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Recall:

XL = {all L-structures with universe ω}.
S∞ induces the logic action on XL.

From Sam’s talk: A Borel subset Y ⊆ XL is invariant under
this action iff Y = Mod(Φ) for some Φ ∈ Lω1,ω.

Theorem (Friedman-Stanley)

With respect to Borel reducibility, among all pairs (Mod(Φ),∼=Φ),
there is a maximum Borel degree.
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Definition

We say ∼=Φ is Borel complete if it is Borel equivalent to this
maximum degree.

Examples: (Friedman-Stanley) The following classes of structures
(Mod(Φ),∼=Φ) are all Borel complete:

Directed graphs;

Symmetric graphs;

Linear orders;

Fields;

Subtrees of ω<ω.
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Throughout the whole of this talk, T will denote a complete, first
order theory in a countable language.

Interested in the Borel complexity of (Mod(T ),∼=T ).
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Jumps: Suppose T is a complete L-theory. Let L+ = L ∪ {E} and
T + be the theory specifying:

E is an equivalence relation with infinitely many classes;

Each E -class is a model of T .

Then ∼=(T+) is Borel equivalent to the jump (∼=T )+.
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Friedman-Stanley tower: Let
∼=0 be id(ω) [Think: Countably many non-isomorphic models.]
∼=1 be id(2ω) [Countable sets of integers, i.e., reals]
∼=2 be (∼=1)+ [Countable sets of reals]

In general, given ∼=α, let
∼=α+1 be the jump (∼=α)+ (i.e., ‘countable sets of ∼=α’)

Note: ∼=T <B
∼=0 iff T has finitely many models.

Of special note: ∼=2 is ‘Countable sets of reals.’
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Fundamental Dichotomy: Is ∼=T (as a subset of
Mod(T )×Mod(T )) Borel or properly Σ1

1 ?
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Fundamental Dichotomy: Is ∼=T (as a subset of
Mod(T )×Mod(T )) Borel or properly Σ1

1 ?

Easy: If ∼=T is Borel complete, then ∼=T is properly Σ1
1 .
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Fundamental Dichotomy: Is ∼=T (as a subset of
Mod(T )×Mod(T )) Borel or properly Σ1

1 ?

Easy: If ∼=T is Borel complete, then ∼=T is properly Σ1
1 .

Note: Until recently, all known examples of ∼=T properly Σ1
1 were

Borel complete, hence ≥B every ∼=T ′ .

This led me (and maybe others) to think of every instance of ∼=T

properly Σ1
1 as being >B

∼=T ′ whenever ∼=T ′ is Borel.

This is not always the case!
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Effect of standard model-theoretic operations:
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Effect of standard model-theoretic operations:

Borel complexity is ill-behaved under reducts.

There are complete T0 ⊆ T1 ⊆ T2 (in languages
L0 ⊆ L1 ⊆ L2) such that Mod(T0) is ℵ0-categorical, Mod(T1)
is Borel complete, and Mod(T2) has countably many models.
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Naming (or deleting) constants is only partially understood.

Throughout most of model theory (e.g., showing I (T ,ℵ0) = 2ℵ0 or
the configurations determining the spectrum I (T , κ) for κ > ℵ0),
naming or deleting finitely many constants is free.
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Naming (or deleting) constants is only partially understood.

Throughout most of model theory (e.g., showing I (T ,ℵ0) = 2ℵ0 or
the configurations determining the spectrum I (T , κ) for κ > ℵ0),
naming or deleting finitely many constants is free.

Open: Can Borel completeness be gained or lost by naming a
constant?
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Naming (or deleting) constants is only partially understood.

Throughout most of model theory (e.g., showing I (T ,ℵ0) = 2ℵ0 or
the configurations determining the spectrum I (T , κ) for κ > ℵ0),
naming or deleting finitely many constants is free.

Open: Can Borel completeness be gained or lost by naming a
constant?

Best result so far:

Proposition (Rast)

Let T be complete,and T (c) an expansion formed by naming a
constant. Then ∼=T is Borel if and only if ∼=T (c) is Borel.
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Naming or deleting infinitely many constants is hopeless.
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Naming or deleting infinitely many constants is hopeless.

Ulrich: Let M denote the (unique) countable random graph, and
let (M, cn)n∈ω be any expansion such that ci 6= cj for distinct i , j .
Then Th(M) is ℵ0-categorical, while Th((M, cn)n∈ω) is Borel
complete.
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Naming or deleting infinitely many constants is hopeless.

Ulrich: Let M denote the (unique) countable random graph, and
let (M, cn)n∈ω be any expansion such that ci 6= cj for distinct i , j .
Then Th(M) is ℵ0-categorical, while Th((M, cn)n∈ω) is Borel
complete.

