HOMOGENIZATION AND FLAME PROPAGATION IN PERIODIC
EXCITABLE MEDIA: THE ASYMPTOTIC SPEED OF PROPAGATION.

L. A. CAFFARELLI, K.-A. LEE, AND A. MELLET

ABSTRACT. We study the effect of homogenization on flame propagatigueriodic ex-
citable media, when the width of the flame is much smaller tharcharacteristic size of
the heterogeneities.

1. INTRODUCTION

The following equation arises in the modeling of the comiousbf a premixed gas
(thermo-diffusive approximation):

(1) du=Du—g(Bsu) xR
The reaction term is given b5 (s) = %B(g), with & < 1 and with3(s) a Lipschitz func-
tion satisfying:

) {B(S) > 0if xe (0,1), B(s) = 0 otherwise,

M= fy B(s)ds

This model is usually refered to as the ignition temperatnoglel. The functiorg(x) is
positive, and is related to the combustion rate; it is indeleat of the space variable when
the media is perfectly homogeneous. In this paper, we asthahbeterogeneities arise in
the premixed gas, over a small scale (of orgleand in a periodic manner. This amounts
to writing

g(x) = f (g) . with f(x+k) = f(x) VkeZ.

In this framework we can defirfeulsating Traveling Fronts which are particular solutions
of (1) satisfying:

u—2~oO asx-e — —oo,
u—1 asx-e— +oo,
u(x+k,t):u<x,t—c—£), vk € eZ",

wheree is a unit vector (direction of propagation). In [2], H. Beygki and F. Hamel
proved that for anye € S™1, £ > 0 andd > 0 there exists a unique reef®(e) and a
unique functionu®-® (up to a translation in time) solutions of (1,3). Furthermoathey
showed that? % (e) is positive and thati®° (x,t) is a decreasing function of

The realc?? is refered to as the effective speed of propagation, whaeuhit vector
e denotes the direction of propagation. In the present pagemwestigate asymptotic
behavior ofcé® whene andd go to zero.
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It is well known that the limitd — 0 in (1) gives rise (at least formally) to the free
boundary problem:

(4) uf =Au¢, in {uf >0},
(5) |OxUé|? = 2f (x/€)M, ond{u® > 0}.

On the other side, uniform holder estimatesi®f (see [4]) allow us to prove that when
£ goes to zero withd fixed, (1) yields:

(6) u = Aul — (f)Bs(u?),

where(f) denotes the average &f
Thus, the limitd — 0 with € <« J leads to:

U =Au, in{u>0},
|Oxu|?2 = 2(f)M, ond{u> 0}.

In other words, the asymptotic regime when the size of therbgeneities is much smaller
than the width of the flame depends on the average value oé#ution rate.

When é and e are comparable, or whed < € (i.e. when the width of the flame is
comparable or much smaller than the size of the heterogesikithe limite — O corre-
sponds to the homogenization of the free boundary probles).(4n this paper, we will
characterize the asymptotic regime wheerc 1, with 6/¢ = 1, and we will show that the
limits € — 0 andd — 0 do not commute.

Note that similar regime are investigated for the viscosdlutions of the elliptic free
boundary problemin [6] and [7].

The characterization of the effective speed of propagatias initiated by some nu-
merical results (which we present in the appendix) obtafoe@ one-dimensional front,
which showed that the homogenized speed of propagatioméoirée boundary problem
depends on the minimum value of the combustion f&i@ and not on its average.

The numerical computations also suggested the proof. gees to zero, the free bound-
ary motion is given by a step function, the free boundarygitogpfor a long time where
f reaches its minimum and travelling quickly through the othedues. Moreover, while
sticking, the rescaled squtio}u(ex, £2t) approaches a solution of the stationary problem,
which in one-dimension, is simply a linear functiga™ with y = /2inf(f)M.

In higher dimension, a similar behavior is expected, with lthear function being re-
placed by a planelike solution of the stationary problemdlat®n that stays at a finite
distance of a plane). Instead of the minimuntoft is the smallest slope of such solutions
that will give the homogenized free boundary condition (#mel homogenized speed of
propagation).

In the next Section, we recall previous results establish¢8], and we state the main
theorem, the proof of which consists of two steps: In Sec8pmwe show that the ho-
mogenized slope along the free boundary is bounded aboueelsidpe of any planelike
solution of the stationary problem. Then, in Section 4, westaict a planelike solution
with the same slope as the homogenized Pulsating Travefiiogt. It follows that the
homogenized slope is equal to the smallest slope amongaaiéfke solutions of the sta-
tionary problem. Finally, Section 5 is devoted to the camston of planelike solutions.
Technical lemmas and numerical simulations are presentagpendix.

