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Abstract: We consider the full system of compressible Navier-Stokes equations for
heat conducting fluid. We show that the temperature is uniformly positive for t ≥ t0
(for any t0 > 0) for any solutions with finite initial entropy. The assumptions on
the viscosity and conductivity coefficients are minimal (for instance, the solutions
constructed by E. Feireisl in [2] verify all the requirements).

1 Introduction and main result

In this article, we consider ρ(t, x) ≥ 0, θ(t, x) ≥ 0 and u(t, x) ∈ R3 solutions of the
following system of equations:

∂tρ + div(ρ u) = 0, (1)

cv∂t(ρθ) + cvdiv(ρu θ) + Rρ θdivu = 2µ|D(u)|2 + λ|divu|2 + div(κ∇θ) (2)

for (t, x) ∈ R+×Ω. Those equations are the usual continuity and temperature equa-
tions of the full system of compressible Navier-Stokes equations (for heat conducting
fluids) when the specific heat at constant volume cv is assumed to be constant and
for a pressure law of the form

P (ρ, θ) = pe(ρ) + Rρθ.

We recall that ρ denotes the density of the fuid, u its velocity field and θ its
temperature. The strain tensor in (1)-(4) is given by

D(u) =
1
2
[∇u + t∇u],
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and µ and λ are the two Lamé viscosity coefficients (possibly depending on the
temperature θ or on the density ρ) satisfying

µ > 0 2µ + 3λ ≥ 0 (3)

(µ is sometime called the shear viscosity of the fluid, while λ is usually referred to as
the second viscosity coefficient). The coefficient κ ≥ 0 in (2) is the heat conductivity
coefficient. Without loss of generality, we can take cv = 1 (by rescaling the other
coefficients).

Those equations are usually supplemented by the momentum equation:

∂t(ρu) + div(ρu⊗ u) +∇P (ρ, θ)− div(2µD(u))−∇(λdivu) = 0. (4)

Altogether, Equations (1), (2) and (4) describe the motion of a general viscous,
heat conducting and compressible fluid. We want to emphasis however that for the
purpose of this paper we will not need equation (4).

The equations (1) and (2) are set in a smooth bounded subset Ω of R3, and we
consider the following boundary conditions:

u(t, x) = 0, ∇θ(t, x) · n(x) = 0 on ∂Ω (5)

where n denotes the exterior normal vector to ∂Ω.

The existence of solutions for the full system of Navier-Stokes equations for com-
pressible fluids (1), (2) and (4) is a very delicate problem which has been addressed
in particular by E. Feireisl in [2, 3]. We will not discuss this issue in this paper. In-
stead, we are interested in the properties of the temperature θ(t, x) (assuming that
it exists). More precisely, we will show that under reasonable assumptions on the
initial data (which imply in particular that the initial temperature may not vanish
on an open set), the temperature cannot vanish for positive time and is uniformly
bounded away from zero on any time interval [t0, T ] with T > t0 > 0.

The proof is inspired by De Giorgi’s proof of Hölder regularity for the solutions
of elliptic equation with discontinuous coefficients. Similar arguments was used in
the context of Reaction-Diffusion systems by Alikakos [1]. In fluid mechanics, the
method is used in [5] to obtain partial regularity results for incompressible Navier-
Stokes system of equations, and in [4] to obtain L∞ bounds on the velocity for
the isentropic compressible Navier-Stokes system of equations. The method relies
mainly on the energy (or entropy) inequality for such equations.

We now have to make precise the notion of solutions we are going to use. As it
turns out, the proof only makes use of the fact that solutions of (1)-(2) satisfy (at
least formally) the following inequality:

d

dt

∫
Ω

ρφ(θ) dx−
∫

Ω

2µφ′(θ)|D(u)|2 dx−
∫

Ω

λφ′(θ)|divu|2 dx

+
∫

Ω

κφ′′(θ)|∇θ|2 dx ≤ −R

∫
Ω

ρθφ′(θ)divu dx

(6)
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for some appropriate functions φ. We thus give the following definition:

Definition 1 We say that (ρ, u, θ) is an admissible solution of (1)-(2) if the
following inequality holds∫

Ω

ρφ(θ)(t, x) dx−
∫ t

s

∫
Ω

2µφ′(θ)|D(u)|2 dx dτ −
∫ t

s

∫
Ω

λφ′(θ)|divu|2 dx dτ

+
∫ t

s

∫
Ω

κφ′′(θ)|∇θ|2 dx dτ ≤ −R

∫ t

s

∫
Ω

ρθφ′(θ)divu dx dτ +
∫

Ω

ρφ(θ)(s, x) dx,

(7)
for any function φ of the form

φ(θ) =
[
ln

(
C

θ + ε

)]
+

= [lnC − ln(θ + ε)]+,

where C and ε are two positive constants.

