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ABSTRACT. We study the effect of homogenization on flame propagation in periodic ex-
citable media, when the width of the flame is much smaller thanthe characteristic size of
the heterogeneities.

1. INTRODUCTION

The following equation arises in the modeling of the combustion of a premixed gas
(thermo-diffusive approximation):

(1) ∂tu = ∆u−g(x)βδ(u) x∈ R
n.

The reaction term is given byβδ (s) = 1
δ β ( s

δ ), with δ < 1 and withβ (s) a Lipschitz func-
tion satisfying:

(2)

{

β (s) > 0 if x∈ (0,1), β (s) = 0 otherwise,

M =
∫ 1

0 β (s)ds.

This model is usually refered to as the ignition temperaturemodel. The functiong(x) is
positive, and is related to the combustion rate; it is independent of the space variable when
the media is perfectly homogeneous. In this paper, we assumethat heterogeneities arise in
the premixed gas, over a small scale (of orderε) and in a periodic manner. This amounts
to writing

g(x) = f
( x

ε

)

, with f (x+k) = f (x) ∀k∈ Z
n.

In this framework we can definePulsating Traveling Frontswhich are particular solutions
of (1) satisfying:

(3)

u−→ 0 asx ·e→−∞,
u−→ 1 asx ·e→ +∞,

u(x+k, t) = u

(

x,t − k ·e
cε

)

, ∀k∈ εZ
n,

wheree is a unit vector (direction of propagation). In [2], H. Berestycki and F. Hamel
proved that for anye∈ Sn−1, ε > 0 andδ > 0 there exists a unique realcε,δ (e) and a
unique functionuε,δ (up to a translation in time) solutions of (1,3). Furthermore, they
showed thatcε,δ (e) is positive and thatuε,δ (x,t) is a decreasing function oft.

The realcε,δ is refered to as the effective speed of propagation, while the unit vector
e denotes the direction of propagation. In the present paper we investigate asymptotic
behavior ofcε,δ whenε andδ go to zero.
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It is well known that the limitδ → 0 in (1) gives rise (at least formally) to the free
boundary problem:

uε
t = ∆uε , in {uε > 0},(4)

|∇xu
ε |2 = 2 f (x/ε)M, on ∂{uε > 0}.(5)

On the other side, uniform hölder estimates foruε,δ (see [4]) allow us to prove that when
ε goes to zero withδ fixed, (1) yields:

(6) uδ
t = ∆uδ −〈 f 〉βδ (uδ ),

where〈 f 〉 denotes the average off .
Thus, the limitδ → 0 with ε ≪ δ leads to:

ut = ∆u, in {u > 0},
|∇xu|2 = 2〈 f 〉M, on ∂{u > 0}.

In other words, the asymptotic regime when the size of the heterogeneities is much smaller
than the width of the flame depends on the average value of the reaction rate.

Whenδ andε are comparable, or whenδ ≪ ε (i.e. when the width of the flame is
comparable or much smaller than the size of the heterogeneities), the limitε → 0 corre-
sponds to the homogenization of the free boundary problem (4-5). In this paper, we will
characterize the asymptotic regime whenε ≪ 1, with δ/ε = τ, and we will show that the
limits ε → 0 andδ → 0 do not commute.

Note that similar regime are investigated for the viscositysolutions of the elliptic free
boundary problem in [6] and [7].

The characterization of the effective speed of propagationwas initiated by some nu-
merical results (which we present in the appendix) obtainedfor a one-dimensional front,
which showed that the homogenized speed of propagation for the free boundary problem
depends on the minimum value of the combustion ratef (x) and not on its average.

The numerical computations also suggested the proof: Asε goes to zero, the free bound-
ary motion is given by a step function, the free boundary stopping for a long time where
f reaches its minimum and travelling quickly through the other values. Moreover, while
sticking, the rescaled solution1ε u(εx,ε2t) approaches a solution of the stationary problem,
which in one-dimension, is simply a linear functionγx+ with γ =

√

2inf( f )M.
In higher dimension, a similar behavior is expected, with the linear function being re-

placed by a planelike solution of the stationary problem (a solution that stays at a finite
distance of a plane). Instead of the minimum off , it is the smallest slope of such solutions
that will give the homogenized free boundary condition (andthe homogenized speed of
propagation).

In the next Section, we recall previous results establishedin [8], and we state the main
theorem, the proof of which consists of two steps: In Section3, we show that the ho-
mogenized slope along the free boundary is bounded above by the slope of any planelike
solution of the stationary problem. Then, in Section 4, we construct a planelike solution
with the same slope as the homogenized Pulsating TravellingFront. It follows that the
homogenized slope is equal to the smallest slope among all planelike solutions of the sta-
tionary problem. Finally, Section 5 is devoted to the construction of planelike solutions.
Technical lemmas and numerical simulations are presented in Appendix.

Finally, let us point out that advection phenomena could be taken into account as fol-
lows:

∂tu+ p(x) ·∇xu = ∆u−g(x)βδ(u).
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Whenp(x) = q(x/ε), with q(x) periodic, divergence free and with null average, the results
presented in this paper can be adapted via minor corrections. In particular, the asymptotic
speed and slope along the free boundary are the same with and without the advection term,
whenε andδ go to zero under the conditionδ = τε. Nevertheless, the presence of the
advection term adds a lot of technical (though rather straightforward) details to the proof,
and for the sake of clarity, the authors decided to treat the case whenq = 0.

2. MAIN RESULTS

In this section, we recall previous results and state our main theorem. In what follows,
f (x) satisfies:











f (x+k) = f (x), for all k∈ Z
n.

