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Abstract: We consider the full system of compressible Navier-Stokes equations for
heat conducting fluid. We show that the temperature is uniformly positive for ¢ > ¢
(for any ty > 0) for any solutions with finite initial entropy. The assumptions on
the viscosity and conductivity coefficients are minimal (for instance, the solutions
constructed by E. Feireisl in [2] verify all the requirements).

1 Introduction and main result

In this article, we consider p(t,z) > 0, 6(¢,z) > 0 and u(t,z) € R? solutions of the
following system of equations:

Op +div(pu) =0, (1)
0 (p0) + cpdiv(pu 8) + RpOdivu = 2u|D(u)|? + M|divu|? + div(kV8) (2)

for (t,x) € Ry xQ. Those equations are the usual continuity and temperature equa-
tions of the full system of compressible Navier-Stokes equations (for heat conducting
fluids) when the specific heat at constant volume ¢, is assumed to be constant and
for a pressure law of the form

P(p,0) = pe(p) + Rpb.

We recall that p denotes the density of the fuid, u its velocity field and 6 its
temperature. The strain tensor in (1)-(4) is given by

D(u) = %[Vu + 'V,
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and p and A are the two Lamé viscosity coefficients (possibly depending on the
temperature 6 or on the density p) satisfying

p>0  2u+3X>0 (3)

(u is sometime called the shear viscosity of the fluid, while X is usually referred to as
the second viscosity coefficient). The coefficient £ > 0 in (2) is the heat conductivity
coefficient. Without loss of generality, we can take ¢, = 1 (by rescaling the other
coefficients).

Those equations are usually supplemented by the momentum equation:
¢ (pu) + div(pu @ u) + VP(p,0) — div(2uD(u)) — V(Adivu) = 0. (4)

Altogether, Equations (1), (2) and (4) describe the motion of a general viscous,
heat conducting and compressible fluid. We want to emphasis however that for the
purpose of this paper we will not need equation (4).

The equations (1) and (2) are set in a smooth bounded subset §2 of R3, and we
consider the following boundary conditions:

u(t,z) =0, VoO(t,x) -n(x) =0 on IN (5)

where n denotes the exterior normal vector to 0€.

The existence of solutions for the full system of Navier-Stokes equations for com-
pressible fluids (1), (2) and (4) is a very delicate problem which has been addressed
in particular by E. Feireisl in [2, 3]. We will not discuss this issue in this paper. In-
stead, we are interested in the properties of the temperature 6(t, z) (assuming that
it exists). More precisely, we will show that under reasonable assumptions on the
initial data (which imply in particular that the initial temperature may not vanish
on an open set), the temperature cannot vanish for positive time and is uniformly
bounded away from zero on any time interval [tg,T] with T' > tg > 0.

The proof is inspired by De Giorgi’s proof of Holder regularity for the solutions
of elliptic equation with discontinuous coefficients. Similar arguments was used in
the context of Reaction-Diffusion systems by Alikakos [1]. In fluid mechanics, the
method is used in [5] to obtain partial regularity results for incompressible Navier-
Stokes system of equations, and in [4] to obtain L* bounds on the velocity for
the isentropic compressible Navier-Stokes system of equations. The method relies
mainly on the energy (or entropy) inequality for such equations.

We now have to make precise the notion of solutions we are going to use. As it
turns out, the proof only makes use of the fact that solutions of (1)-(2) satisfy (at
least formally) the following inequality:

G | po0) s = [ 2 @D0)Pdr— [ A @) do

+ /Q k" (0)|VO)? dz < — R /Q p0¢’(0)divudx(6)



for some appropriate functions ¢. We thus give the following definition:

Definition 1 We say that (p,u,0) is an admissible solution of (1)-(2) if the
following inequality holds

/qus(a)(t,x)dx—/:/sz'(e)m(u)ﬁdmr—/:/Qm'(e)|divu2czxd7

t t
" 2 _ ’ :
—|—/5 /Q/-iqﬁ (0)|VO|° dx dr < R/S /Qpﬁqb (G)dlvudxdf—&—/gp(b(ﬂ)(s,x) d:z;,7)

for any function ¢ of the form

(0) = {m (91)} =W+,

where C' and € are two positive constants.