We stress out the fact that (ρ, u, θ) do not need to satisfy (1)-(2) even in some
very weak sense to be admissible in the sense of this definition. In section 2, we
will prove that smooth solutions of (1)-(2) satisfies (7). More importantly, we will
check that the method can be applied to the ”variational” solutions constructed
by E. Feireisl in [2]. Strictly speaking, those ”variational” solutions are not known
to satisfy inequalities (7). But in [2] (Equation (7.97) page 185), it is shown that
there exists an approximated family of solution (ρδ, uδ, θδ) satisfying:∫

Ω

(ρδ + δ)φ(θδ)(t, x) dx−
∫ t

s

∫
Ω

2(1− δ)µφ′(θδ)|D(uδ)|2 dx dτ

−
∫ t

s

∫
Ω

λ(1− δ)φ′(θδ)|divuδ|2 dx dτ +
∫ t

s

∫
Ω

κφ′′(θδ)|∇θδ|2 dx dτ

≤ −R

∫ t

s

∫
Ω

ρθδφ
′(θδ)divuδ dx dτ +

∫
Ω

(δ + ρδ)φ(θδ)(s, x)

−δ

∫ t

s

∫
Ω

θα′+1
δ φ′(θδ) dx dτ,

(8)

for a given α′ ≥ 2 and any function φ of the form

φ(θ) =
[
ln

(
C

θ + ε

)]
+

= [lnC − ln(θ + ε)]+,

where C and ε are two positive constants independent on δ. This inequality is even
better than (7) (since there is no problem close to the vacuum ρ = 0), except for
the damping term of the temperature of the form δθα′+1. We will see in the last
section of this paper that this damping term can be dealt with and thus that our
result holds for Feireisl’s solutions. The important point will be that we obtain an
estimate for θδ which is independent of δ, and is thus satisfied by limδ→0 θδ.

We can now state our main result:
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Theorem 1 Assume that the coefficients µ, λ and κ (which may depend on ρ or
θ) satisfies

2µ + 3λ ≥ ν(θ) > 0 for all θ, (9)
ν(θ) ≥ Cθ for small θ, (10)
κ(θ) ≥ κ > 0 for small θ, (11)

for some function ν(θ) and constant κ.
Let (ρ, u, θ) be an admissible solution of (1)-(2) such that

ρ ∈ L∞(0, T ;Lp(Ω)) for some p > 3,

and
u ∈ L2(0, T ;H1

0 (Ω)).

Assume moreover that (ρ0, θ0) satisfy∫
Ω

ρ0[ln(1/θ0)]+ dx < +∞. (12)

Then, for every T > t0 > 0, there exists a constant δt0,T > 0 such that:

θ(s, x) ≥ δt0,T for all s ∈ (t0, T ) and almost all x ∈ Ω.

Furthermore, if there exists a constant δ0 > 0 such that θ0(x) ≥ δ0 for almost every
x ∈ Ω, then the constant δt0,T does not depend on t0.

We will see in the next section that the assumptions on (ρ, u, θ) are satisfied by the
”variational” solutions constructed by Feireisl [3, 2] when the pressure law is given
by:

P (ρ, θ) = Cργ + Rρ θ, with γ > 3. (13)

This leads to the following corollary:

Corollary 2 Let (ρ, u, θ) be a solution a la Feireisl of the Navier-Stokes system of
equations (1)-(4). Assume that µ, λ and κ satisfy (9)-(11) and that the pressure
law is given by (13).

If the initial data (ρ0, u0, θ0) has finite energy and finite physical entropy, then
for every T > t0 > 0, there exists a constant δt0,T > 0 such that:

θ(s, x) ≥ δt0,T ,

for every s ∈ (t0, T ) and almost every x ∈ Ω.

The paper is organized as follows: In section 2, we check that smooth integrable
solutions of (1)-(2), as well as Feireisl’s solutions are admissible in the sense of
Definition 1. Section 3 is devoted to the proof of Theorem 1. In the last section,
we complete the proof of Corollary 2.
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2 Admissible solutions

At least formally, the notion of admissible solutions introduced by Definition 1 is
consistent with equations (1), (2): As a matter of fact, a simple computation shows
that if (ρ, θ) is a smooth solution of (1)-(2) then for any function φ we have:

∂t(ρφ(θ)) + div(ρuφ(θ)) = 2µφ′(θ)|D(u)|2 + λφ′(θ)|divu|2

−Rρθφ′(θ)divu + div(κ∇φ(θ))

−φ′′(θ)κ|∇θ|2.