There exist two constantsλ andΛ such that

0 < λ ≤ f (x) ≤ Λ.

For technical purpose, we also assume:

(7) There existsb > 0 such thatβ (s) is increasing fors∈ [0,b].

From now on,e is a fixed vector inSn−1, andcε,δ ,uε,δ are the corresponding solutions
of (1,3). In [8], we established several results regarding the asymptotic behavior ofuε,δ .
The relevant results for our present purpose can be summarized as follows:

Theorem 2.1.
(i) There exists cmin, cmax > 0 universal constants such that

cmin ≤ cε,δ ≤ cmax, ∀δ , ε > 0.

(ii) There existsρ such that for allεo, if ε ≤ εo andδ ≤ ρε, then

max

(

0,1− 1
κε

e−γε,δ (x·e−cε,δ (t+M∗ε))

)

≤ uε,δ (x,t) ≤

max
(

δ ,1−κεe−γε,δ (x·e−cε,δ (t−M∗δ ))
)

,

(8)

where M∗, M∗ are universal constants.

In [8], the slopeγε,δ and the constantκε were determined through an eigenvalue prob-
lem. In the advection free case, however, we simply have

γε,δ (e) = cε,δ (e) andκε = 1.

Nevertheless, to avoid confusion, we shall use the notationγε,δ (e) when referring to the
slope of the solution, andcε,δ (e) when referring to the effective speed of propagation.

We also recall that since 0≤ uε,δ ≤ 1, uε,δ is bounded inC 1, 1
2 (see [4]):

Lemma 2.2. There exists a universal constant N0 such that

|uε,δ (x, t)−uε,δ (x′,t ′)| ≤ N0

(

|x−x′|+ |t− t ′|1/2
)

,

for all (x, t),(x′, t ′) ∈ (Rn×R)2.

As a consequence, there existγ̃τ = c̃τ positive constant such that ifδ = ετ andε → 0
then the solutionuε,δ converges, up to a subsequences to the function

(9) uτ(x,t) =
(

1−e−γ̃τ(x·e−c̃τ t)
)

+
.
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This paper addresses the question of the determination of the slopeγ̃τ and the effective
speed ˜cτ . It turns out that the answer relies on the properties of the solutions of the elliptic
equation

(10) ∆u = f (x/ε)βδ (u),

and of the corresponding free boundary problem

(11)

{

∆u = 0 in {u > 0}
|∇u|2 = 2 f (x/ε)M on ∂{u > 0}.

Note that ifu is solution to (10), then the rescaled functionh(x) = 1
ε u(εx) solves

(12) ∆h = f (x)βτ (h),

with τ = δ/ε. Note that in the presence of an advection term, we would havean extra term
εq(x) ·∇h. This term, though of a smaller order, would introduce a lot of technical change
in the proof, sinceε would have to be taken into account when dealing with (12).

As mentioned in the Introduction, we are concerned with particular solutions of (12):

Definition 2.3 (Planelike Solutions).
A function h(x) is a planelike solution of (12) in the directione if h(x) solves (12) and if
there existsγ > 0, A andB such that

(13)
h(x) −→ 0 asx ·e→−∞,
max(0,γ x ·e−A)≤ h(x) ≤ max(τ,γ x ·e+B).

A function h(x) is a planelike solution for the free boundary problem (11) ifthere exist
sequences(τn)n∈N, and(hn)n∈N such thathn(x) is a planelike solution of (12) withτ = τn

and
τn −−−→

n→∞
0, hn −−−→

n→∞
h uniformly on compact set.

Remark2.4. There are other possible definitions for planelike solutions of the free bound-
ary problem, such as viscosity solutions (see [7]), and it isnot clear whether all definitions
would lead to the same class of functions. Anyway, as we will see later on, the present
definition is the most convenient one for our purpose.

Of course, there is no uniqueness for (12). Actually, there is no maximum principle.
Also, the convergence of solutions of (12) to (11) is a trickyquestion (Berestycki et Al., in
[1], established the convergence for the smallest supersolution).

For our purpose, we need solutionsv(x) of (12) that satisfy the following maximum
principle:

(14)

If G is a smooth subset ofR
n and h satisfies

∆h≥ f (x)βτ (h) in G
with

h≤ v on ∂G,
then

h≤ v in G

A solutionv(x) of (12) that satisfies condition (14) will be said to be alargest subsolution.
Then, we have the following theorem:

Theorem 2.5. There exists a planelike solution hτ(x) of (12) that satisfies Property (14).
Moreover, we have
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(i) There existsγτ
min(e) ∈ [

√
2λM−O(τ),

√
2ΛM +O(τ)] and R⋆ universal constant

such that

(15) max(0,γτ
min(e)x ·e−R⋆) ≤ hτ(x) ≤ max(τ,γτ

min(e)x ·e).
(ii) Any other planelike solution (and subsolution) has a slope greater thanγτ

min(e).
(iii) The sequenceγτ

min(e) converges asτ goes to zero. We write

lim
τ→0

γτ
min(e) = γmin(e).

This theorem is proved in Section 5. The real numberγmin(e) can be interpreted as the
smallest slopeof all planelike solutions of the homogenized free boundaryproblem in the
directione.

We now state our main result:

Theorem 2.6. For anyτ andη positive constants, there existsεo such that if

ε ≤ εo

δ = ετ
then

(16) γτ
min(e)−η < γε,δ (e) < γτ

min(e)+ η .

It is worth mentioning that the upper bound in (16) is actually uniform in τ (but the
lower one is not).