We stress out the fact that (p,u, ) do not need to satisfy (1)-(2) even in some
very weak sense to be admissible in the sense of this definition. In section 2, we
will prove that smooth solutions of (1)-(2) satisfies (7). More importantly, we will
check that the method can be applied to the ”variational” solutions constructed
by E. Feireisl in [2]. Strictly speaking, those ”variational” solutions are not known

to satisfy inequalities (7). But in [2] (Equation (7.97) page 185), it is shown that
there exists an approximated family of solution (ps, us, 05) satisfying:

t
[ (05 + Br0t69)t.a)da = [ [ 200 =6/ 09D (us) o
t s t
_/st /Q/\(l—6)¢’(95)|divu5|2dxd7+/s /me”(65)|V95|2dxdT
< —R/s t/ﬂp@ggb’(%)divu(; dach—l—/Q(é—&-ng(H(s)(s,m)
—5/3 /99?/+1¢’(95)dxd7,

for a given o’ > 2 and any function ¢ of the form

(8)

6(0) = [m (eigﬂ =W,

where C' and ¢ are two positive constants independent on d. This inequality is even
better than (7) (since there is no problem close to the vacuum p = 0), except for
the damping term of the temperature of the form 66 +1. We will see in the last
section of this paper that this damping term can be dealt with and thus that our
result holds for Feireisl’s solutions. The important point will be that we obtain an
estimate for 85 which is independent of §, and is thus satisfied by limgs_.q 5.

We can now state our main result:



Theorem 1 Assume that the coefficients p, A and  (which may depend on p or
0) satisfies
2u+3x>v(@) >0 for all 6,
v(0) > Co for small 6, (
Kk(#)>£K>0 for small 6, (

=~
_ o ©
- = =

for some function v(0) and constant k.
Let (p,u,8) be an admissible solution of (1)-(2) such that

p € L>(0,T; LP(2)) for some p > 3,

and
u € L*(0,T; Hy (Q)).

Assume moreover that (po,00) satisfy

/on[ln(l/ﬁo)]+ dr < +oo. (12)

Then, for every T > to > 0, there exists a constant 6z, 7 > 0 such that:
0(s,x) > 8¢y, for all s € (to,T) and almost all x € Q.

Furthermore, if there exists a constant §g > 0 such that 0y(x) > &g for almost every
x € Q, then the constant 6y, v does not depend on tg.

We will see in the next section that the assumptions on (p, u, 8) are satisfied by the
"variational” solutions constructed by Feireisl [3, 2] when the pressure law is given
by:

P(p,0) =Cp” + Rp¥, with v > 3. (13)

This leads to the following corollary:

Corollary 2 Let (p,u, ) be a solution a la Feireisl of the Navier-Stokes system of
equations (1)-(4). Assume that p, A and s satisfy (9)-(11) and that the pressure
law 1is given by (13).

If the initial data (po,wo,00) has finite energy and finite physical entropy, then
for every T >ty > 0, there exists a constant d;, v > 0 such that:

0(8,1’) Z 5t0,T7
for every s € (to,T) and almost every x € Q.
The paper is organized as follows: In section 2, we check that smooth integrable
solutions of (1)-(2), as well as Feireisl’s solutions are admissible in the sense of

Definition 1. Section 3 is devoted to the proof of Theorem 1. In the last section,
we complete the proof of Corollary 2.



2 Admissible solutions

At least formally, the notion of admissible solutions introduced by Definition 1 is
consistent with equations (1), (2): As a matter of fact, a simple computation shows
that if (p, 0) is a smooth solution of (1)-(2) then for any function ¢ we have:

Or(p9(60)) + divipud(6)) = 216/(9)|D(w)[> + A¢'(9)|divul?
—Rpf¢' (0)divu + div(kV¢(8))
#"(0)k|VO|*.
Integrating with respect to x (assuming that all integrations are valid) and using

the boundary conditions (5), we immediately deduce that (7) holds (with equality)
for any smooth function ¢.