Integrating with respect to x (assuming that all integrations are valid) and using
the boundary conditions (5), we immediately deduce that (7) holds (with equality)
for any smooth function φ.

However, the existence of smooth solutions satisfying the necessary integrability
conditions is not known. It is therefore important to check that admissible solutions
actually exist. The system of equations (1)-(2) has been studied in great details by
E. Feireisl in [2, 3]. We recall the following result (see [2]): For all δ > 0 and for
some α′ > 2, there exists (ρ, u, θ) solution of

∂tρ + div(ρ u) = 0, (14)

cv∂t(ρθ) + cvdiv(ρu θ)+Rρ θdivu + δθα′+1 = 2µ|D(u)|2 + λ|divu|2 + div(κ∇θ)(15)

such that the following inequality holds (see [2], Equation (7.97) p. 185):∫
Ω

(ρ + δ)Qh(θ)(t, x) dx− 2(1− δ)
∫ t

s

∫
Ω

µQ′
h(θ)|D(u)|2 dx dτ

−(1− δ)
∫ t

s

∫
Ω

λQ′
h(θ)|divu|2 dx dτ

+
∫ t

s

∫
Ω

κQ′′
h(θ)|∇θ|2 dx dτ +

∫ t

s

∫
Ω

δQ′
h(θ)θα′+1 dx dτ

≤ −R

∫ t

s

∫
Ω

ρθQ′
h(θ)divu dx dτ +

∫
Ω

(ρ + δ)Qh(θ)(s, x) dx,

(16)

where Qh(θ) = −
∫ θ

0
h(z) dz with h non-increasing function in C2([0,∞)) such that

0 ≤ h(0) < +∞, limz→+∞ h(z) = 0 and

h′′(z) h(z) ≥ 2(h′(z))2 for all z ≥ 0. (17)

In particular, the function h(z) = 1
z+ε1z+ε≤C satisfies all the conditions (including

(17)), so we deduce that (16) holds with

Qh(θ) =

{
− ln(θ + ε) + ln(ε) if θ + ε ≤ C

− ln(C) + ln(ε) if θ + ε ≥ C
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Taking φ(θ) = Qh(θ) + ln(C) − ln(ε) and using the fact that d
dt

∫
Ω

ρ(t, x) dx = 0,
we easily see that (ρ, u, θ) satisfies∫

Ω

(ρ + δ)φ(θ)(t, x) dx−
∫ t

s

∫
Ω

2(1− δ)µφ′(θ)|D(u)|2 dx dτ

−
∫ t

s

∫
Ω

(1− δ)λφ′(θ)|divu|2 dx dτ

+
∫ t

s

∫
Ω

κφ′′(θ)|∇θ|2 dx dτ +
∫ t

s

∫
Ω

δφ′(θ)θα′+1 dx dτ

≤ −R

∫ t

s

∫
Ω

ρθφ′(θ)divu dx dτ +
∫

Ω

(ρ + δ)φ(θ)(s, x) dx,

(18)

for any function φ of the form

φ(θ) =
[
ln

(
C

θ + ε

)]
+

= [lnC − ln(θ + ε)]+.

where C and ε are two positive constants.
We stress out the fact that (15) and (18) contain an additional damping term

δθα′+1 and thus that the solution of Feireisl is not exactly admissible in the sense
of Definition 1. For the sake of clarity, however, we prove our main result without
the damping term, and we show in the last section that this term can be handled
without additional difficulties.

3 Proof of Theorem 1

3.1 Setting of the problem and technical lemmas

The proof of Theorem 1 is inspired by De Giorgi’s method for the regularity of the
solutions of elliptic equations and relies crucially on inequality (7).

We begin by introducing the sequence of real numbers

Ck = e−M [1−2−k], ∀k ∈ N,

where M is a positive number to be chosen later (note that limk→∞ Ck = e−M ).
We then define the sequences of functions (φk,ε)k∈N by

φk,ε(θ) =
[
ln

(
Ck

θ + ε

)]
+

.