To be complete, it remains to evaluateγτ
min for a given reaction ratef (x), which is a del-

icate task. Sinceγτ
min = γmin +O(τ), we only wish to evaluateγmin. For a one dimensional

front, we prove in Section A.1 that

γmin =
√

2M inf( f ).

In R
n, we always have

γmin(e) ≥
√

2M inf( f ), for all e∈ Sn−1

but equality does not always hold. InR2 for instance, and whenf is constant in one
direction (f (x1,x2) = f (x1)), we prove that (see Section A.2 for details):

γmin(±e1) =
√

2M inf( f ), and γmin(e) =
√

2M〈 f 〉 for e 6= ±e1.

For more generalf (x), the determination ofγmin is an open question.
The next two sections of the paper are devoted respectively to the upper bound and the

lower bound in (16). Detailed proof of Theorem 2.5 is given inSection 5.

3. UPPER BOUND

In this section, we prove thatγε,δ is smaller than the slope of any planelike solution
of the stationary problem. Applying this result to the largest subsolution as defined in
Theorem 2.5, we thus obtain the upper bound in (16).

Let hτ be a planelike solution of (12), with slopeγs. We assume that

γε,δ > γs+ η .

Assuming thatδ = τε, we introduce the (hyperbolic) rescaled function

(17) vε,τ =
1
ε

uε,δ (εx,εt),

we will show that whenε is small enough, we can ’cut’vε,τ by hτ , in the following sense:
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(18) There existsA < B andto s.t.
vε,τ(x,to) ≤ hτ(x), for x ·e= A,
vε,τ(x,to) ≥ hτ(x), for x ·e= B.

The monotonicity ofvε,τ with respect tot together with the maximum principle will give a
contradiction.

Proof. The functionvε,τ propagates with speedcε,δ , and satisfies

(19) ε∂tv = ∆v− f (x)βτ(v) x∈ R
n.

Moreover, (8) becomes

max

(

0,
1
ε

(

1−e−εγε(x·e−cε t−M∗)
)

)

≤ vε,τ (x,t) ≤

max

(

τ,
1
ε

(

1−e−εγε(x·e−cε t+M∗τ)
)

)

.

(20)

Whenε goes to zero, (20) leads to

γ̃(x ·e− c̃t−M∗) ≤ vτ(x,t) ≤ max(τ, γ̃(x ·e− c̃t+M∗τ)) .

Finally, we point out that since∂tvε,τ < 0, vε,τ is a supersolution of (12).
Let A be such that

γsx ·e−R⋆ ≥ 10 whenx ·e= A,

(with R⋆ as in Theorem 2.5), we can chooseto such that

(21) vε,τ(x,to) ≤ hτ(x), for x ·e= A.

This is achieved, for example ifto satisfies

1
ε

(

1−e−εγε(R⋆−cε to+M∗τ)
)

≤ τ,

or
1−e−εγε(R⋆−cε to+M∗τ) ≤ δ .

Note thatto is independent onε, and only depends onρ .
Next, forε small enough, and sinceγε,τ ≥ γs+ η there existB≥ A such that

1
ε

(

1−e−εγε(x·e−cε to−M∗)
)

≥ γsx ·e for x ·e= B,

which yields
vε,τ(x,to) ≥ hτ(x), for x ·e= B.

In order to conclude, we need to ensure that for some largeP and some timet1 ≤ to we
have:

(22) vε,τ (x, t1) ≥ hτ(x) in {x; x ·e≤−P}.
Admitting this fact for the time being, and thanks to the monotonicity of vε,τ(x,t) with
respect tot, we deduce that there existst2 ≤ to such that

vε,τ(x,t2) ≥ hτ(x) for x ·e≤ B.

Letting t increase untilvε,τ toucheshτ by above, we findt⋆ < to such that

(23)

{

vε,τ(x, t⋆) ≥ hτ(x) for all x ·e≤ B
vε,τ(x⋆, t⋆) = hτ(x⋆) for somex⋆ s.t. x⋆ ·e< B
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(note that the existence ofx⋆ follows from a compactness argument and the invariance
of the problem by integer translation). In particular the function vε,τ(x,t⋆)− h(x) has a
minimum forx = x⋆. But since∂tvε,τ < 0, we have

∆(vε,τ −h) < f (x)(βδ (vε,τ)−βδ (h)),

and the contradiction follows
To complete the proof, we have to prove that (22) holds. LetP be such that

hτ(x) ≤ bδ in {x∈ R
n ; x ·e≤−P}

(with b as in (7)), andt⋆ such that

vε,τ(x, t⋆) ≥ hτ(x) in {x∈ R
n ; x ·e= −P}.

To see thatvε,τ(t⋆) ≥ hτ , we introduce

η⋆ = inf{η ; vε,τ(x,t⋆) ≥ hτ(x)−η in {x; x ·e≤−P}},
and we claim thatη⋆ = 0. As a matter of fact, ifη⋆ > 0, we seth⋆ = hτ −η⋆, and since
bδ ≥ hτ ≥ h⋆, we deduce:

vε,τ(x) ≥ h⋆(x) for all x ·e≤−P
vε,τ(x⋆) = h⋆(x⋆) for somex⋆ with x ·e≤−P
∆(vε,τ −h⋆) < f (x)(βδ (vε,τ )−βδ(h⋆)).

The contradiction follows easily. �

4. LOWER BOUND

The main result of this section is the construction of a planelike solutionU(x) of (12),
with slope

γ̃τ = lim inf
ε → 0,
δ/ε = τ

γε,δ

(see lemma 4.1). The minimality ofγτ
min (Theorem 2.5 (iii)) immediately yields

γ̃τ ≥ γτ
min(e).