Finally, let us point out that advection phenomena couldaen into account as fol-
lows:

du+ p(x) - Oxu = Au—g(x) B5(u).
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Whenp(x) = q(x/¢), with q(x) periodic, divergence free and with null average, the result
presented in this paper can be adapted via minor correctiomarticular, the asymptotic
speed and slope along the free boundary are the same withidnwaitthe advection term,
wheneg andd go to zero under the conditiohh = 1. Nevertheless, the presence of the
advection term adds a lot of technical (though rather sttédgward) details to the proof,
and for the sake of clarity, the authors decided to treat éise evherg = 0.

2. MAIN RESULTS

In this section, we recall previous results and state ounrtaorem. In what follows,
f(x) satisfies:
f(x+k) = f(x), forallke Z".
There exist two constanfsandA such that
0< A <f(x) <A
For technical purpose, we also assume:
(7) There existd > 0 such thap3(s) is increasing fos € [0, b].

From now ongis a fixed vector ir§"1, andct:?, ut-9 are the corresponding solutions
of (1,3). In [8], we established several results regardivegasymptotic behavior aft-%.
The relevant results for our present purpose can be sumedaaizfollows:

Theorem 2.1.
(i) There exists gin, Cmax > 0 universal constants such that

Cmin < €% < Cmax; Vo, € > 0.
(ii) There existg such that for allg,, if € < & andd < pg, then

max (0, 1- ieVw("'eCEﬁ(t*""*f)))

Ke
(8) <uEd(x,t) <

max(é, 1- ng*f’é(X-&f’é(th*5>>) ,
where M, M, are universal constants.

In [8], the slopey®% and the constark, were determined through an eigenvalue prob-
lem. In the advection free case, however, we simply have

yg,é(e) — 05!5(e) andkg = 1.

Nevertheless, to avoid confusion, we shall use the notafiéiie) when referring to the
slope of the solution, ancf-% (€) when referring to the effective speed of propagation.
We also recall that since© us® < 1, u®9 is bounded irg’:2 (see [4]):

Lemma 2.2. There exists a universal constang dlich that
U2 0x8) — U2 (X, 1)) < No (Jx— X+ [t t/[*/2),
forall (x,t),(X,t') € (R" x R)?,

As a consequence, there exyst= &' positive constant such that&= et ande — 0
then the solution®? converges, up to a subsequences to the function

9 T(xt)= (1—e V(xett))
©) u(xt) = (1-e ).
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This paper addresses the question of the determinatior &ldpey’ and the effective
speedt™. It turns out that the answer relies on the properties of thatisns of the elliptic
equation

(10) Au= f(x/€)Bs(u),

and of the corresponding free boundary problem

(11) Au=0 in{u> 0}
|0u? =2f(x/e)M  ond{u> 0}.

1

Note that ifu is solution to (10), then the rescaled functhu) = £

(12) Ah= f(x)B(h),

with T = &/¢. Note that in the presence of an advection term, we would Aaextra term
£q(x) - Oh. This term, though of a smaller order, would introduce a fdgeohnical change
in the proof, since would have to be taken into account when dealing with (12).

As mentioned in the Introduction, we are concerned withipaldr solutions of (12):

u(ex) solves

Definition 2.3 (Planelike Solutions)
A function h(x) is a planelike solution of (12) in the directi@if h(x) solves (12) and if
there existy > 0, A andB such that

h(x) — 0 asx-e— —oo,

(13) max0, yx-e—A) < h(x) < maxTt,yx-e+B).

A function h(x) is a planelike solution for the free boundary problem (1ithiére exist
sequencebTy)nen, and(hn)nen such thahn(x) is a planelike solution of (12) with = T,
and

Tn——0, h, —— h uniformly on compact set.
n—oo n—oo

Remark2.4. There are other possible definitions for planelike soligiofithe free bound-
ary problem, such as viscosity solutions (see [7]), andnbisclear whether all definitions
would lead to the same class of functions. Anyway, as we w#l kter on, the present
definition is the most convenient one for our purpose.

Of course, there is no uniqueness for (12). Actually, thered maximum principle.
Also, the convergence of solutions of (12) to (11) is a trigknestion (Berestycki et Al., in
[1], established the convergence for the smallest supeisn).

For our purpose, we need solutionx) of (12) that satisfy the following maximum
principle:

If G is a smooth subset &" and h satisfies
Ah > f(x)Br(h) inG

with
h<v onogG,

then
h<v inG

(14)

A solutionv(x) of (12) that satisfies condition (14) will be said to blaayest subsolution
Then, we have the following theorem:

Theorem 2.5. There exists a planelike solutiofi(x) of (12) that satisfies Property (14).
Moreover, we have
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(i) There existy}; (e) € [V2AM — 0(T1),vV/2AM + 0'(1)] and R universal constant
such that
(15) max0, Yin(€) X- &= R,) < h'(X) < max(T, ymin(€) X-€).
(i) Any other planelike solution (and subsolution) has a slagaigr thany?, (e).
(i) The sequencg,(e) converges as goes to zero. We write
!iino Ymin(€) = Ymin(€).

