THE EQUATIONS FOR THE MODULI SPACE OF n POINTS ON THE LINE

BENJAMIN HOWARD, JOHN MILLSON, ANDREW SNOWDEN AND RAVI VAKIL

ABSTRACT. A central question in invariant theory is that of determining the relations among invariants. Geometric invariant theory quotients come with a natural ample line bundle, and hence often a natural projective embedding. This question translates to determining the equations of the moduli space under this embedding. This article deals with one of the most classical quotients, the space of ordered points on the projective line. We show that under any weighting of the points, this quotient is cut out (scheme-theoretically) by a particularly simple set of quadric relations, with the single exception of the Segre cubic threefold (the space of six points with equal weight). We also show that the ideal of relations is generated in degree at most four, and give an explicit description of the generators. If all the weights are even (e.g. in the case of equal weight for odd n), we show that the ideal of relations is generated by quadrics. Unlike many facts in geometric invariant theory, these results are characteristic-independent, and indeed work over the integers.

CONTENTS

1. Introduction

Part 1. A GRAPHICAL DESCRIPTION OF THE RING OF INVARIANTS OF POINTS ON A LINE

2. The invariants of n points on \mathbb{P}^1 as a graphical algebra

Part 2. THE MODULI SPACE OF n POINTS ON THE LINE IS CUT OUT BY SIMPLE QUADRICS WHEN n IS NOT SIX

3. Verification of the First Main Theorem 1.1 in small cases
4. An analysis of a neighborhood of a strictly semistable point
5. Proof of First Main Theorem 1.1

Part 3. THE IDEAL OF RELATIONS IS GENERATED IN DEGREE AT MOST FOUR

6. The toric filtration of the ring
7. The projective coordinate ring of $\text{gr}(R)$
8. Lifting the presentation from $\text{gr}(R)$ to R
9. References

Date: Friday, December 29, 2006.

The first two authors were partially supported by NSF grant DMS-0104006 and the last author was partially supported by NSF Grant DMS-0228011.

2000 Mathematics Subject Classification: Primary 14L24, Secondary 14D22, 14H10.
1. Introduction

We consider the space of n (ordered) points on the projective line, up to automorphisms of the line. In characteristic 0, the best description of this is as the geometric invariant theory quotient $(\mathbb{P}^1)^n//SL_2$. This is one of the most classical examples of a GIT quotient, and is one of the first examples given in any course (see [MS, §2], [MFK, §3], [N, §4.5], [Do, Ch. 11], [DoO, Ch. I], ...).

Generators for the ring of invariants have been known for a long time: in 1894 Kempe, see [Ke], proved that for the case of n points, the lowest degree invariants generate the ring of invariants. His proof is recast in modern language in Howe’s paper [Ho]. We dub these generators the Kempe generators. However, the question of the relations has remained open. It was not even known that the relations have bounded degree as n varies. Explicit equations were known classically only for small n, likely only up to $n = 6$.

More generally we consider the space of weighted points on \mathbb{P}^1. Let the ith point be weighted by w_i and let $w = (w_1, \ldots, w_n) \in (\mathbb{Z}^+)^n$ (the weight vector). Let R_w denote the ring of projective invariants. We denote the resulting quotient $\text{Proj } R_w$ by M_w. The weights can be interpreted as parametrizing the very ample line bundles of $(\mathbb{P}^1)^n$. The space of weighted points (for real weights) was considered by Deligne and Mostow [DM]. In their theory the weights are the parameters for the hypergeometric function. Another reason introducing weights is natural (coming from Euclidean geometry) is that the weights are the side-lengths of polygonal linkages in Euclidean three-space (see [KM] and [Kl]). The original case, when all points are treated equally, corresponds to $w = (1, \ldots, 1) = 1^n$. We call this the equilateral case because of its interpretation as the moduli space of equilateral polygons. At risk of confusion, we denote this important case M_1^n by M_n for simplicity.