Moreover, using the same argument as in the previous section, but withU(x) as a barrier,
we can show that

γε,δ ≤ γ̃τ + η ,

for smallε, and in particular

limsup
ε → 0,
δ/ε = τ

γε,δ ≤ γ̃τ .

Therefore, the whole sequence converges, and the lower bound in Theorem 2.6 follows.
To prove the existence ofU , we first introduce the function:

(24) wε,τ =
1
ε

uε,δ (εx,ε2t),

which is solution to

(25) ∂tw = ∆w− f (x)βτ(w) x∈ R
n.
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This parabolic scaling preserves the Hölder estimates (wε,δ is uniformly bounded inC1, 1
2 ),

but not the propagation property (the effective speed of propagation becomesεcε,δ ). In
particular,wτ satisfies:

max

(

0,
1
ε

(

1−e−εγε(x·e−εcε t−M∗))
)

)

≤ wε,τ(x,t) ≤

max

(

τ,
1
ε

(

1−e−εγε(x·e−εcε t+M∗τ)
)

)

.

(26)

Thus, whenε goes to 0, withτ fixed,wε,τ converges (uniformly on compact sets) towτ ,
solution to (25), and satisfying

γ̃τ (x ·e−M∗) ≤ wτ (x,t) ≤ max(τ, γ̃τ (x ·e+M∗τ) .(27)

Then, we have the following lemma:

Lemma 4.1.
When t→+∞, the function wτ(·,t) converges (uniformly on compact sets) to a continuous
function U(x) solution to (12), that also satisfies

γ̃τ(x ·e−M∗) ≤U(x) ≤ max(τ, γ̃τ(x ·e+M∗τ)) .

The function U(x) is therefore a planelike solution of (12) with slopeγ̃τ .

Proof. The uniform convergence and the uniqueness of the limit are immediate conse-
quences of the Hölder estimate and the monotonicity ofwτ with respect tot.

It is readily seen thatU(x) satisfies (27), and thus is planelike. To complete the proof,
we therefore have to prove thatU(x) is solution to the elliptic problem (12).

Integrating (25) fort in [T,T + τ], we have:

(28) wτ(T + τ)−wτ(T) = ∆
∫ T+τ

T
wτ (t)dt− f (x)

∫ T+τ

T
βτ(w

τ (t))dt

Writing
∫ T+τ

T wτ (x, t)dt =
∫ τ

0 wτ (x,t + T)dt, and thanks to the uniform convergence with
respect tot, deduce:

∫ T+τ

T
wτ (x,t)dt −−−→

T→∞
τU(x),

and
∫ T+τ

T
βτ(w

τ)dt −−−→
T→∞

τβτ(U).

Sincewτ(x,T + τ)−wτ(x,T) −−−→
T→∞

0, (28) becomes

τ∆U(x) = τ f (x)βτ (U(x)),

and the lemma follows. �

5. PLANELIKE SOLUTIONS OF THE ELLIPTIC PROBLEM

In this section, we give the proof of Theorem 2.5. The function h(x) is obtained as the
limit of the largest subsolution of the following boundary value problem:

(29)







∆u = f (x)βτ (u)
u|x·e=0 = M
limx·e→−∞ u = 0
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In Section 5.1, we prove the existence ofhM. Section 5.2 and 5.3, we establish the main
properties ofhM, and finally, in Section 5.4, we pass to the limitM → ∞ and complete the
proof of Theorem 2.5.

5.1. Barriers and existence ofhM. To begin with, we need barriers for (29): For any
slopel and any translationt, the function

Φt
l = lx ·e+ t

satisfies
{

∆Φl = 0
|∇Φl | = l .

Thus, with l =
√

2ΛM + η (respectivelyl =
√

2λM −η), we can construct a family of
planelike subsolutionsΦt,τ

1 (respectively a family of supersolutionsΦt,τ
2 ) of (12) (see Sec-

tion B for details).
Note thatΦt,τ

i depends continuously ont, which allows us to make use of the sliding
method.

Finally, choosingt1 andt2 such that

M−C≤ Φt1
1 ≤ M

M ≤ Φt2
2 ≤ M +C

whenx ·e= 0,

we can define the largest subsolution of (29) as follows:

hM(x) = sup{u(x) ; u subsolution of (29) s.t.Φt1,τ
1 ≤ u≤ Φt2,τ

2 }.

5.2. Birkoff’s property. Even thoughhM is not monotonic with respect tox ·e, we have:

Lemma 5.1.

hM(x+m) ≥ hM(x) for all m∈ Z
n such that m·e≤ 0,

hM(x+m) ≤ hM(x) for all m∈ Z
n such that m·e≥ 0.

IntroducingΩη = {h(x) ≥ η}, this lemma yields the following property, which is rem-
iniscent of Theorem 8.1 in [5], and which we call Birkoff’s property:

Tm(Ωη ) ⊂ Ωη for all m∈ L such thatm·e≤ 0,
Tm(Ωη ) ⊂ Ωη for all m∈ L such thatm·e≥ 0.

Proof of Lemma 5.1.Let k ∈ Z be such thatk · e≥ 0, thenhM
k (x) = hM(x− k) satisfies

hk(x) ≤ M for x · e = 0, andhM
k (x) ≤ Φt2

2 (x− k) ≤ Φt2
2 . Thereforez(x) = sup(hM(x−

k),hM(x)) is a subsolution of (29) and satisfies

Φt1
1 ≤ z≤ Φt2

2 .

By definition ofhM, it follows thatz(x) ≤ hM(x), and therefore

hM(x−k) ≤ hM(x).