This theorem is proved in Section 5. The real numjagt(e) can be interpreted as the
smallest slopeof all planelike solutions of the homogenized free boungaoplem in the
directione.

We now state our main result:

Theorem 2.6. For any T andn positive constants, there exigssuch that if

e <g
O =¢r1
then
(16) Yiin(€) — N < V¥°(€) < ymin(€) + 1.

It is worth mentioning that the upper bound in (16) is actpaihiform in T (but the
lower one is not).

To be complete, it remains to evalugfg, for a given reaction raté(x), which is a del-
icate task. Sincgl;, = ymin+ (1), we only wish to evaluatgmi,. For a one dimensional
front, we prove in Section A.1 that

Ymin = v/ 2Minf(f).
In R", we always have

Ymin(€) > /2Minf(f), foralleec S

but equality does not always hold. I&? for instance, and wheif is constant in one
direction (f (x1,%2) = f(x1)), we prove that (see Section A.2 for details):

Ymin(£e1) = v/2Minf(f), and ymin(e) = v/2M(f) fore+# +e;.
For more general(x), the determination ofm, is an open question.
The next two sections of the paper are devoted respectiwehetupper bound and the
lower bound in (16). Detailed proof of Theorem 2.5 is giversection 5.
3. UPPER BOUND

In this section, we prove thaf® is smaller than the slope of any planelike solution
of the stationary problem. Applying this result to the lesgsubsolution as defined in
Theorem 2.5, we thus obtain the upper bound in (16).

Let h' be a planelike solution of (12), with slope We assume that

VO > w4,
Assuming thad = t¢&, we introduce the (hyperbolic) rescaled function

(17) Vel = %us"s(ex, €t),

we will show that wherz is small enough, we can 'cut®" by h', in the following sense:
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VBT (X, to) < h'(x), forx-e=A,

ViT(x,to) > h'(x),  forx-e=B.

The monotonicity of#'T with respect td together with the maximum principle will give a
contradiction.

(18) There existé\ < B andt, s.t.

Proof. The functiorv®” propagates with speed?, and satisfies
(19) eov=~A0av— f(X)B(v) xeR"

Moreover, (8) becomes

max<0, } (1_ GEVS(X-GLCE'[M*)))
&
<

(20) <VET(xt)
max(r, } (1 N eEVS(X-e—Cgt‘FM*T))) )
£

Whene goes to zero, (20) leads to
y(x-e—&—M*) <V (xt) <max(t,y(x-e—Ct+M.T)).

Finally, we point out that sinc&v®' < 0,v®T is a supersolution of (12).
Let A be such that

yeX-e—R,>10 whenx-e=A

(with R, as in Theorem 2.5), we can chodgauch that

(21) VET(x,t) <h'(x), forx-e=A.

This is achieved, for exampletif satisfies
} (1_ eﬁEVS(R**CgtOJFM*T)) <T
S — )

or
1_efsy€(R*fc€to+M*r) <o,

Note that, is independent on, and only depends op.
Next, fore small enough, and singé'™ > y;+ n there exisB > A such that
1 —EyE(xe—cfto—M*) _
E(1_e )zysx-e forx-e=B,
which yields
VBT (X, 1) > h'(x), forx-e=B.
In order to conclude, we need to ensure that for some Rigad some timé; < t, we
have:
(22) VBT (xt1) > h'(x) in {x;x-e< —P}.
Admitting this fact for the time being, and thanks to the mtmmicity of v&(x,t) with
respect td, we deduce that there exisfs< t, such that
VET(x,t) > h'(x) forx-e<B.
Lettingt increase until®’ touchesh’ by above, we find* < t, such that
(23) veT(x,t*) > h'(x) forallx-e<B
vET(x*,t*) =hT(x*) forsomex*s.t.x*-e<B
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(note that the existence of follows from a compactness argument and the invariance
of the problem by integer translation). In particular thadtion v&'(x,t*) —h(x) has a
minimum forx = x*. But sinced;vé&T < 0, we have

AV —h) < F(X)(Bs(v"") = Bs(h)),

and the contradiction follows
To complete the proof, we have to prove that (22) holds.Rleé such that

h'(x) <bd in {xeR";x-e<-P}
(with bas in (7)), and* such that
vET(x,t*) > h'(x) in {xeR";x-e=—P}.
To see that®*(t*) > h', we introduce
n* =inf{n;v&I(x,t*) > h'(x) —n in {x; x-e< —P}},

and we claim thafj* = 0. As a matter of fact, i* > 0, we seth* = h" — n*, and since
bd > h' > h*, we deduce:

vET(X) > h*(x) forallx-e< —P
vET(X*) = h*(x¥) for somex* with x-e< —P
AT =) < F()(Bs (V") — Bs(h)).
The contradiction follows easily. O