However, the existence of smooth solutions satisfying the necessary integrability
conditions is not known. It is therefore important to check that admissible solutions
actually exist. The system of equations (1)-(2) has been studied in great details by
E. Feireisl in [2, 3]. We recall the following result (see [2]): For all § > 0 and for
some o' > 2, there exists (p, u, ) solution of

Owp +div(pu) =0, (14)
0 (p8) + cpdiv(pu 0)+Rp Odivu + 560 = = 2u|D(w)|? + A|divu|? + div(kV0)(15)
such that the following inequality holds (see [2], Equation (7.97) p. 185):

/ (r+AQuO)ta)dr =21=5) [ [ 5@y D) dodr

t

)/ //\Qh( J\divul? dz dr

(16)
/ / KQH( |V9\2d;z:d7'—|—/ / 5Q;,(0)0° "z dr
< —R/ /p@Qh( Ydivu dx dr + /(p+5)Qh( )(s,x) dz,
s JQ Q
where Qp,(0) = — fo z) dz with h non-increasing function in C2(]0, 00)) such that
0 <h(0) < +oo hmZHJroo h(z) =0 and
B (z) h(z) > 2(W(2))* forall z > 0. (17)

In particular, the function h(z) = %ﬁlzﬁgc satisfies all the conditions (including
(17)), so we deduce that (16) holds with

Qn(0) —{ —In(0+e)+In(e) iff+e<C

—In(C) + In(e) if0+e>C



Taking ¢(0) = Q1(0) + In(C) — In(e) and using the fact that 4 [ p(t,z)dz = 0,
we easily see that (p,u, ) satisfies

/ o+ D16(0)t2)do - | [ 20 - ous @I dedr
—/ /9(1—6))\¢’(9)|divu|2dxd7

t t
"(0)|VO|? dz d 56/ (0)0°  da d
+/S/S2/€¢()1V|x7'+/s/ﬂ¢() rdr
< —R/S /QpHQS (Q)divudxdT—|—/ﬂ(p—|—5)¢(9)(8,1‘) dx,

for any function ¢ of the form

5(0) = [m (eigﬂ =W+

where C' and € are two positive constants.

We stress out the fact that (15) and (18) contain an additional damping term
60" +1 and thus that the solution of Feireisl is not exactly admissible in the sense
of Definition 1. For the sake of clarity, however, we prove our main result without
the damping term, and we show in the last section that this term can be handled
without additional difficulties.

3 Proof of Theorem 1

3.1 Setting of the problem and technical lemmas

The proof of Theorem 1 is inspired by De Giorgi’s method for the regularity of the
solutions of elliptic equations and relies crucially on inequality (7).
We begin by introducing the sequence of real numbers

Cp =e MI-27" yreN,
where M is a positive number to be chosen later (note that limy_,o, Cy = e*M).
We then define the sequences of functions (¢ ¢)ken by

= ()]

The starting point of the proof is the following Lemma:

Lemma 3 Let (T}) be a sequence nonnegative numbers and assume that (p,u,0)
is an admissible solution of (1)-(2). Define

U = T (0
" ne (/ o) dx) +/ / O+¢ Sr)l{ﬂsgck}lD(u)dedt
st “ T JQ 5
g k(6)
Jr[q /Q (6 +¢)2 (0+e<cy 3| VO|" dz
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Then the following inequalities holds for all k € N:
o IfTy, =0 for allk € N, then:

T
0 .
Uke < R/ /071{0+a§ck}|dlvu|dzdt+/ Podk.e(fo) dr.  (19)
0o Jao O0+e¢ Q

o If (Tk)ken is an increasing sequence of positive numbers, then:

T
0

Pre = 0 gret divu| dz dt

e /Tkl/Qpe_i_€ {04e<cyy|divu| do

1 T
+— <(0)dx dt. 20
— /TM/QW’“’ (6) (20)

Note that the right hand side of (19) is bounded by

T
R/ /p|divu|dmdt+/po[ln(l/GO)}erx,
0o Ja Q

and so the assumptions on p, u, pp and 6y in Theorem 1 give the existence of a
constant C independent of € and k such that

Ure <C. (21)

Theorem 1 will be proved by showing that for suitable choices of constant M (in-
dependent on ¢) and sequence (Tj)ken, the sequence (Uy)ren goes to zero as k
goes to infinity. Using the definition of Uy ., this will imply that

O(t,x) +e>e M

and the main theorem will follow since this inequality holds for any € > 0. In order
to establish the convergence to zero of Uy ., we will prove in the next sections that
both terms in the right hand side of (20) can be controlled by U, _ for some
v > 1.