The second inequality is obtained by replacingh(x) byh(x+k) in the previous argument
(since everything is invariant by translation). �
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5.3. Non-degeneracy.In this section, we prove that part (i) of Theorem 2.5 holds for
hM(x), i.e. thathM(x) remains at a finite (universal) distance from a plane.

The proof relies on technique first introduced by L. Caffarelli and R. De La Llave in [5],
and later used in [8] to establish Theorem 2.1.

Let xo be the most left point on the free-boundary. Without loss of generality, we can
always assume thatxo = 0, i.e.

hM(0) = τ, hM(x) < τ for all x such thatx ·e< 0.

Then, we have the following lemma:

Lemma 5.2. There exists a universal constant C such that

sup
x·e≤r

hM(x) ≥Cr

Before proving this lemma, let us see how, using the Birkoff property it will give Theo-
rem 2.5 (i) forhM. Let Ro be such that

CRo−No2
√

n≥ τ,

with C as in Lemma 5.2. Then, there existsy such that

hM(y) ≥CRo, y ·e≤ Ro,

and thanks to the choice ofRo, we deduce that

hM ≥ τ in B2
√

n(y).

The Birkoff property (Lemma 5.1) yields

∪k∈Zn,k·e≥0Tk(B2
√

n(y)) ⊂ {hM > τ} ⊂ {x; x ·e≥ 0}
and sinceB2

√
n contains a cube of size 1, it is readily seen that

∪k∈Zn,k·e≥0Tk(B2
√

n(y))

covers a half plane. It follows that

(30) {x; x ·e≥ R⋆} ⊂ {hM(x) > τ} ⊂ {x; x ·e≥ 0}
for some universalR⋆.

Proof of Lemma 5.2.We takexo such thatBro(xo) is tangent to∂{hM > τ} at 0 (ro = |xo|).
Then, the function

u(x) =
rn+1
o

n

(

1
rn
o
− 1

|x−xo|n
)

is such that
u≥ 0 and∆u = 0, in R

n \Bro(xo),

and
|∇u| = 1 on∂Bro(xo).

Moreover, we have
u(x) ≥Cro, if x ·e= Ro = 2ro.

Using Appendix B, we see that the functionvτ(x) = Ψτ (
√

2λMu(x)) is a supersolution
of theτ-problem. We now prove Lemma 5.2 by contradiction: Assume that

hM(x) < vτ(x) on{x; x ·e= Ro}
Then the translationvτ

T(x) = v(x+Te) is still a supersolution, and, for largeT satisfies

hM(x) ≤ vτ
T(x) in {x; x ·e≤ Ro}
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Slidingvτ
T by taking smaller and smallerT, we stop whenvτ

T toucheshM by above:

T∗ = inf{T ; hM(x) ≤ vτ
T(x) in {x; x ·e≤ Ro}}.

SincehM(0) ≥ vτ(0), we haveT∗ > 0, and sincehM(x) ≤ vτ(x) on x · e = Ro, we get a
contradiction as in the proof of Lemma 2 in [8]. The result follows. �

5.4. Existence and properties ofh. For allM, there existsk∈Z
n such that the translation

hM
o (x) = hM(x−k) satisfies

(31) {hM
o = τ} ⊂ {x; 0≤ x ·e≤ R⋆).

With γM = M/(k ·e), and thanks to the previous section, we deduce

max(τ,γM x ·e−R⋆) ≤ hM
o (x) ≤ max(τ,γM x ·e).

Finally, it is easy to see that
√

2λM−O(τ) ≤ γM ≤
√

2ΛM +O(τ).
Passing to the limitM → ∞ is now an easy task, thanks to the gradient estimates (see

[3]).
Theorem 2.5 (i) is an immediate consequence of (30). It remains to establish (ii). Let

g be a planelike subsolution with slopeγg, we want to prove thatγg ≥ γτ TakingA large,
we consider the restriction ofg to {x; x · e≤ A}. Then, there exists a translation of the
supersolutionΦt2,τ

2 such that

g≤ Φt2,τ
2 whenx ·e= A,

we want to check that this implies

(32) g≤ Φt2,τ
2 whenx ·e≤ A.

Clearly, there existst ≥ t2 such that

g≤ Φt,τ
2 whenx ·e≤ A

(since limx·e→−∞ Φt,τ
2 (x) = τ/4). SinceΦt,τ

2 depends continuously ont, we can slide the
supersolution by lettingt goes tot2 and stop whenever there existsx⋆ such thatg(x⋆) =
Φt,τ

2 (x⋆). Then the functionz(x) = Φt,τ
2 (x)−g(x) satisfies

z(x) ≥ 0 whenx ·e≤ A
z(x) > 0 whenx ·e= A
z(x⋆) = 0

and
∆z< f (x)(βτ (Φt,τ

2 )−βτ(g)).

We get a contradiction (0< 0) whenx = x⋆, hence (32) has to be satisfied.
Next, the function

g1 = max(g(x),Φt1,τ
1 (x))

is a subsolution, and satisfies

Φt1,τ
1 ≤ g1 ≤ Φt2,τ

2 whenx ·e≤ A.

By definition ofhM, it follows thathM ≥ g for x ·e≤ A.
Hence, whenA goes to infinity, there exists a sequence ofM (also going to infinity) such

that

g(x) ≤ hM(x), whenx ·e≤ A, and g(x) ≥ hM(x)−C, whenx ·e= A

The result follows.
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5.5. Convergence of the sequenceγτ
min. In this section, we investigate the limit ofγτ

min as
τ goes to zero. Sinceγτ

min ∈ [
√

2λM−O(τ),
√

2ΛM +O(τ)], we can define

liminf
τ→0

γτ
min = γo

min ∈ [
√

2λM,
√

2ΛM].