4. LOWER BOUND
The main result of this section is the construction of a piaaesolutionU (x) of (12),
with slope

7' = liminf y®°
£—0,
o/e=r1

(see lemma 4.1). The minimality ¢f,, (Theorem 2.5 (iii)) immediately yields
Vr > Vrrnin(e)'
Moreover, using the same argument as in the previous settibnwithU (x) as a barrier,
we can show that
Vo <+,
for smalle, and in particular
limsup y¥% <.
£—0,
o/e=T1

Therefore, the whole sequence converges, and the lowedbondrheorem 2.6 follows.
To prove the existence &f, we first introduce the function:

(24) woT = %ue"s(ex, %),

which is solution to
(25) aw=Aw—f(x)B(w)  xeR"
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This parabolic scaling preserves the Holder estimaté$ {s uniformly bounded irCl’%),
but not the propagation property (the effective speed opagation becomescé?9). In
particularw® satisfies:

max<0, 1 (1 - egf(x'%gftM*)))>
€
(26) <wAT(xt) <

max(r,} (1_ esyg(x-euscftJrM*r))) )
&

Thus, where goes to 0, withr fixed,w® ! converges (uniformly on compact setstb
solution to (25), and satisfying

(27) 7' (x-e—M*) <w'(x,t) < max(t, V' (x-e+ M,T) .
Then, we have the following lemma:

Lemma 4.1.
When t— +oo, the function W(-,t) converges (uniformly on compact sets) to a continuous
function U(x) solution to (12), that also satisfies

7 (x-e—M*) <U(x) < max(t, 7 (x-e+ M,1)) .

The function Ux) is therefore a planelike solution of (12) with slope
Proof. The uniform convergence and the uniqueness of the limit mraddiate conse-
guences of the Holder estimate and the monotonicity’ofvith respect td.

It is readily seen thdtl (x) satisfies (27), and thus is planelike. To complete the proof,
we therefore have to prove tHa{x) is solution to the elliptic problem (12).

Integrating (25) fot in [T, T + 1], we have:

T+T "T+T
(28) WH(T+T)—wWH(T)=A ] wi(t)dt—f(x) | Br(W'(t))dt
JT T

Writing f7 TTWT (x,t)dt = f§ ¥ (x,t + T)dt, and thanks to the uniform convergence with
respect td, deduce:

T+T
/ W (x,t)dt —— TU (x),

T T—o00

and
T+T1
| Bew)dt— 1:(V).
Sincew" (X, T + 1) —wW'(x,T) - 0, (28) becomes

TAU (x) = T (x)B: (U (X)),

and the lemma follows. O

5. PLANELIKE SOLUTIONS OF THE ELLIPTIC PROBLEM

In this section, we give the proof of Theorem 2.5. The functti(x) is obtained as the
limit of the largest subsolution of the following boundamiwe problem:

A= F(X)Br(u)
(29) { U|X.$o =M

“mx.e_)foo u= 0
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In Section 5.1, we prove the existencentff. Section 5.2 and 5.3, we establish the main
properties ohM, and finally, in Section 5.4, we pass to the limit— « and complete the
proof of Theorem 2.5.

5.1. Barriers and existence ofi™. To begin with, we need barriers for (29): For any
slopel and any translatiot the function

=Ix-e+t

satisfies

AD, =0
O | =1.

Thus, withl = v/2AM + n (respectivelyl = v2AM — n), we can construct a family of
planelike subsolution@tl’T (respectively a family of supersolutioﬁé’r) of (12) (see Sec-
tion B for details).

Note thatd)}*r depends continuously dn which allows us to make use of the sliding
method.

Finally, choosing; andt, such that

M-C< ol <M

M<(Dt22<M+C whenx-e=0,

we can define the largest subsolution of (29) as follows:

hM(x) = sup{u(x) ; u subsolution of (29) s.}" <u < G2}

5.2. Birkoff’s property. Even thougthM is not monotonic with respect to e, we have:

Lemma5.1.

(x for allm e Z" such that me <0,

(x+ m)
) <hM(x) forall me Z" such that me > 0.

>h
hM(x4+m) <h

IntroducingQ, = {h(x) > n}, this lemma yields the following property, which is rem-
iniscent of Theorem 8.1 in [5], and which we call Birkoff'sqmerty:

Tm(Qn) CQ, forallmelL suchtham-e<0,
Tm(Qn) CQp forallmelL suchtham-e> 0.