Proof of Lemma 3. The lemma follows directly from (7) (with C = Cy). We
note that:

1
P (0) = 0+ - Lo+e<cuy

v (6) > ;1
ke = (9_’_5)2 {0+e<Ci}-

Integrating (7) with respect to time, we deduce that for all o,¢ such that Tp_1 <
o <T, <t<T, we have

t v(6
Looncoreades [ [ 201, cppwldsds

t
KR
+/ /le{g_i_ssck}‘vepdxds

K 0
< R/ / pr——L{o4e<cpy|divul do ds —|—/ por.e(0)(0, x) dx.
o Jo 0+¢ = Q

7



and thus

[ pc(®)(t.)da + / / 2O 1 4e<ciy| D) de ds

+/T /Q7(0+€)21{9+€§0k}|V9|2dxd5
k
4 0
SR/ /pr1{9+agck}|divu|dxds+/ por.e(0)(o, ) d.
T, ,Jao 0+¢ Q

If T, = 0 for all k, then taking ¢ = 0 and the supremum over ¢t € [T}, T], we
deduce (19). If (Tk)ren is an increasing sequence of positive numbers, then taking
the mean value with respect to o in [Tj_1,Tk], we get:

t v(6
[ooncorades [ [ X1 oD@ deds

K
L/(9+E 1{9+E<Ck}|V9| dx ds
k

)?
T
/p 1{9+5<Ck}|d1vu|dacds
Te_1JQ

1
(0)(s,x) dx ds.
Tk_Tk 1/ 1/p¢k )

Finally, taking the supremum over ¢ € [Ty, T], we deduce (20). O

In the next sections, we will attempt to control the two terms in the right hand
side of (19) and (20) by some power of Uy_1 .. For that purpose, we need the
following technical lemma:

Lemma 4 There exists a constant C' (depending only on Q, T, [, po(z)dx and
ol Lo (0,7,12())) such that, for every function F > 0 with pF € L>(0,T; L*(2))
and VF € L*(0,T; L*(Q)), we have:

I1F(| 20,7508 () < CUIPF || 0,1:1 () + IVF |l £2(0,7;L2(0)))-

Proof. First note that there exists two constants e, C; > 0 (independent of ¢) such
that

Q)| = {zlp(t,z) > e}| = C1.
Indeed, we have:

/on dr = /Qp(t,x) dx < e|Q] + Hp||Loo(L3)|Q(t)|2/37

and so, for € small enough, we can take:

= (fﬂpodxsm)

||p||L°°(L3)

3/2

8



Now, for any fixed time t, we write:

F@llsq < HF(t)—Kl2| [ Ftay

1
+|Q|1/6*/F(t,y)dy
Lo Q] Jo

< HF(t)Iflll/QF(t’y)dy

6
Q)

+]Q|%/6 | F(t,x)dx

R0 Jo T
)

+|Q|~5/6

F(tw)dac—/QF(t,y) dy

12)] Jaw
The first term in the right hand side is bounded by ||V F||2(q) (which is in L*(0,T)
by definition) and by definition of €(t), the second term is bounded by:

|Q|1/6/
F(t,x)d
501 Qp ( 7.%') x7

which lies in L>°(0,T), and therefore in L?(0,T). Finally, the last term can be
written in the following way:

1] /
—_ F(t,x)de — | F(t,y)dy
Q0] Jogy " J FEY)
Si/ [F(t, ) — F(t,y)] dxdy
C1 | Jawxa

<L / \F(t,z) — F(t,y)| d dy,
Cl QAxQ

which is classically bounded by [|[VF|12(q). O

We can now prove the technical lemma which will be essential in the next
sections:

