivalent n × n real matrices.

Then A0 and A1 are SSE over R+.

• (Ib) Suppose A,B are positive matrices and

SSE-R+. Then A,B are SSE-R+ through pos-

itive matrices.

“SSE-R+ through positive matrices” means we

have A0, A1, ..., A` all positive with A = A0,

B = A`, and Ai, Ai+1 ESSE-R+ for 0 ≤ i < `.
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One of the crucial ingredients for these two

new results is a pure linear algebra result:

***************

Suppose A is a nilpotent n×n matrix. Let C be

a conjugacy class of n × n nilpotent matrices

satisfying certain conditions.

Then given a neighborhood V of A, whenever

B,C in C are sufficiently close to A, there is a

path of conjugate matrices from B to C which

stays in V.

***************

This applicability of linear algebra is an exam-

ple of (I) being more accessible to standard

math (than the problem of SSE-Z+).
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10. (II), from R+ to S+: Results. From

[BKR]:

LEMMA 1’ If A,B are positive and SSE-S,

then A,B are resp. SSE-S+ to positive A′, B′

which are conjugate over S.

THM 2’ If A,B are positive and SSE over S,

and each has just one nonzero eigenvalue, then

A,B are SSE over S+.

THM If A,B are positive matrices over a sub-

field S of R, and A,B are SSE over R+, then

A,B are SSE over S+.

The last result uses the new results Ia, Ib over

R. Sow in R+, reap in S+.
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11. A hint of ideas behind (II)

The hardest part is LEMMA 1’. This requires

one to develop analogues of state splitting and

fiber product techniques for decomposing SSE

over {0,1}. (These are also used in proving

the new R+ results.) There are new features.

I’ll skip all of that.

But note: the proof requires in a fundamental

way the assuption SSE-S, not SE-S. Likewise

Wagoner’s strong shift equivalence spaces are

built from SSE-S, not SE-S.

This switch of hypothesis (after so much in-

vestment in Williams’ conjecture) seems use-

ful. We separate out as another step (III) the

relation of SSE-S and SE-S.
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Next let (At),0 ≤ t ≤ 1 be a path of positive

matrices, conjugate over R, from A = A0 to

B = A1, with A,B over S, and conjugate over

S (by Lemma 1’).

What do you need to conclude A,B are SSE

over S+ (not just over R+)?

There are two pieces to this.

There is a path Gt in GL(n,R) with At = G−1
t AGt

and G0 = I.

Piece 1.

If G1 is over S, then via approximation meth-

ods, A and B are SSE over S+.

The approximations use heavily the simple fact

that an element of SL(n,R) is a product of ele-

mentary matrices, which can be approximated

arbitrarily closely by elementary matrices over

S.
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Piece 2.

So, beginning with a path of positive conju-

gate matrices (At) = (G−1
t AGt), what do you

need to pass to a new path (G′t) with G′0 = I

and G′1 over S?

Assume A = V −1BV , with V in GL(n,S).

Define Cent(A) to be

{M ∈ GL(n,R) : AM = MA}.

As it works out: you need exactly that the

connected component of Cent(A) containing

U−1
1 V also contains a matrix over S.

This is no problem if S is a field.

It is an actual obstruction to the method for

some rings S, e.g. some algebraic number

rings.
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For any S, the number of distinct SSE-S+ classes

which interesect a path connected set of posi-

tive, conjugate real matrices containing a ma-

trix A cannot exceed |π0(Cent(A))| (which is

finite and easily analyzed).

So, we generalize Chuyisurichay’s result to all

S: the set of n× n positive matrices over S ly-

ing in a given conjugacy-over-S class intersects

only finitely many distinct SSE-S+ classes.
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12. The one-component proof.

Theorem (KR, 90s) Suppose A > 0 and con-

jugate to a matrix

λ 0 0
0 0 0
0 0 M

 with M nilpo-

tent. Let C be the set of positive matrices

conjugate conjugate to A.

Then C is path connected.

Proof. We have A = P +N , where

P is rank one positive; N is nilpotent; and

PN = NP = 0.

With A′ ∈ C, likewise A′ = P ′+N ′.

We want to produce the positive path of con-

jugate matrices from A to A′.
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We have U such that U−1AU = A′, and also
det(U) > 0. Then there is a path (Ut) of in-
vertible matrices from I to U , giving a path of
matrices (At) = (U−1

t AUt) from A to A′. We
do not have At ≥ 0, but (slightly technical) we
can arrange that for all t, At = Pt + N with
Pt > 0 and N nilpotent.

By compactness: ∃ε > 0 such that for all t,
Pt + εNt is positive. Then,

Pt + εNt ,0 ≤ t ≤ 1

is a positive path of similar matrices.

And! For N nilpotent and s a nonzero number,
sN is similar to N . So

P1 + sN1 ,1 ≥ s ≥ ε
is a path of similar matrices from A to P1+εN1,
and it is a positive path.

Producing likewise a path from P2 + εN2 to
B, and composing the three paths, we get the
desired positive path from A to B. QED.
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13. Conclusion. Progress on understand-

ing SSE-R+ for positive matrices yields a good

deal for SSE-S+ for other dense subrings S of

R.

The problem of understanding SSE-R+ for pos-

itive matrices is accessible by more standard

mathematics. It may be that good progress

could follow if the problem were attacked by

some who could bring something extra to the

problem.

More geometry?

More matrix theory?

27



More youth?
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