Proof of Lemma 5.1Let k € Z be such thak-e > 0, thenhl!(x) = hM(x — k) satisfies
hk(x) <M for x-e =0, andh}(x) < ®Z(x — k) < ®2. Thereforez(x) = sugh (x —
k),hM(x)) is a subsolution of (29) and satisfies

P <z< DY
By definition ofhM, it follows thatz(x) < hM(x), and therefore
hM(x— k) < hM(x).

The second inequality is obtained by repladifg) by h(x+ k) in the previous argument
(since everything is invariant by translation). O
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5.3. Non-degeneracy.In this section, we prove that part (i) of Theorem 2.5 holds fo
hM(x), i.e. thathM (x) remains at a finite (universal) distance from a plane.

The proof relies on technique first introduced by L. Caffiaegid R. De La Llave in [5],
and later used in [8] to establish Theorem 2.1.

Let xo be the most left point on the free-boundary. Without lossefeayality, we can
always assume thag =0, i.e.

MM©0)=1, hM(x) < 1 forall x such thak-e < 0.
Then, we have the following lemma:
Lemma 5.2. There exists a universal constant C such that

suph™(x) > Cr
x-e<r

Before proving this lemma, let us see how, using the Birkodfgerty it will give Theo-
rem 2.5 (i) forh™. Let R, be such that

CR,—No2y/n>T1,
with C as in Lemma 5.2. Then, there exigtsuch that
hM(y) >CR,,  y-e<Ry,

and thanks to the choice 8, we deduce that

M>1 inB,m(y).

The Birkoff property (Lemma 5.1) yields
Ukezn ke=0Tk(Baa(Y)) € {hV > 1} C {x; x-e> 0}

and sinceB, ;; contains a cube of size 1, itis readily seen that

Ukezn, ke>0Tk(Bo,m(Y))
covers a half plane. It follows that
(30) x;x-e>R.} c{h(x) > 1} C {x;x-e>0}
for some universaR,.

Proof of Lemma 5.2We takex, such thaB, (xo) is tangent ta?{h™ > 1} at 0 (o = |Xo|).

Then, the function
rn+1 1 1
ux) = 2 e T
n o |X_ X0|

is such that
u>0 andAu=0, inR"\By, (%),
and
|Oul =1 0ndBy,(Xo).
Moreover, we have
u(x) > Cro, if Xx-e=Ry=2r,.

Using Appendix B, we see that the functieh{x) = W; (v 2AMu(x)) is a supersolution
of the 7-problem. We now prove Lemma 5.2 by contradiction: Assunag th

hM(x) < VI (x) on {x; x-e= Ry}
Then the translationt (x) = v(x+ Te) is still a supersolution, and, for largesatisfies
hM(x) < VE(x) in {x;x-e< Ro}
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Sliding VI by taking smaller and smalldr, we stop whent toucheshi™ by above:

T =inf{T; A" (x) <V (x)in {x;x-e< Ro}}.
SincehM(0) > v7(0), we haveT* > 0, and sincéh™(x) < v7(x) on x-e = R,, we get a
contradiction as in the proof of Lemma 2 in [8]. The resultdals. O

5.4. Existence and properties oh. For allM, there exist& € Z" such that the translation
hM(x) = hM(x — k) satisfies
(31) (M=1}c{x;0<x-e<R)).
With yM = M/ (k- e), and thanks to the previous section, we deduce
max1, M x-e—R,) <hM(x) < max1,Mx-e).

Finally, it is easy to see that2AM — ¢'(1) <YM < /2AM + /(7).
Passing to the limiM — o is now an easy task, thanks to the gradient estimates (see

[3D.
Theorem 2.5 (i) is an immediate consequence of (30). It resniai establish (ii). Let
g be a planelike subsolution with slopg we want to prove thagy > y* TakingA large,
we consider the restriction @f to {x; x- e < A}. Then, there exists a translation of the
supersolutiond2'” such that
g < ®2" whenx-e= A,
we want to check that this implies
(32) g< 2" whenx-e<A.
Clearly, there exists> t, such that
g < ®5" whenx-e< A

(since lime o CDST(X) =T1/4). Sincetbgr depends continuously dnwe can slide the
supersolution by letting goes tot, and stop whenever there existssuch thaig(x*) =
@5"(x*). Then the functiorz(x) = @57 (x) — g(x) satisfies

zZ(x) >0 whenx-e<A

Z(x) > whenx-e=A

z(x*)=0
and

Bz < £(x)(Br (®3") — Br(9))-
We get a contradiction (& 0) whenx = x*, hence (32) has to be satisfied.
Next, the function

g1 = max(g(x), P (x))
is a subsolution, and satisfies
LT < g; < ®2" whenx-e<A.