We say that n points of \mathbb{P}^1 are w-stable (respectively w-semistable) in the sense of geometric invariant theory if the sum of the weights of any set of points that coincide is less than (respectively no more than) half the total weight. The dependence on w will be clear from the context, so the prefix w- will usually be omitted. The n points are strictly semistable if they are semistable but not stable. Then M_w is a projective variety, and GIT gives a natural projective embedding. The stable locus of M_w is a fine moduli space for the stable points of $(\mathbb{P}^1)^n$. The strictly semistable locus of M_w is a finite set of points in each characteristic, which are the only singular points of M_w.

The question we wish to address is: what are the equations of M_w? There are three possible meanings to this question.

(a) What are “good” equations for M_w set-theoretically?
(b) What are “good” equations cutting it out scheme-theoretically?
(c) What are “good” generators for the ideal of all equations for M_w?

Each question subsumes the previous one. The third question is the most fundamental. We give a good answer to (b) (First Main Theorem 1.1) and a satisfactory answer to (c) (Second Main Theorem 1.3), and speculate on a good answer to (c) (§1.5).
We prefer to work as generally as possible, over the integers, so we now define the moduli problem of stable n-tuples of points in $\mathbb{P}^1 = \mathbb{P}^1_{\mathbb{Z}} = \text{Proj}_{\mathbb{Z}}[x, y]$. (Important note: Those readers who prefer to work over a particular field, such as \mathbb{C}, should feel free to replace \mathbb{Z} by \mathbb{C} throughout; all arguments will still hold true.) Note that geometric invariant theory does not automatically apply to SL_2-quotients in positive characteristic, as SL_2 is not a reductive group in that case. Thus we must construct the moduli space by other means, either explicitly, or by describing the ring of invariants by other means, for example using the Gel’fand-MacPherson correspondence. For any scheme B, families of stable n-tuples of points in \mathbb{P}^1 over B are defined to be n sections $B \to \mathbb{P}^1 \times B$ such that less than half the weight is ever concentrated at any single point of \mathbb{P}^1. More precisely, a family is a morphism $\phi_1, \ldots, \phi_n : B \times \{1, \ldots, n\} \to \mathbb{P}^1$ such that for any $I \subset \{1, \ldots, n\}$ such that $\sum_{i \in I} w_i \geq \sum_{i=1}^n w_i / 2$, we have $\cap_{i \in I} \phi_i^{-1}(p) = \emptyset$ for all p. Then there is a fine moduli space for this moduli problem, quasiprojective over \mathbb{Z}, which has a natural ample line bundle, the one suggested by GIT. (This is well-known, but in any case will fall out of our analysis.) Hence this space has extrinsic projective geometry.

The main moral of this article is taken from Chevalley’s construction of Chevalley groups: when understanding a vector space defined geometrically, choosing a basis may obscure its structure. Instead, it is better to work with an equivariant generating set, and equivariant linear relations. A prototypical example is the standard representation of S_n, which is best understood as the permutation representation on the vector space generated by e_1, \ldots, e_n subject to the relation $e_1 + \cdots + e_n = 0$.

We now state our two main theorems. We will describe a natural (equivariant) set of “graphical” generators of the algebra of invariants (in §2). The algebraic structure of the invariants is particularly transparent in this language, and as an example we give a short proof of Kempe’s Theorem 2.3, and give an easy basis of the \mathbb{Z}-module of invariants (by “non-crossing variables”, Theorem 2.5). Similar ideas (using certain graphs to describe invariants) appear in the nineteenth century, in the work of Clifford, Sylvester, and Kempe (see [OS]). Another application is the computation in §2.13 of the degrees of all M_w. We then describe some geometrically (or combinatorially) obvious relations, the (linear) sign relations, the (linear) Plücker relations, and the (quadratic) simple binomial relations.

1.1. First Main Theorem. — With the unique exception of $w = (1, 1, 1, 1, 1, 1)$, the space M_w is cut out scheme-theoretically (as a closed subscheme of projective space) by the sign, Plücker, and simple binomial relations.

In particular, this answers question (b) above, and the ideal of relations (the answer to question (c)) is the radical of the ideal generated by these three “obvious” families of relations. The exceptional case $w = (1, 1, 1, 1, 1, 1)$ is the Segre cubic threefold.