The starting point of the proof is the following Lemma:

Lemma 3 Let (Tk) be a sequence nonnegative numbers and assume that (ρ, u, θ)
is an admissible solution of (1)-(2). Define

Uk,ε := sup
Tk≤t≤T

(∫
Ω

ρφk,ε(θ) dx

)
+

∫ T

Tk

∫
Ω

ν(θ)
θ + ε

1{θ+ε≤Ck}|D(u)|2 dx dt

+
∫ T

Tk

∫
Ω

κ(θ)
(θ + ε)2

1{θ+ε≤Ck}|∇θ|2 dx dt.
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Then the following inequalities holds for all k ∈ N:

• If Tk = 0 for all k ∈ N, then:

Uk,ε ≤ R

∫ T

0

∫
Ω

ρ
θ

θ + ε
1{θ+ε≤Ck}|divu| dx dt +

∫
Ω

ρ0φk,ε(θ0) dx. (19)

• If (Tk)k∈N is an increasing sequence of positive numbers, then:

Uk,ε ≤ R

∫ T

Tk−1

∫
Ω

ρ
θ

θ + ε
1{θ+ε≤Ck}|divu| dx dt

+
1

Tk − Tk−1

∫ Tk

Tk−1

∫
Ω

ρφk,ε(θ) dx dt. (20)

Note that the right hand side of (19) is bounded by

R

∫ T

0

∫
Ω

ρ |divu| dx dt +
∫

Ω

ρ0[ln(1/θ0)]+ dx,

and so the assumptions on ρ, u, ρ0 and θ0 in Theorem 1 give the existence of a
constant C independent of ε and k such that

Uk,ε ≤ C. (21)

Theorem 1 will be proved by showing that for suitable choices of constant M (in-
dependent on ε) and sequence (Tk)k∈N, the sequence (Uk,ε)k∈N goes to zero as k
goes to infinity. Using the definition of Uk,ε, this will imply that

θ(t, x) + ε ≥ e−M

and the main theorem will follow since this inequality holds for any ε > 0. In order
to establish the convergence to zero of Uk,ε, we will prove in the next sections that
both terms in the right hand side of (20) can be controlled by Uγ

k−1,ε for some
γ > 1.

Proof of Lemma 3. The lemma follows directly from (7) (with C = Ck). We
note that:

φ′k,ε(θ) = − 1
θ + ε

1{θ+ε≤Ck}

φ′′k,ε(θ) ≥
1

(θ + ε)2
1{θ+ε≤Ck}.

Integrating (7) with respect to time, we deduce that for all σ, t such that Tk−1 ≤
σ ≤ Tk ≤ t ≤ T , we have∫

Ω

ρφk,ε(θ)(t, x) dx +
∫ t

σ

∫
Ω

ν(θ)
θ + ε

1{θ+ε≤Ck}|D(u)|2 dx ds

+
∫ t

σ

∫
Ω

κ

(θ + ε)2
1{θ+ε≤Ck}|∇θ|2 dx ds

≤ R

∫ t

σ

∫
Ω

ρ
θ

θ + ε
1{θ+ε≤Ck}|divu| dx ds +

∫
Ω

ρφk,ε(θ)(σ, x) dx.
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and thus∫
Ω

ρφk,ε(θ)(t, x) dx +
∫ t

Tk

∫
Ω

ν(θ)
θ + ε

1{θ+ε≤Ck}|D(u)|2 dx ds

+
∫ t

Tk

∫
Ω

κ

(θ + ε)2
1{θ+ε≤Ck}|∇θ|2 dx ds

≤ R

∫ T

Tk−1

∫
Ω

ρ
θ

θ + ε
1{θ+ε≤Ck}|divu| dx ds +

∫
Ω

ρφk,ε(θ)(σ, x) dx.

If Tk = 0 for all k, then taking σ = 0 and the supremum over t ∈ [Tk, T ], we
deduce (19). If (Tk)k∈N is an increasing sequence of positive numbers, then taking
the mean value with respect to σ in [Tk−1, Tk], we get:∫

Ω

ρφk,ε(θ)(t, x) dx +
∫ t

Tk

∫
Ω

ν(θ)
θ + ε

1{θ+ε≤Ck}|D(u)|2 dx ds

+
∫ t

Tk

∫
Ω

κ

(θ + ε)2
1{θ+ε≤Ck}|∇θ|2 dx ds

≤ R

∫ T

Tk−1

∫
Ω

ρ
θ

θ + ε
1{θ+ε≤Ck}|divu| dx ds

+
1

Tk − Tk−1

∫ Tk

Tk−1

∫
Ω

ρφk,ε(θ)(s, x) dx ds.

Finally, taking the supremum over t ∈ [Tk, T ], we deduce (20).

In the next sections, we will attempt to control the two terms in the right hand
side of (19) and (20) by some power of Uk−1,ε. For that purpose, we need the
following technical lemma:

Lemma 4 There exists a constant C (depending only on Ω, T ,
∫
Ω

ρ0(x) dx and
‖ρ‖L∞(0,T,L3(Ω))) such that, for every function F ≥ 0 with ρF ∈ L∞(0, T ;L1(Ω))
and ∇F ∈ L2(0, T ;L2(Ω)), we have:

‖F‖L2(0,T ;L6(Ω)) ≤ C(‖ρF‖L∞(0,T ;L1(Ω)) + ‖∇F‖L2(0,T ;L2(Ω))).