By definition ofhM, it follows thathM > g for x-e < A.
Hence, whe goes to infinity, there exists a sequenc&bofalso going to infinity) such
that

g(x) <hM(x), whenx-e<A, and g(x) >h"(x)—-C, whenx-e=A

The result follows.
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5.5. Convergence of the sequencg, ;. In this section, we investigate the limit gf, as
T goes to zero. Sincg, € [V2AM — 0(1),vV2AM + 0(1)], we can define

iminf yivin = Yinin € [V2AM, V2AM].
In order to prove that the whole sequence converges, we tnevellowing:
Lemma 5.3. Assume that f is continuous, and fix> 0. Then, for anyr; > 1,, we have:
Yok < Yoo+ O'(12).
In particular, it follows that for al; > 0, we have
Yok < Iirpjgf Yhint O(T1),
and therefore
IimSL”:’Vrrnin < liminf Vr;in = Vr?’ninv
T—0 7—0
which proves that the whole sequence converges, and that

lir;ﬂo Vr;in = yr?’nin'
Proof of Lemma 5.3Let h' be a planelike solution of
A= f(x)Br(),
with slopeyy;;.
Letabe a small positive real. There exi§sdepending only on the modulus of continu-
ity of f(x) such that, it is a vector satisfyingf| < Ca, the functiorha; (x) = (1+a)h(x+t)

is a planelike subsolution solution of (12) with sloffe+ a)y;,.. As a consequence, the
functionvy, defined by

Vp(X) = sup hat(y)
YEBy (X)

is a subsolution of (12).
Then, we have the following lemma:

Lemma 5.4. Let % be a point on they, level set of y. Then the ball B(xo) is tangent
from outside t{hle = 1,}. Moreover, if we notege 9By (%) N {hP = 1}, we have:

|Oxh2 (Yo)| > /2 (Yo)M.
[Oxvp| > /2f(yo)M  along{vy =1},

and thereforév,, — 7). is a subsolution of the free boundary problem. Moreover,
Ahle >0

and if we denote by the outward unit normal vector to each level §bf =t}, and byr;
the tangential direction tph, =t}, we have

Ohg?| = (he)v, and  (h)gr = Ki(hg)v,
wherek; is the directional curvature d¢hle =t} in thet; direction. Therefore
0 < Ahg = (hy)wv + Ki(he?)v.

On the other hand, sindde =t} has a touching ball from outside whose radius is greater
thann, we have

It follows that

K < for all i.

S|
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We deduce
0< (hP)uy+ "), and(hE)u(3o) > V2TV
From an ODE argument, it follows that

(he)v > v/2f(yo)M i {To <hp < To+Cn}.
HenceWy, ((vh — To)+) is & subsolution for
Au = f(x)Bry (U),
with slope(1+a)y, (see Appendix B for the definition 8¢;). The minimality ofy %
gives Lemma 5.3. O

Proof of Lemma 5.4Define

u(r)= sup hX(x).
XEdBy (Xo)

Then, the function(r) satisfies
u(r) <t inBy(0), u(n)=ro.

Moreover,u(r) satisfies:
(39 S (1715 2 v

on]n/2,n[. Assuming tha(u'(n))? < (1—a)2f(x)M, we will get a contradiction by
proving thatu(n /2) > To.
First, let us re-scale equation (33): the functign) = r—lou(ror)) satisfies:
(n—-1)
r

(34)

V(r) +V'(r) > f(%)B(V)
on]n/(21),n/ o], with

v(n/T)=1,  V(n/T0) < (1-a)2f (%)M

Next, we prove that iff, is small enough, there exists € [n/(216),n/To) such that
V(ro) = 0. If not, we have/(r) > 0inr, € [n/(210),n/To]. Hence, multiplying by/(r),
and integrating offr,n /7o), for somer € [n/(215),n/10], we get:

‘N/To (n—
S B v S0/ 307 2 1M - H()BUD),

and therefore
"n/To
V22
Jr

It is easy to check that(r) is bounded, and therefore:

(n-1)

. (V(r)2dr + 2 (x0)B(v(r)) — 2af(xo)M.

V(D)2 < c"’ﬁ%” 24 (%)B(V(r)) — 221 (x)M.

In particular, if[n /1o —r| < %n/ro, we have:
(V(r))? < 2f (x0)B(V(r)) — af (xo)M.
HenceB(v) > af(x,)M, and therefore(r) > cif |[n/To—r| < %n/ro.
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SinceB(c) > 0, itis readily seen that (34) implies thétr,) = 0 for somer, > n/(21,)
if 7o is small enough. Finally, a similar argument show ti@t) > 1 for somer; €
[n/(210),r0), which is the contradiction we were aiming at. O

5.6. Remark. With the same method as the one presented in this sectiomuig jgrove
the existence of a smallest planelike supersolution of,d2¥) , satisfying:
(i) There existgf,a(€) € [V2AM,V2AM] andR, universal constant such that
Max0, ymax(€) X- €= R.) < g'(X) < Max(T, ynax(€)X-€).