In order to prove that the whole sequence converges, we provethe following:

Lemma 5.3. Assume that f is continuous, and fixτo > 0. Then, for anyτ1 > τo, we have:

γτ1
min ≤ γτo

min +O(τ1).

In particular, it follows that for allτ1 > 0, we have

γτ1
min ≤ lim inf

τ→0
γτ
min +O(τ1),

and therefore
limsup

τ→0
γτ
min ≤ lim inf

τ→0
γτ
min = γo

min,

which proves that the whole sequence converges, and that

lim
τ→0

γτ
min = γo

min.

Proof of Lemma 5.3.Let hτ be a planelike solution of

∆h = f (x)βτ (h),

with slopeγτ
min.

Leta be a small positive real. There existsC, depending only on the modulus of continu-
ity of f (x) such that, ift is a vector satisfying|t| ≤Ca, the functionha,t(x) = (1+a)h(x+t)
is a planelike subsolution solution of (12) with slope(1+ a)γτ

min. As a consequence, the
functionvη , defined by

vη (x) = sup
y∈Bη (x)

ha,t(y)

is a subsolution of (12).
Then, we have the following lemma:

Lemma 5.4. Let xo be a point on theτo level set of vη . Then the ball Bη (xo) is tangent
from outside to{hτo

a = τo}. Moreover, if we note yo ∈ ∂Bη(xo)∩{hτo
a = τo}, we have:

|∇xh
τo
a (yo)| >

√

2 f (yo)M.

It follows that
|∇xvη | ≥

√

2 f (yo)M along{vη = τ},
and therefore(vη − τ)+ is a subsolution of the free boundary problem. Moreover,

∆hτo
a ≥ 0

and if we denote byν the outward unit normal vector to each level set{ha = t}, and byτi

the tangential direction to{ha = t}, we have

|∇hτo
a | = (hτo

a )ν , and (hτo
a )τiτi = κi(h

τo
a )ν ,

whereκi is the directional curvature of{hτo
a = t} in theτi direction. Therefore

0≤ ∆hτo
a = (hτo

a )νν + κi(h
τo
a )ν .

On the other hand, since{hτo
a = t} has a touching ball from outside whose radius is greater

thanη , we have

κi ≤
1
η

for all i.
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We deduce

0≤ (hτo
a )νν +

n−1
η

(hτo
a )ν , and(hτo

a )ν(yo) >
√

2 f (yo)M.

From an ODE argument, it follows that

(hτo
a )ν >

√

2 f (yo)M in {τo ≤ hτo
a ≤ τo +Cη}.

HenceΨτ1((vη − τo)+) is a subsolution for

∆u = f (x)βτ1(u),

with slope(1+ a)γτo
min (see Appendix B for the definition ofΨτ ). The minimality ofγτ1

min
gives Lemma 5.3. �

Proof of Lemma 5.4.Define
u(r) = sup

x∈∂Br (xo)

hτo
a (x).

Then, the functionu(r) satisfies

u(r) ≤ τo in Bη(0), u(η) = τo.

Moreover,u(r) satisfies:

(33)
1

rn−1

∂
∂ r

(

rn−1 ∂u
∂ r

)

≥ f (xo)βτo(u)

on ]η/2,η [. Assuming that(u′(η))2 ≤ (1− a)2 f (xo)M, we will get a contradiction by
proving thatu(η/2) > τo.

First, let us re-scale equation (33): the functionv(r) = 1
τo

u(τor)) satisfies:

(34)
(n−1)

r
v′(r)+v′′(r) ≥ f (xo)β (v)

on ]η/(2τo),η/τo[, with

v(η/τo) = 1, v′(η/τo) < (1−a)2 f (xo)M

Next, we prove that ifτo is small enough, there existsro ∈ [η/(2τo),η/τo] such that
v′(ro) = 0. If not, we havev′(r) > 0 in ro ∈ [η/(2τo),η/τo]. Hence, multiplying byv′(r),
and integrating on[r,η/τo], for somer ∈ [η/(2τo),η/τo], we get:

∫ η/τo

r

(n−1)

r
(v′(r))2dr +

1
2
(v′(η/τo))

2− 1
2
(v′(r))2 ≥ f (xo)M− f (xo)B(v(r)),

and therefore

(v′(r))2 ≤ 2
∫ η/τo

r

(n−1)

r
(v′(r))2dr +2 f (xo)B(v(r))−2a f(xo)M.

It is easy to check thatv′(r) is bounded, and therefore:

(v′(r))2 ≤C
|η/τo− r|

η/τo
+2 f (xo)B(v(r))−2a f(xo)M.

In particular, if|η/τo− r| ≤ aλ M
C η/τo, we have:

(v′(r))2 ≤ 2 f (xo)B(v(r))−a f(xo)M.

HenceB(v) ≥ a f(xo)M, and thereforev(r) ≥ c if |η/τo− r| ≤ aλ M
C η/τo.
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Sinceβ (c) > 0, it is readily seen that (34) implies thatv′(ro) = 0 for somero > η/(2τo)
if τo is small enough. Finally, a similar argument show thatv(r1) > 1 for somer1 ∈
[η/(2τo), ro], which is the contradiction we were aiming at. �

5.6. Remark. With the same method as the one presented in this section, we could prove
the existence of a smallest planelike supersolution of (12), gτ(x) , satisfying:

(i) There existsγτ
max(e) ∈ [

√
2λM,

√
2ΛM] andR⋆ universal constant such that

max(0,γτ
max(e)x ·e−R⋆) ≤ gτ(x) ≤ max(τ,γτ

max(e)x ·e).
(ii) Any other planelike solution (or supersolution) has a slope smaller thanγτ

max(e).