Proof. First note that there exists two constants ε, C1 > 0 (independent of t) such
that

|Ω(t)| = |{x|ρ(t, x) > ε}| ≥ C1.

Indeed, we have:∫
Ω

ρ0 dx =
∫

Ω

ρ(t, x) dx ≤ ε|Ω|+ ‖ρ‖L∞(L3)|Ω(t)|2/3,

and so, for ε small enough, we can take:

C1 =
(∫

Ω
ρ0 dx− ε|Ω|
‖ρ‖L∞(L3)

)3/2

.
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Now, for any fixed time t, we write:

‖F (t)‖L6(Ω) ≤
∥∥∥∥F (t)− 1

|Ω|

∫
Ω

F (t, y) dy

∥∥∥∥
L6

+ |Ω|1/6 1
|Ω|

∫
Ω

F (t, y) dy

≤
∥∥∥∥F (t)− 1

|Ω|

∫
Ω

F (t, y) dy

∥∥∥∥
L6

+|Ω|−5/6 |Ω|
|Ω(t)|

∫
Ω(t)

F (t, x) dx

+|Ω|−5/6

∣∣∣∣∣ |Ω|
|Ω(t)|

∫
Ω(t)

F (t, x) dx−
∫

Ω

F (t, y) dy

∣∣∣∣∣
The first term in the right hand side is bounded by ‖∇F‖L2(Ω) (which is in L2(0, T )
by definition) and by definition of Ω(t), the second term is bounded by:

|Ω|1/6

εC1

∫
Ω

ρF (t, x) dx,

which lies in L∞(0, T ), and therefore in L2(0, T ). Finally, the last term can be
written in the following way:∣∣∣∣∣ |Ω|

|Ω(t)|

∫
Ω(t)

F (t, x) dx−
∫

Ω

F (t, y) dy

∣∣∣∣∣
≤ 1

C1

∣∣∣∣∣
∫

Ω(t)×Ω

[F (t, x)− F (t, y)] dx dy

∣∣∣∣∣
≤ 1

C1

∫
Ω×Ω

|F (t, x)− F (t, y)| dx dy,

which is classically bounded by ‖∇F‖L2(Ω).

We can now prove the technical lemma which will be essential in the next
sections:

Lemma 5 If p1, q1, α and β satisfy

q1 =
6

5α + β
> 1 and p1 =

2
β − α

> 1, (22)

then there exist a constant C depending on the dimension, T ,
∫

ρ0(x) dx > 0 and
||ρ||L∞(0,T,L3(Ω)) such that:

‖ραφk,ε(θ)β‖Lp1Lq1 ≤ CU
β+α

2
k,ε + CUβ

k,ε,

where Lp1Lq1 denotes the space Lp1(Tk, T ;Lq1(Ω))
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Proof. Before starting the proof, we observe that (11) yields:∫
Ω

κ

(θ + ε)2
1{θ+ε≤Ck}|∇θ|2 dx ≥ κ

∫
Ω

|∇φk,ε(θ)|2 dx

and thus
‖∇φk,ε(θ)‖2

L2((Tk,T )×Ω) ≤ CUk,ε. (23)

Now, we write

‖ραφk,ε(θ)β‖Lp1Lq1 ≤‖ρα/βφk,ε(θ)‖β
Lp1βLq1β

≤‖(ρφk,ε(θ))α/βφk,ε(θ)1−α/β‖β
Lp1βLq1β

≤
(
‖(ρφk,ε(θ))α/β‖L∞Lβ/α‖φk,ε(θ)1−α/β‖

L
2

1−α/β L
6

1−α/β

)β

(24)

whenever the coefficients α, β, p1 and q1 are such that:

1
q1β

=
α

β
+

1− α/β

6
,

1
p1β

=
1− α/β

2
.

Note that those conditions are equivalent to (22). So in order to conclude, we only
need to control the two norms in the right hand side of (24).

For the first one, using the definition of Uk,ε, it is readily seen that

‖(ρφk,ε(θ))α/β‖L∞Lβ/α ≤ U
α/β
k,ε . (25)

Next, we note that

‖φk,ε(θ)1−α/β‖
L

2
1−α/β L

6
1−α/β

=

[∫ T

Tk

(∫
Ω

φk,ε(θ)6 dx

)2/6

dt

] 1−α/β
2

= ‖φk,ε(θ)‖1−α/β
L2(Tk,T,L6(Ω))

and Lemma 4 yields:

‖φk,ε(θ)‖L2(Tk,T,L6(Ω)) ≤ C
(
‖ρφk,ε(θ)‖L2(Tk,T ;L1(Ω)) + ‖∇φk,ε(θ)‖L2((Tk,T )×Ω)

)
.

and so

‖φk,ε(θ)‖L2(Tk,T,L6(Ω)) ≤ C‖∇φk,ε(θ)‖L2((Tk,T )×Ω) + C

∫
Ω

ρ φk,ε(θ) dx.