(i) Any other planelike solution (or supersolution) had@pg smaller tha,..(e).

APPENDIXA. COMPUTATION OF Ymin IN SOME PARTICULAR CASES

A.1. One-dimensional fronts. In this section, we seek to computg, whenn= 1.

Let us define
a(p)=_inf sup  f(y) |-
X€0,1] \ yejx—px+pul
Then, we prove the following result:

Theorem A.1. For any t andn positive constants, there exigtssuch that

V2Minf(f)—n < yhin<vV2Ma(u) +n V1<
When {x) is a continuous function,
a(u) — inf(f) whenu — 0,
and therefore
Yin(€) = v/2Minf(f).

Proof. According to Theorem 2.5, the lower bound is always satisfiedestablish The-
orem A.1, we have to construct a subsolution with slqﬁﬁﬁg(u) =+ 1. The minimality
of Ymin Will imply the result.

First of all, it is obvious that, iff (x,) = inf f, the function

h(x) = (v/2Minf(f) +n)(x—Xo)
is a subsolution of the free boundary problem. We wish to beirdthe region where
0 < h< 1, to get a solution of th@-problem. To that purpose, we must make sure that
|Oh(x)|? < 2Mf(x) in a neighborhood of,, hence the introduction af (u):
Fixing u andn, we assume that the infimuon(u) is achieved fox = O:

a(pu)= sup f(y),
YE]-H,H]
and we define
y=+v2Ma(u)+n, andh(x) = yx..
Then,h(x) is a subsolution of the free boundary problem, and to coostrgolution of the
B-problem, we introduce solution to
(35) ¢" =a(u)B(¢) in]—oox]
(36) $(%) =T
(37) ' (%) =,
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with X, = T/y. Then, we claim that for < 15, with 1T, small, there existg; € [—u, U]
such that

(38) $(x1) =0, ¢(X)>0 VXEJX1,Xol.
As a matter of fact, multiplying (35) by’ and integrating, we get

(/007 (9000)%) = @) (Be(8() ~ Be(9 (%)),
and using (36) and (37), we deduce:
(¢'(x))? = 20 (1)Br (9 (X)) + y* — 2Ma (1)
Thanks to the choice of it follows that
(¢'(x))? > 2a(1)Br(9(x) +n* > n?,

and the claim follows.
Finally, we definen’ as follows:

0 X< X1
(39) h'(x) =< ¢(X) X1 <X<Xo
h(x) XxX>Xo

It is readily seen that" is a subsolution of (12), and Theorem 2.5 (ii) gives the itesuil

A.2. Two-dimensional Front. In this section, we assume that 2 andf (x1,%2) = f(x1).
Defining

X\ yelxa—pxa+u

a(p) = inf < sup f(y)) ,
[

we prove the following result:
Theorem A.2. For anyu andn positive constants we have
(i) V2MInf(f) —n < ymin(£€1) < v2Ma () +n
and
(i) Ymin(€) = v/2M(f) forall e # te;.
Proof. The proof of (i) is similar to the proof of Theorem A.1, so welyohave to prove
(i).

Let h'(x1,x2) be the planelike solution of (12) with slop,,. Since (12) is invariant

by translation with respect t&,, the Birkoff property implies thah® is periodic in the
direction normal tee. Introducing

V(y1,¥2) = h'(y1,y2 - %yﬂ,
we deduce that periodic with period 1 with respect g, andv is solution to:
(40) Vi1 +2avia+ (14 a)Vaz = f(y1)Br(V),
witha= & (and(1+ a%) = 1/€5). Moreover, since
max{0,yx-e} < h' <max{1,yx-e+A*},
by a rescaling argument, we show that

Oxh" — yewhenx-e— 4o



16 L. A. CAFFARELLI, K.-A. LEE, AND A. MELLET

and therefore

(42) Oyv — y( (Sz > wheny, — +oo.

Multiplying (40) by v» and integrating over a large rectan{fel] x [—R, R], we have

1 (R 1 1 R
/ / (Vi1 + 2aviz + = Vo)vadyadys = / / £ (y1) B (V)Vadydys,
0o J-r € o J-Rr

and after integration by parts we deduce:

/ / V1V21+ (|V2| )2dyodyr = / / (Y1)Br(v)2dy2dya,

which yields

2/ / |V1|2 %|V2|2K§_+Edyl=/(;lf(y1) {BT( )Kz:Jeryl,
with By (u) = [5'Be(s)ds

Since

B:(v)(y1,R) = M for largeR,
Br(v)(y1,—R) ©=0

Dyv(ylv _R) R—’ O’
it follows that

R—o /0o

and (41) yields

.1 1 .1
im [ [ = Va2 + = [vof? d :2/1‘ dyiM,
m Jy [l gl av=2 [y

y=2(f)M.