Lemma 5 Ifp1, 1, @ and (B satisfy

6
5a+ 3

Q= >1 and p1 = 1, (22)

F-a’

then there ezist a constant C' depending on the dimension, T, fpo(z) dx > 0 and
HPHLOO(O,T,LS(Q)) such that:

« B Hea B
6% 60,0 (0)2 || s s < CULE +CUP

where LP* LY denotes the space LP'(Ty,, T; L1 (QY))



Proof. Before starting the proof, we observe that (11) yields:

/(9+€) 1{9+E<Ck}|V9|2dx>n/ |V ()| dx

and thus
IV ke (0172 (1 7y x2) < CUke- (23)

Now, we write
0% 61,e(0)° || or Lar < 6% P SO 115 v

S ||(p¢k,e(9))a/ﬁ¢k,€( )1 a/ﬁHLmBquﬁ

B
S () s P P (O (24)

LT a7F LT a/ﬁ)

whenever the coefficients «, (3, p; and ¢; are such that:

1 _e 1-q/8
wB B 6
1 l—a/ﬁ

nB 2

Note that those conditions are equivalent to (22). So in order to conclude, we only
need to control the two norms in the right hand side of (24).

For the first one, using the definition of Uy ., it is readily seen that

1ok, (0)° 2| oo s < URLE. (25)

Next, we note that

1—a/B

T 2/6 pl
N (] [ l/T (/ ¢k,5<e>6dx> dt]

1
165, O)l 1200 1o o)

and Lemma 4 yields:

16k, (O)| 21,7, 5(02)) < C (lpdke (O)| 21 7520 (2)) + IV ke (0) | L2 (3 7y x 2 ) -

and so

60O 2(r, r500 < CIT0O) |2, 110 +C [ p0c(6) o
Q
Finally (23) and the definition of Uy . leads to

||¢)k,€(9)||2L2(Tk,T,L6(Q)) < CUg,e + CU;iE. (26)

10



We deduce

1—a/B

v, +0ou M. (27)

IN

16x,(6)' /7]

L1- 04/5 L1- a/B
We can now conclude, since (24), together with (25) and (27), yields:
Bta

o 1—a/B B Era
16°600)" s sn < € (UF, (U 40177) ) < o0 v cul

O

3.2 Control of the pressure term

The next lemma shows that the first term in the right hand side of (19) and (20)
can be controlled by Uj_; . in a nonlinear fashion:

Lemma 6 If p € L(0,T;L"(Q)) for some p > 3, then there exists v > 1 and
B € (0,1) such that:

R/T / 4 |divu| dzdt < 1/T vi0) 4 |D(u)|? dx dt
Th—1 szp9+5 (0o} ~ 2)p_, Jab+e foresc)

Cr—1
A

-8
+C [ln } U,:_LE.

Proof. Cauchy-Schwarz and Young’s inequality yield:
! 0 divu|dz d 1 D(u)|? dz d
R g 1fo4e<c,y|divul de dt 5 1{6+5<Ck}| (w)|” dx dt
T, ,Jao 0+¢ Th1
+C/ / 1{9+€<Ck}p dx dt
Ti-1
1 v
= —21 D(u)|* dx dt
2/Tk_1/99+5 (01220 D) do

T
+C/ /1{9+Egck}p2dl‘dt,
Tie_1 JQ

where we have used Hypothesis (10) in the last inequality. Next, we note that when
0 +e < Cy , we have ¢p_1 () > In =5+ C" L. It follows that

IN

IN

6%71 -0 8
1{9+6§Ck}§ In Ch ¢k71,€(0)

11



for any 8 > 0. Using Lemma 5, we deduce:

T r Ck:—l 1-8 T
/ / Lotescyyp’dudt < |ln—5 / / PP br1,e(0)° da dt
Ti—1JQ L k] Tr—1JQ

[ Ck‘fl -7 —a a

S In C ||p2 ||LP/1L‘1£||p ¢k71,€(9)5|‘lﬂ’1 (Lav)

k]

[ Cra] - 2—a o8 B

S ln Ck; ||p ||LP/1 L‘Ii Uk—l,g + Uk;_Lg )

with «, 8, p1 and ¢ satisfying (22) and p}, ¢} the conjugate exponents.
Lemma 6 follows if we can show that we can choose «, 3, p1 and ¢; satisfying
(22) such that

+5
2

v = min( ,0)>1 and ||p2*°‘||Lp/1Lqi <C.