APPENDIX A. COMPUTATION OF γmin IN SOME PARTICULAR CASES.

A.1. One-dimensional fronts. In this section, we seek to computeγmin whenn = 1.
Let us define

α(µ) = inf
x∈[0,1]

(

sup
y∈]x−µ,x+µ[

f (y)

)

.

Then, we prove the following result:

Theorem A.1. For anyµ andη positive constants, there existsτo such that
√

2M inf( f )−η < γτ
min <

√

2Mα(µ)+ η ∀τ ≤ τo

When f(x) is a continuous function,

α(µ) → inf( f ) whenµ → 0,

and therefore

γmin(e) =
√

2M inf( f ).

Proof. According to Theorem 2.5, the lower bound is always satisfied. To establish The-
orem A.1, we have to construct a subsolution with slope

√

2Mα(µ)+ η . The minimality
of γmin will imply the result.

First of all, it is obvious that, iff (xo) = inf f , the function

h(x) = (
√

2M inf( f )+ η)(x−xo)

is a subsolution of the free boundary problem. We wish to bendh in the region where
0 < h < τ, to get a solution of theβ -problem. To that purpose, we must make sure that
|∇h(x)|2 ≤ 2M f (x) in a neighborhood ofxo, hence the introduction ofα(µ):

Fixing µ andη , we assume that the infimumα(µ) is achieved forx = 0:

α(µ) = sup
y∈]−µ,µ[

f (y),

and we define
γ =

√

2Mα(µ)+ η , andh(x) = γx+.

Then,h(x) is a subsolution of the free boundary problem, and to construct a solution of the
β -problem, we introduceϕ solution to

ϕ ′′ = α(µ)βτ(ϕ) in ]−∞,xo[(35)

ϕ(xo) = τ(36)

ϕ ′(xo) = γ,(37)
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with xo = τ/γ. Then, we claim that forτ ≤ τo, with τo small, there existsx1 ∈ [−µ ,µ ]
such that

(38) ϕ(x1) = 0, ϕ(x) > 0 ∀x∈]x1,xo[.

As a matter of fact, multiplying (35) byϕ ′ and integrating, we get

1
2

(

(ϕ ′(x))2− (ϕ ′(xo))
2
)

= α(µ)
(

Bτ(ϕ(x))−Bτ(ϕ(xo)
)

,

and using (36) and (37), we deduce:

(ϕ ′(x))2 = 2α(µ)Bτ(ϕ(x))+ γ2−2Mα(µ).

Thanks to the choice ofγ it follows that

(ϕ ′(x))2 ≥ 2α(µ)Bτ(ϕ(x))+ η2 ≥ η2,

and the claim follows.
Finally, we definehτ as follows:

(39) hτ(x) =







0 x≤ x1

ϕ(x) x1 ≤ x≤ xo

h(x) x≥ xo

It is readily seen thathτ is a subsolution of (12), and Theorem 2.5 (ii) gives the result. �

A.2. Two-dimensional Front. In this section, we assume thatn= 2 andf (x1,x2)= f (x1).
Defining

α(µ) = inf
x1

(

sup
y∈]x1−µ,x1+µ[

f (y)

)

,

we prove the following result:

Theorem A.2. For anyµ andη positive constants we have

(i)
√

2M inf( f )−η < γmin(±e1) <
√

2Mα(µ)+ η

and

(ii) γmin(e) =
√

2M〈 f 〉 for all e 6= ±e1.

Proof. The proof of (i) is similar to the proof of Theorem A.1, so we only have to prove
(ii).

Let hτ(x1,x2) be the planelike solution of (12) with slopeγτ
min. Since (12) is invariant

by translation with respect tox2, the Birkoff property implies thathτ is periodic in the
direction normal toe. Introducing

v(y1,y2) = hτ(y1,y2−
e1

e2
y1),

we deduce thatv periodic with period 1 with respect toy1, andv is solution to:

(40) v11+2av12+(1+a2)v22 = f (y1)βτ(v),

with a = e1
e2

(and(1+a2) = 1/e2
2). Moreover, since

max{0,γx ·e} ≤ hτ ≤ max{τ,γx ·e+A⋆},
by a rescaling argument, we show that

∇xh
τ → γewhenx ·e→ +∞
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and therefore

(41) ∇yv→ γ
(

0
e2

)

wheny2 → +∞.

Multiplying (40) byv2 and integrating over a large rectangle[0,1]× [−R,R], we have
∫ 1

0

∫ R

−R
(v11+2av12+

1

e2
2

v22)v2dy2dy1 =
∫ 1

0

∫ R

−R
f (y1)βτ(v)v2dy2dy1,

and after integration by parts we deduce:
∫ 1

0

∫ R

−R
−v1v21+

1
2

1

e2
2

(|v2|2)2dy2dy1 =
∫ 1

0

∫ R

−R
f (y1)Bτ(v)2dy2dy1,

which yields

1
2

∫ 1

0

∫ R

−R

[

−|v1|2 +
1

e2
2

|v2|2
]y2=+R

y2=−R
dy1 =

∫ 1

0
f (y1)

[

Bτ(v)
]y2=+R

y2=−R
dy1,

with Bτ(u) =
∫ u

0 βτ(s)ds.
Since

Bτ(v)(y1,R) = M for largeR,

Bτ(v)(y1,−R)
R→∞−−−→ 0

∇yv(y1,−R)
R→∞−−−→ 0,

it follows that

lim
R→∞

∫ 1

0

[

−|v1|2 +
1

e2
2

|v2|2
]

y2=+R
dy1 = 2

∫ 1

0
f (y1)dy1M,

and (41) yields
γ = 2〈 f 〉M.