The idea of the proof is as follows. We first reduce the question to the equilateral case, where n is even. We do this by showing a stronger result, which reduces such questions about the ideal of relations of invariants to the equilateral case. Yi Hu has pointed out to us that the map of semistable points corresponding to γ was constructed (for configurations on Grassmannians) in [Hu, Prop. 2.11].
1.2. Theorem (reduction to equilateral case, informal statement). — For any weight w, there is a natural map γ from the graded ring of projective invariants for $1^{|w|}$ to those for w. Under this map, each of our generators for $1^{|w|}$ is sent to either a generator for w, or to zero. Moreover, the relations for $1^{|w|}$ generate the relations for w.

In §2.14, we will state this result precisely, and prove it, once we have introduced some terminology. This is a stronger result than we will need, as it refers to the full ring of projective invariants, not just to the quotient variety; but we will need it for the Second Main Theorem 1.3 below. (It is also a stronger statement than simply saying that M_w is naturally a linear section of $M_{|w|}$.)

We then verify Theorem 1.1 “by hand” in the cases $n = 2m \leq 8$ (§3). The cases $n = 6$ and $n = 8$ are the base cases for our later argument (which is ironic, as in the $n = 6$ case the result does not hold!). In §5, we show that the result holds set-theoretically, and that the projective variety is a fine moduli space away from the strictly semistable points. The strictly semistable points are more delicate, as the quotient is not naturally a fine moduli space there; we instead give an explicit description of a neighborhood of a strictly semistable point, as the affine variety corresponding to rank one $(n/2 - 1) \times (n/2 - 1)$ matrices with entries distinct from 1, using the Gel’fand-MacPherson correspondence. We prove the result in this neighborhood in §4.

Our Second Main Theorem is about the full ideal of all relations.

1.3. Second Main Theorem. — For any weights $w = (w_1, \ldots, w_n)$, the ideal of relations in the ring of invariants is generated by relations of degree at most four. If all the weights are even, then the ideal of relations is generated in degree two.

The proof is given in Part 3, and is completed in §8. We give an explicit description of a generating set. They are suitable for computation, and for example were used to give the eight-point equations of §2.8.

In Part 3 we choose a filtration of the ring so that the associated graded ring $\text{gr}(R_w)$ is simpler to study. The associated graded ring is a toric ring explicitly realized as the semigroup of lattice points in a rational cone. We find that the relations of the toric ideal are generated in degree at most four, and by lifting these relations to the original ideal, we obtain the Second Main Theorem 1.3. This is done by first noting that $\text{gr}(R_w)$ is generated in degrees one and two. Then we define a normal form for monomials in the degree one and two generators so that the normal monomials are a basis of $\text{gr}(R_w)$ as a \mathbb{Z}-module. (Ideally we would like to have shown that the normal monomials are a SAGBI basis but were unable to do so.) We then show that any monomial can be brought into normal form by relations of degree four and less.

1.4. Remark. A toric filtration of the coordinate ring of the Grassmannian $G(2, n)$ (for the Plücker embedding) was given by Sturmfels in [St1] and all such filtrations appear in Speyer-Sturmfels [SpSt]; furthermore Lakshmibai-Gonciulea [GL] also defined such a filtration in their study of toric degenerations of general flag varieties. Our method is to restrict a toric filtration of the coordinate ring of $G(2, n)$ to the subring of T-invariants.
(which is equal to R_{qr}, see §4) where T is the maximal torus in SL_n (this method is described more generally in [FHu]).

Thus the understanding of the ring of projective invariants of ordered points on the projective line is now quite satisfactory. This is in contrast with the equally classical (and much more complicated) question of unordered points. (This is equivalent to considering homogeneous degree n polynomials in two variables — the subject of “binary quantics,” see [KR] and [Ho].) Mumford has written: “This is an amazingly difficult job, and complete success was achieved only for $n \leq 6$” [MFK, p. 77]. Later, “by an extraordinary tour de force” (Mumford, loc. cit.) Shioda [Sh] dealt with the case $n = 8$. In the unordered case, a generating set for general n is not known, but it is known that the degrees of the generators grow at least linearly in n, unlike the ordered case. (Harm Derksen gave us a short and beautiful proof of this fact, with an argument similar to those of his paper [De].) One might dream that the case $n = 10$ might be tractable by computer, given the explicit relations for M_{10} described here.