First, we note that if (a4 3)/2 > 1, then (22) implies:

< 1
p1 1—067

<

NS 9011

(which requires « < 1 and 8 > 1). The corresponding conditions for the conjugate
exponents read:

/>1
P o
, 3

hZy0 )

Therefore we need to have

T 2(1—a) 1
29— 3(2—a) 3 @
Hp ”Lp'qui = pra-= dx dt < C,
Tk,1 Q

for some o € (0,1). This is satisfied for some « close enough to 0 since p €
L*>(0,T; L*(Q2)) for some p > 3 . a

3.3 Proof of Theorem 1

We are now ready to complete the proof of Theorem 1. Lemmas 3 and 6 yield:

B
Ue <C {hl Ck_l] Ul e +/ Podr.e(6o) dz, vk >2 (28)
o

Ck

12



if T, = 0 for all k, and

Cr_1 -p 1 T
Uk <C [ln } Ul_,+ 7/ / pbr.e(0)dedt  Vk>2 (29)
Ck Ty —Tk-1 Jr, , Jo

if (Tk)ren is an increasing sequence of positive numbers.
To complete the proof, we will use (28) in the case when the initial datum is
bounded away from zero and (29) in the general case.

3.3.1 Case without initial layer

In this subsection we assume that the initial datum verifies:
Oo(x) > dp > 0.

In that case, we take T}, = 0 for every k and we choose M such that e=M/2 < §.
This implies in particular that

Sre(Bo) =0  VEeN,
for any € > 0. Inequality (28) thus becomes

Ck-71 - U’y
Ck k—1,e°

Uk,s S C |:1n

for some v > 1. Moreover our choice of constants C}, yield:

Cr—1 —k
_ M2

Cy, ’
and thus
1 Cha | ﬁ
Ch MB®
We deduce:
okB -
U, < CWUI%I,E Vk € N.

Since v > 1, it is a classical result that for M large enough (depending only on
Uy and thus independent on €), we have:

kli»H;o Uk,g =0.

In particular, this yields

[ fro

e~M ?
\Y [ln ] dxdt =0,
L

13




and

oM
/p{ln ] dz = 0.
Q 0+e +

The first equality gives (using (11)) that [ln %} is constant in  for all ¢, and the
+

second equality implies that this constant is 0 (unless p(t,-) = 0 which contradicts
the conservation of mass). We deduce that for almost every ¢ € [0,7] and x € R?

we have
O(t,x) +ec>e M,

Since this inequality holds for any ¢ > 0, the theorem follows. [

3.3.2 Case with the time layer

We now remove the assumption that the initial temperature is bounded away from
zero and only assume that the initial entropy is finite, i.e.

/]RS plln(1/600)]+ dz < +oo,

which is enough to guarantee (see (21)) that
UO,E <C <+

with C independent on ¢. Let ¢ be a fixed positive number and set Ty, = to(1—27%).
The only thing left to do is to show that we can control the second term in the
right hand side of (29). For that, we note that we have (using (26)):

5/6

Tk T 1/6
/T /Q pope(0)dudt < /T [ /Q qsk,g(e)ﬁdx] [ /Q p6/51{9+sgck}] dt
k—1 k—1
T 5/3 1/2
||k, (O)]| L2 Lo [/ [/ 06/51{9+agck}] dt]
Te—1 Q

T 5/3 1/2
Tr-1 Q

Moreover, proceeding as in the proof of Lemma 6, we check that when 6 + ¢ < Cy,

we have ¢y_1,(0) > In C(’};l and so

IA

IN

(U,i/ez + ka)