�

RemarkA.3. Thanks to the invariance with respect tox2, we can translate the solutionhτ

in the directionx2 in a continuous manner. Thus, using the sliding method, we could prove:
(i) hτ is monotone increasing with respect tox2.
(ii) hτ is the unique planelike solution of (12) (and in particular,γmin = γmax = 2〈 f 〉M).

APPENDIX B. PROOF OF SOME TECHNICAL LEMMAS: CONSTRUCTION OF

SUBSOLUTIONS AND SUPERSOLUTIONS OF(12)

In section 5.1, we omitted the construction of the supersolution and subsolutionΦδ
i . We

present those construction here.
We defineΓη

δ (s) as follows:

Γδ (s) = aδ for 0≤ s≤ aδ

andΓδ solution to






Γ′′
δ (s) = χδ (Γδ (s)) for s≥ aδ ,

Γδ (aδ ) = aδ
Γ′

δ (aδ ) = 0,

with

χδ (u) =

{ 1+η
2M βδ (u) if aδ ≤ u≤ δ

0 otherwise.
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The constantη > 0 will be chosen later, anda is such that
∫ 1

a
β (u)du=

M
1+ η

.

Similarly, we defineΨη
δ (s) as follows:







Ψ′′
δ (s) = 1−η

2M βδ (Ψδ (s)),
Ψδ (0) = 0
Ψ′

δ (0) = b,

whereb is such that ifuo satisfiesΨ(uo) = δ , thenΨ′(uo) = 1.
Thanks to the choice ofa andb, it is easy to check that

Γδ (t) = t −O(δ ) whent ≥ δ

and
Ψδ (t) = t −O(δ ) whent ≥ 2δ .

In particular, we have

Γδ (t)
δ→0−−−→ t, Ψδ (t)

δ→0−−−→ t.

Then we have the following lemma:

Lemma B.1. Assume that f(x) is continuous. Then the following holds:
(i) Let u be a classical supersolution of the free boundary problem such that there existsτ
andη such that

|∇u|2 ≤ 2 f (x)M
1+ η

in {0 < u < τ},

thenΓη
δ (u) is a supersolution of (12) forδ < τ.

(ii) Let v be a classical subsolution of the free boundary problem such that there existsτ
andη such that

|∇u|2 ≥ 2 f (x)M
1−η

in {0 < u < τ},

thenΨη
δ (u) is a subsolution for (12) forδ < τ.

Proof. We only prove (i), leaving (ii) to the reader. We have:

∆Γδ (u) = Γ′
δ (u)∆u+ Γ′′

δ(u)|∇u|2

=
1+ η
2M

βδ (Γδ (u))|∇u|2χaδ≤Γδ (u)≤δ

≤ f (x)βδ (Γδ (u))χaδ≤Γδ (u)≤δ

≤ f (x)βδ (Γδ (u)),

which gives the result. �

APPENDIX C. NUMERICAL COMPUTATIONS

In this appendix, we present some numerical computations for the 1-d Pulsating Trav-
elling Fronts solutions of the free boundary problem. Thosecomputations were done prior
to the rest of the paper, and actually led us to the proof presented here.

First, we have the following lemma:

Lemma C.1. For all t, x 7→ u(x,t) is monotone increasing.
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Proof. If not, there existsto such thatu(·,to) has a local minimum for somexo.
If u(xo, to) > 0, then this contradicts the fact thatu(·,to) is superharmonic in{u > 0}

(sinceut ≤ 0).
If u(xo, to) = 0, then there existsx1, x2 such thatu(xi ,to) > 0 andxo ∈]x1,x2[. Sinceu

is decreasing with respect tot, we can findt1 < to such thatu(x,t1) > 0 for all x∈ [x1,x2],
andu has a local minimum in]x1,x2[, which yields a contradiction as in the first case.�

Thanks to this lemma, we can define the level functionv(z,t) by:

u(v(z,t),t) = z, z∈ [0,1].

Differentiating this relation with respect tot andz, we obtain

ut = −uxvt , ux = 1/vz, uxx = −uxvzz/v2
z,

and (5) becomes:














vt = 1
v2
z
vzz for z∈ (0,1)

v2
z(0,t) = 1

2 f (v(0,t))M

v(1,t) = +∞,

which can be solve numerically (note that this method does not work for n-d fronts, since
fronts are not monotonous with respect tox · e). The evolution of the free boundary (or
0-level set) is then given by the curvex = v(0,t).

All figures were obtained with a reaction ratef (x) such that:

2 f (x) = 0.1+(1+sin(x))2,

and withM = 1 (and thus
√

2inf f =
√

0.1).
Figure 1 shows the evolution of the free boundary for different values ofε, with respect

to the rescaled variablesx′ = x/ε andt ′ = t/ε. We observe that the free boundary motion
looks more and more like a step function, sticking only on theminimum value off .

Figure 2 shows the effective speed of propagation as a function of log(ε). We immedi-
ately notice that the effective speed of propagation decreases asε goes to zero, and seems
to converges to the asymptotic valuec =

√
0.1∼ 0.32.

Figure 3 shows that the profile is asymptotically given by an exponential curve asε → 0,
while Figure 4 shows the boundary layer near the free boundary.

RemarkC.2. A more general computation on the level fuctionv(x,t) can be found in [10].
For similar results with the porous medium equations and Stephan problem we refere to
[9], [11].
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