Finally (23) and the definition of Uk,ε leads to

‖φk,ε(θ)‖2
L2(Tk,T,L6(Ω)) ≤ CUk,ε + CU2

k,ε. (26)
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We deduce

‖φk,ε(θ)1−α/β‖
L

2
1−α/β L

6
1−α/β

≤ CU
1−α/β

2
k,ε + CU

1−α/β
k,ε . (27)

We can now conclude, since (24), together with (25) and (27), yields:

‖ραφk,ε(θ)β‖Lp1Lq1 ≤ C

(
U

α
β

k,ε

(
U

1−α/β
2

k,ε + U
1−α/β
k,ε

))β

≤ CU
β+α

2
k,ε + CUβ

k,ε.

3.2 Control of the pressure term

The next lemma shows that the first term in the right hand side of (19) and (20)
can be controlled by Uk−1,ε in a nonlinear fashion:

Lemma 6 If ρ ∈ L∞(0, T ;Lp(Ω)) for some p > 3, then there exists γ > 1 and
β ∈ (0, 1) such that:

R

∫ T

Tk−1

∫
Ω

ρ
θ

θ + ε
1{θ+ε≤Ck}|divu| dx dt ≤ 1

2

∫ T

Tk−1

∫
Ω

ν(θ)
θ + ε

1{θ+ε≤Ck}|D(u)|2 dx dt

+C

[
ln

Ck−1

Ck

]−β

Uγ
k−1,ε.

Proof. Cauchy-Schwarz and Young’s inequality yield:

R

∫ T

Tk−1

∫
Ω

ρ
θ

θ + ε
1{θ+ε≤Ck}|divu| dx dt ≤ 1

2

∫ T

Tk−1

∫
Ω

ν(θ)
θ + ε

1{θ+ε≤Ck}|D(u)|2 dx dt

+C

∫ T

Tk−1

∫
Ω

θ

ν(θ)
1{θ+ε≤Ck}ρ

2 dx dt

≤ 1
2

∫ T

Tk−1

∫
Ω

ν(θ)
θ + ε

1{θ+ε≤Ck}|D(u)|2 dx dt

+C

∫ T

Tk−1

∫
Ω

1{θ+ε≤Ck}ρ
2 dx dt,

where we have used Hypothesis (10) in the last inequality. Next, we note that when
θ + ε ≤ Ck , we have φk−1,ε(θ) ≥ ln Ck−1

Ck
. It follows that

1{θ+ε≤Ck} ≤
[
ln

Ck−1

Ck

]−β

φk−1,ε(θ)β

11



for any β > 0. Using Lemma 5, we deduce:∫ T

Tk−1

∫
Ω

1{θ+ε≤Ck}ρ
2 dx dt ≤

[
ln

Ck−1

Ck

]−β ∫ T

Tk−1

∫
Ω

ρ2−αραφk−1,ε(θ)β dx dt

≤
[
ln

Ck−1

Ck

]−β

‖ρ2−α‖
Lp′1Lq′1

‖ραφk−1,ε(θ)β‖Lp1 (Lq1 )

≤
[
ln

Ck−1

Ck

]−β

‖ρ2−α‖
Lp′1Lq′1

(
U

α+β
2

k−1,ε + Uβ
k−1,ε

)
,

with α, β, p1 and q1 satisfying (22) and p′1, q′1 the conjugate exponents.
Lemma 6 follows if we can show that we can choose α, β, p1 and q1 satisfying

(22) such that

γ = min(
α + β

2
, β) > 1 and ‖ρ2−α‖

Lp′1Lq′1
≤ C.

First, we note that if (α + β)/2 > 1, then (22) implies:

p1 <
1

1− α
,

q1 <
3

2α + 1

(which requires α < 1 and β > 1). The corresponding conditions for the conjugate
exponents read:

p′1 >
1
α

q′1 >
3

2(1− α)
.

Therefore we need to have

‖ρ2−α‖
Lp′1Lq′1

=

∫ T

Tk−1

(∫
Ω

ρ
3(2−α)
2(1−α) dx

) 2(1−α)
3

1
α

dt

α

< C,

for some α ∈ (0, 1). This is satisfied for some α close enough to 0 since ρ ∈
L∞(0, T ;Lp(Ω)) for some p > 3 .