O

RemarkA.3. Thanks to the invariance with respect¢g we can translate the solutidr
in the directiornx; in a continuous manner. Thus, using the sliding method, wélqarove:

() h" is monotone increasing with respectxo

(i) h' is the unigue planelike solution of (12) (and in particulafin = Ymax= 2(f)M).

APPENDIXB. PROOF OF SOME TECHNICAL LEMMAS CONSTRUCTION OF

SUBSOLUTIONS AND SUPERSOLUTIONS OF12)

In section 5.1, we omitted the construction of the supet&miand subsolutiod®?. We

present those construction here.
We definel"] (s) as follows:

rs(sf=ad  for0<s<ad
andr s solution to

Is(ad) =ad

r(s)=xs(Ts(s))  fors>asd,
rs(ad) =0,
with

LBs(u) fad<u<d
Xa(W) _{ 0 otherwise.
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The constani) > 0 will be chosen later, analis such that

/ Al 1+n

Similarly, we define¥?(s) as follows:

Wi (s) = St Bs(Wa(9)),
Ws(0)=0
W5(0) =Db,
whereb is such that ifu, satisfies¥(uy) = J, thenW (u,) = 1.
Thanks to the choice @ andb, it is easy to check that
Is(t)=t— &(d) whent > o

and

Ws(t) =t— 0(0) whent > 26.
In particular, we have

ro() 2% ¢
Then we have the following lemma:

. W) 2% ¢,

Lemma B.1. Assume that (i) is continuous. Then the following holds:

(i) Let u be a classical supersolution of the free boundanbfem such that there exists

andn such that

2f(x)M
1+n

thenrg(u) is a supersolution of (12) fod < T.

(i) Let v be a classical subsolution of the free boundarybbeomn such that there exists

andn such that

|Oul? < in{0<u<rt},

|Ouf® >

M in{0<u<T},

thenwg(u) is a subsolution for (12) fod < .

Proof. We only prove (i), leaving (i) to the reader. We have:
Al 5(u) = Ts(u)Au+%(u)|Ou?

1+
B (T 5(W)| U Xas<r <

( )B5(ra( )) Xas<r 5(u)<5
f)Bs(M5(u)),

which gives the result. O

VARVAN

APPENDIXC. NUMERICAL COMPUTATIONS

In this appendix, we present some numerical computationthél-d Pulsating Trav-
elling Fronts solutions of the free boundary problem. Tham@aputations were done prior
to the rest of the paper, and actually led us to the proof ptedéhere.

First, we have the following lemma:

Lemma C.1. For all t, x — u(x,t) is monotone increasing.
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Proof. If not, there exist$, such that(-,t,) has a local minimum for some.

If u(xo,to) > 0, then this contradicts the fact that,t,) is superharmonic iqu > 0}
(sinceu; < 0).

If u(xo,to) = 0, then there existg;, x, such thatu(xi,ts) > 0 andx, €]x1,X%[. Sinceu
is decreasing with respecttpwe can find; < t, such thau(x,t;) > 0 for all x € [x1,%y],
andu has a local minimum ifi, xz[, which yields a contradiction as in the first casé]

Thanks to this lemma, we can define the level functi@nt) by:
u(v(zt),t) =z ze[0,1].
Differentiating this relation with respect taandz, we obtain
U= —UVt, Ux=1/Vs, Uxx= —UxVzz/V2,
and (5) becomes:
Vi = v—l%vZZ forze (0,1)

V%(Oat) = 2f

(V(é,t))M
v(1,t) = 4o,
which can be solve numerically (note that this method doéswodk for n-d fronts, since
fronts are not monotonous with respectxtce). The evolution of the free boundary (or
0-level set) is then given by the curxe= v(0,t).
All figures were obtained with a reaction raitéx) such that:

2f(x) = 0.1+ (1+sin(x))?,
and withM = 1 (and thus/2inff = 1/0.1).

Figure 1 shows the evolution of the free boundary for diffiéralues ofe, with respect
to the rescaled variable§= x/e andt’ =t/&. We observe that the free boundary motion
looks more and more like a step function, sticking only onrtfieimum value off.

Figure 2 shows the effective speed of propagation as a fumofilog(¢). We immedi-
ately notice that the effective speed of propagation dse®asg goes to zero, and seems
to converges to the asymptotic valoie- /0.1 ~ 0.32.

Figure 3 shows that the profile is asymptotically given byxgomential curve as — 0,
while Figure 4 shows the boundary layer near the free boyndar

RemarkC.2 A more general computation on the level fuctigm, t) can be found in [10].
For similar results with the porous medium equations angt&te problem we refere to
(91, [11].
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