Ch_
Lore<cyy < [hl ékl

:| ) d)k—l,e(e)ay

for any a > 0. We deduce

Tk
[ [oorcoara
Te_1JQ
—%a T 5/3
< (2 +u) [Incg‘l} V [/ p‘i/%k_l,a(e)“dx] dt]
k Te 1 LJO

14
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The last term can be bounded as follows:

5/3 s 2(1-a) 5a/3
6/5 o /5—a
</ P ¢k—1,s(0) dl') < (/ p t-e dJC) </ p(bk_l,s(H) dl‘) .
Q Q Q

If we take o > 3/5, we deduce that there exists positive numbers 1, 32, and v > 1
such that:

_ /Tk / bp(0) da dt < — {1 C’“} Ipll%. L, U
€T n 5] — M
Ty — ot Jr, QP ke ST —Thy Cr PllreerrYi—1.
(30)
with p = 6{5__;‘. Note that for a close to 3/5, we have p close to 3/2 and so
[pllzoerr < C B
Finally, recalling that Cy = e~ M1=2"" and T, = to(1 — 27F), we get:
{1 Ckl]l 2k 1 1 ok
n = — an - = —
k M Ty —Th—1 to
and so (29) and (30) yield
ﬁk v 2[32 ’)’/
Uk5<C Uk 15+Ct MﬂlU Le-
The proof can now be completed as in the case without time initial layer. O

4 Proof of Corollary 2

In this last section, we show how to deal with the temperature damping term which
is necessary in Feireisl’s result to prove the existence of admissible solutions. The
important point is to get estimates that are independent of J, so that the result
holds when passing to the limit § — 0.

We only treat the case without initial layer (the general case is left to the
reader). We thus have ¢y .(6y) = 0 and we can take T, = 0 for all k£ € N. Let
(ps, us, B5) be the solution of (14), (15) satisfying (16). We define:

v (6
Uk = sup (/ (ps + 6)Pr.(05) dw) / 7 ) 1{05+e§ck}|D(ua)|2d$dt
o<t<T \Jo q0s+

1 Os|“ dx dt.
/Tk/ 05+5 {o5+e<Ci |V 512 dx

Using (18), it is readily seen that Lemma 3 with the additional damping term
becomes:

oc+1
Ukes < R/ /Qp506+ 1{96+E<Ck}|dlvu(§|d$dt+5/ ; 95+ 1{06+5<Ck} dx dt.
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Together with Lemma 6, this implies:
ks oc "+1
Ukes < CMﬁUk les T / 0 9 1{05+E<Ck} dx dt. (31)

In order to control the last term in the right hand side, we note that when 05 +¢ <
C, we have (provided that M is large enough, so that Cy < 1):

a'+1
96

Os +¢ —

for all € > 0. Next, we note that when 5 +¢ < Cj , we have ¢_1.(65) > In C(’j,;l .
It follows that

Ck—l - 8
ligs4e<cyy < |In c, Or—1,(05)

for any > 0. Using Lemma 5 with p replaced by p + d, we deduce:

T Co 177 /7
6/ / Ligyre<cpy dudt < 67 {ln : } / /(p+5)a¢k—1,5(95)ﬁ dx dt
0 Jo Q

C
61_(1{ é’kl} TP |( (04 6)* r—1,-(65)

_ Cra] 77 (o0
051 o [1n Ck :| ka175_’6+U571.’6,6 ’

IN

IN

M o1

IN

with «, 8, p1 and ¢y satisfying (22) and p}, ¢ the conjugate exponents, with p; > 1
and q; > 1 close to 1. As in Section 3.2, we can choose @ < 1 and 8 > 1 such that

a+ 0
2

B)>1

~ = min(

if we take p; and g close enough to 1. Since §'~* < 1, we deduce
2kB
Ukvf»‘; < CMgUk 1,6

where all the constants are independent of § (and ¢). As in the previous section,
this implies that there exists a constant ny > 0 (independent on §) such that:

0s(t,z) = nr, 0<t<T, zefl
Passing to the limit with respect to d, this shows that Feireisl’s solution to (1), (2),
(4) satisfies 0 > nr > 0in Q x [0,7]. O
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