3.3 Proof of Theorem 1

We are now ready to complete the proof of Theorem 1. Lemmas 3 and 6 yield:

Uk,ε ≤ C

[
ln

Ck−1

Ck

]−β

Uγ
k−1,ε +

∫
Ω

ρ0φk,ε(θ0) dx, ∀k ≥ 2 (28)

12



if Tk = 0 for all k, and

Uk,ε ≤ C

[
ln

Ck−1

Ck

]−β

Uγ
k−1 +

1
Tk − Tk−1

∫ Tk

Tk−1

∫
Ω

ρφk,ε(θ) dx dt ∀k ≥ 2 (29)

if (Tk)k∈N is an increasing sequence of positive numbers.
To complete the proof, we will use (28) in the case when the initial datum is

bounded away from zero and (29) in the general case.

3.3.1 Case without initial layer

In this subsection we assume that the initial datum verifies:

θ0(x) ≥ δ0 > 0.

In that case, we take Tk = 0 for every k and we choose M such that e−M/2 < δ0.
This implies in particular that

φk,ε(θ0) = 0 ∀k ∈ N,

for any ε > 0. Inequality (28) thus becomes

Uk,ε ≤ C

[
ln

Ck−1

Ck

]−β

Uγ
k−1,ε,

for some γ > 1. Moreover our choice of constants Ck yield:

Ck−1

Ck
= eM2−k

,

and thus [
ln

Ck−1

Ck

]−β

=
2kβ

Mβ
.

We deduce:

Uk,ε ≤ C
2kβ

Mβ
Uγ

k−1,ε ∀k ∈ N.

Since γ > 1, it is a classical result that for M large enough (depending only on
U0 and thus independent on ε), we have:

lim
k→∞

Uk,ε = 0.

In particular, this yields

∫ T

0

∫
Ω

κ(θ)

∣∣∣∣∣∇
[
ln

e−M

θ + ε

]
+

∣∣∣∣∣
2

dx dt = 0,

13



and ∫
Ω

ρ

[
ln

e−M

θ + ε

]
+

dx = 0.

The first equality gives (using (11)) that
[
ln e−M

θ+ε

]
+

is constant in Ω for all t, and the

second equality implies that this constant is 0 (unless ρ(t, ·) = 0 which contradicts
the conservation of mass). We deduce that for almost every t ∈ [0, T ] and x ∈ R3

we have
θ(t, x) + ε ≥ e−M .

Since this inequality holds for any ε > 0, the theorem follows.

3.3.2 Case with the time layer

We now remove the assumption that the initial temperature is bounded away from
zero and only assume that the initial entropy is finite, i.e.∫

R3
ρ[ln(1/θ0)]+ dx < +∞,

which is enough to guarantee (see (21)) that

U0,ε ≤ C < +∞

with C independent on ε. Let t0 be a fixed positive number and set Tk = t0(1−2−k).
The only thing left to do is to show that we can control the second term in the

right hand side of (29). For that, we note that we have (using (26)):∫ Tk

Tk−1

∫
Ω

ρφk,ε(θ) dx dt ≤
∫ T

Tk−1

[∫
Ω

φk,ε(θ)6 dx

]1/6 [∫
Ω

ρ6/51{θ+ε≤Ck}

]5/6

dt

≤ ||φk,ε(θ)||L2L6

[∫ T

Tk−1

[∫
Ω

ρ6/51{θ+ε≤Ck}

]5/3

dt

]1/2

≤
(
U

1/2
k,ε + Uk,ε

) [∫ T

Tk−1

[∫
Ω

ρ6/51{θ+ε≤Ck}

]5/3

dt

]1/2

.

Moreover, proceeding as in the proof of Lemma 6, we check that when θ + ε ≤ Ck,
we have φk−1,ε(θ) ≥ ln Ck−1

Ck
and so

1{θ+ε≤Ck} ≤
[
ln

Ck−1

Ck

]−α

φk−1,ε(θ)α,

for any α > 0. We deduce∫ Tk

Tk−1

∫
Ω

ρφk,ε(θ) dx dt

≤
(
U

1/2
k,ε + Uk,ε

) [
ln

Ck−1

Ck

]− 5
6 α

[∫ T

Tk−1

[∫
Ω

ρ6/5φk−1,ε(θ)α dx

]5/3

dt

]1/2

.
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The last term can be bounded as follows:(∫
Ω

ρ6/5φk−1,ε(θ)α dx

)5/3

≤
(∫

Ω

ρ
6/5−α
1−α dx

) 5
3 (1−α) (∫

Ω

ρφk−1,ε(θ) dx

)5α/3

.