A later example will give a complete theory T such that ∼=T is
properly Σ1

1 , but for any model M, the isomorphism relation
∼=El(M) of the elementary diagram of M is Borel.
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Only general result to date.

Marker: If T is not small, then ∼=2 ≤B
∼=T , i.e., ‘countable sets of

reals’ Borel reduce to (Mod(T ),∼=T ).
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Only general result to date.

Marker: If T is not small, then ∼=2 ≤B
∼=T , i.e., ‘countable sets of

reals’ Borel reduce to (Mod(T ),∼=T ).

Paradigm: ‘Independent unary predicates’ L = {Un : n ∈ ω}, T
says ‘Every finite boolean combination of ±Un is consistent.’

Complete 1-types correspond to branches through 2<ω (i.e., reals)
and for each branch, one can choose how many elements realize it.

Chris Laskowski University of Maryland

Borel complexity of complete, first order theories (status report)



o-minimal theories

Theorem (Rast/Sahota)

If T is o-minimal, then ∼=T is one of the following:

<B
∼=0 (finitely many models);

Borel equivalent to ∼=1 (reals);

Borel equivalent to ∼=2 (countable sets of reals);

Borel complete.

Note: The proof of this theorem would have been massively
simpler if one could name a constant!
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Complete theories of linear orders with (countably many) unary
predicates

Theorem (Rast)

If T is a complete theory of linear orders with unary predicates,
then ∼=T is one of the following:

<B
∼=0 (finitely many models);

Borel equivalent to ∼=1 (reals);

Borel equivalent to ∼=2 (countable sets of reals);

Borel complete.
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ω-stable theories

Note: T ω-stable implies T small (Sn(∅) countable for each n)

Theorem (L-Shelah)

If T is ω-stable and has eni-DOP or is eni-DEEP, then ∼=T is Borel
complete.

Note: The proof of this would have been at least 10 pages shorter
if one could name a constant!

Theorem (Rast, streamlining Koerwien)

For each ordinal α < ω1, there is an ω-stable theory Tα such that
∼=(Tα) is Borel equivalent to ∼=α (the α’th jump).
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ω-stable theories (cont.)

Theorem (Koerwien+Ulrich)

There is an ω-stable, depth 2 theory K for which
∼=K is properly Σ1

1 BUT
∼=K is NOT Borel complete.
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Refining equivalence relations
Let L = {En : n ∈ ω} and consider L-theories T that say:

Each En is an equivalence relation;

E0 consists of a single class;

Each En+1 refines En, i.e., En+1(a, b) implies En(a, b).

In order to make T complete, need only say how many classes
En+1 partitions each En-class into.
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Case 1: REFω says: Each En+1-class partitions each En-class into
infinitely many classes.

REFω is small, BUT

REFω is Borel complete.
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Case 1: REFω says: Each En+1-class partitions each En-class into
infinitely many classes.

REFω is small, BUT

REFω is Borel complete.

Case 2: REF2 says: Each En+1-class partitions each En-class into 2
classes.

Theorem (L-Rast-Ulrich)

The isomorphism relation on REF2 is properly Σ1
1 but is not Borel

complete.
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Hybrids: Given m ≤ ω, let Tm be:

For n < m, En+1 partitions each En-class into infinitely many
classes;

For n ≥ m, En+1 partitions each En-class into 2 classes.

Then:

T0 is REF2, Tω is REFω;

For all m, ∼=Tm is properly Σ1
1

For all m, Tm is small;
∼=T0 <B

∼=T1 <B
∼=T2 <B · · · <B

∼=Tω .
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Suppose M |= REF2 is countable. Then the elementary diagram
El(M) is essentially the same as ‘Independent unary predicates.’ In
particular:

∼=El(M) is Borel equivalent to ∼=2 (countable sets of reals);

Thus, ∼=El(M) is Borel; BUT

Its restriction to L = {En : n ∈ ω} is REF2 and ∼=REF2 is
properly Σ1

1
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A final thought: It has become empirically clear that ‘Vaught’s
conjecture for superstable T ’ is much more involved than
‘Vaught’s conjecture for ω-stable T .’
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A final thought: It has become empirically clear that ‘Vaught’s
conjecture for superstable T ’ is much more involved than
‘Vaught’s conjecture for ω-stable T .’

Fact: If T is superstable, but not ω-stable, then T is either not
small, or else has a type of infinite multiplicity.
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A final thought: It has become empirically clear that ‘Vaught’s
conjecture for superstable T ’ is much more involved than
‘Vaught’s conjecture for ω-stable T .’

Fact: If T is superstable, but not ω-stable, then T is either not
small, or else has a type of infinite multiplicity.

REF2 is the paradigm of a superstable theory with infinite
multiplicity!
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