If we take α > 3/5, we deduce that there exists positive numbers β1, β2, and γ′ > 1
such that:

1
Tk − Tk−1

∫ Tk

Tk−1

∫
Ω

ρφk,ε(θ) dx dt ≤ 1
Tk − Tk−1

[
ln

Ck−1

Ck

]−β1

‖ρ‖β2
L∞LpUγ′

k−1,ε.

(30)
with p = 6/5−α

1−α . Note that for α close to 3/5, we have p close to 3/2 and so
‖ρ‖L∞Lp < C

Finally, recalling that Ck = e−M [1−2−k] and Tk = t0(1− 2−k), we get:[
ln

Ck−1

Ck

]−1

=
2k

M
and

1
Tk − Tk−1

=
2k

t0

and so (29) and (30) yield

Uk,ε ≤ C
2βk

Mβ
Uγ

k−1,ε + C
2β′2k

t0 Mβ1
Uγ′

k−1,ε.

The proof can now be completed as in the case without time initial layer.

4 Proof of Corollary 2

In this last section, we show how to deal with the temperature damping term which
is necessary in Feireisl’s result to prove the existence of admissible solutions. The
important point is to get estimates that are independent of δ, so that the result
holds when passing to the limit δ → 0.

We only treat the case without initial layer (the general case is left to the
reader). We thus have φk,ε(θ0) = 0 and we can take Tk = 0 for all k ∈ N. Let
(ρδ, uδ, θδ) be the solution of (14), (15) satisfying (16). We define:

Uk,ε,δ := sup
0≤t≤T

(∫
Ω

(ρδ + δ)φk,ε(θδ) dx

)
+

∫ T

0

∫
Ω

ν(θδ)
θδ + ε

1{θδ+ε≤Ck}|D(uδ)|2 dx dt

+
∫ T

Tk

∫
Ω

κ(θδ)
(θδ + ε)2

1{θδ+ε≤Ck}|∇θδ|2 dx dt.

Using (18), it is readily seen that Lemma 3 with the additional damping term
becomes:

Uk,ε,δ ≤ R

∫ T

0

∫
Ω

ρδ
θδ

θδ + ε
1{θδ+ε≤Ck}|divuδ| dx dt + δ

∫ T

0

∫
Ω

θα′+1
δ

θδ + ε
1{θδ+ε≤Ck} dx dt.
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Together with Lemma 6, this implies:

Uk,ε,δ ≤ C
2kβ

Mβ
Uγ

k−1,ε,δ + δ

∫ T

0

∫
Ω

θα′+1
δ

θδ + ε
1{θδ+ε≤Ck} dx dt. (31)

In order to control the last term in the right hand side, we note that when θδ + ε ≤
Ck, we have (provided that M is large enough, so that C0 ≤ 1):

θα′+1
δ

θδ + ε
≤ 1

for all ε > 0. Next, we note that when θδ + ε ≤ Ck , we have φk−1,ε(θδ) ≥ ln Ck−1
Ck

.
It follows that

1{θδ+ε≤Ck} ≤
[
ln

Ck−1

Ck

]−β

φk−1,ε(θδ)β

for any β > 0. Using Lemma 5 with ρ replaced by ρ + δ, we deduce:

δ

∫ T

0

∫
Ω

1{θδ+ε≤Ck} dx dt ≤ δ1−α

[
ln

Ck−1

Ck

]−β ∫ T

0

∫
Ω

(ρ + δ)αφk−1,ε(θδ)β dx dt

≤ δ1−α

[
ln

Ck−1

Ck

]−β

T 1/p′1 |Ω|1/q′1
∥∥(ρ + δ)αφk−1,ε(θδ)β

∥∥
Lp1Lq1

≤ Cδ1−α

[
ln

Ck−1

Ck

]−β (
U

α+β
2

k−1,ε,δ + Uβ
k−1,ε,δ

)
,

with α, β, p1 and q1 satisfying (22) and p′1, q′1 the conjugate exponents, with p1 > 1
and q1 > 1 close to 1. As in Section 3.2, we can choose α < 1 and β > 1 such that

γ = min(
α + β

2
, β) > 1

if we take p1 and q1 close enough to 1. Since δ1−α ≤ 1, we deduce

Uk,ε,δ ≤ C
2kβ

Mβ
Uγ

k−1,ε,δ

where all the constants are independent of δ (and ε). As in the previous section,
this implies that there exists a constant ηT > 0 (independent on δ) such that:

θδ(t, x) ≥ ηT , 0 ≤ t ≤ T, x ∈ Ω.

Passing to the limit with respect to δ, this shows that Feireisl’s solution to (1), (2),
(4) satisfies θ ≥ ηT > 0 in Ω× [0, T ].
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