The case of unordered points with even n essentially corresponds to the ring of hyperelliptic modular forms of genus $(n - 2)/2$, and their relations. Our case of ordered points, where n is even and the weights are even, essentially corresponds to the ring of hyperelliptic modular forms of level two, and this paper completely describes generators of the ideal of relations among these forms.

We emphasize that our argument is almost entirely elementary, without reference to heavy machinery.

1.5. Related questions. Our results suggest some natural questions.

Question. Do the simple binomial relations generate the ideal of relations among invariants (if $n \neq 6$)?

By Theorem 1.2, it suffices to consider the equilateral case. It was classically known that the answer is yes for $n = 5$ (see §2.7), and we have also verified it for $n = 8$ (§2.8) and $n = 10$ (§2.9). The Second Main Theorem 1.3 suggests one obvious approach: one could hope to show that the explicit generators given there lie in the ideal given by these simple binomial quadrics. This is surprisingly difficult, and we have not succeeded in doing so.

Even special cases are striking, and are simple to state but computationally too complex to verify even by computer. For example, we will describe particularly attractive relations for M_n in §2.12); do these lie in the ideal of our simple quadrics? We will describe a quadric relation for M_{12} (§2.6). Is this an integral combination of our simple binomial quadrics?

This question leads to more speculation. The shape of the proof of the main theorem suggests an explanation for the existence of an exception: when the number of points gets “large enough”, the relations are all inherited from “smaller” moduli spaces, so at some point (in our case, when $n = 8$) the relations “stabilize”.
Speculative question. We know that M_n satisfies Green's property N_0 (projectively normality — Kempe's Theorem 2.3), and the question above suggests that M_n might satisfy property N_1 (projectively normal and cut out by quadrics) for $n > 6$. Might it be true that each p, M_n satisfies N_p for $n \gg 0$? (Property N_2 means that the scheme satisfies N_1, and the syzygies among the quadrics are linear. These properties measure the “niceness” of the ideal of relations.)

Speculative question. Might similar results hold true for other moduli spaces of a similar flavor, e.g. $\mathcal{M}_{0,n}$ or even $\mathcal{M}_{g,n}$? Are equations for moduli spaces inherited from equations of smaller moduli spaces for $n \gg 0$? For further motivation, see the striking work of [KT] on equations cutting out $\mathcal{M}_{0,n}$. Also, an earlier example of quadratic equations inherited from smaller moduli spaces appeared in [BP], in the case of Cox rings of del Pezzo surfaces. We thank B. Hassett for pointing out this reference.

Acknowledgments. We thank Lucia Caporaso, Harm Derksen, Igor Dolgachev, Philip Foth, Brendan Hassett, Roger Howe, Yi Hu, Allen Knutson, Anton Leykin, and Diane Maclagan. We thank Diane Maclagan and the referees for many significant improvements to the manuscript. We thank Allen Knutson for pointing out that the first toric degenerations of these spaces were given in [St1, Prop. 11.10]. We thank Philip Foth for many helpful comments about toric degenerations.

Part 1. A GRAPHICAL DESCRIPTION OF THE RING OF INVARIANTS OF POINTS ON A LINE

2. THE INVARIANTS OF n POINTS ON \mathbb{P}^1 AS A GRAPHICAL ALGEBRA

We now give a convenient alternate description of the generators (as a \mathbb{Z}-module) of the ring of invariants of n ordered points on \mathbb{P}^1. By graph we will mean a directed graph on n vertices labeled 1 through n. Graphs may have multiple edges, but may not have loops. The multidegree of a graph Γ is the n-tuple of valences of the graph, denoted $\text{deg} \Gamma$. The bold font is a reminder that this is a vector. We consider each graph as a set of edges. For each edge e of Γ, let $h(e)$ be the head vertex of e and $t(e)$ be the tail. We use multiplicative notation for the “union” of two graphs: if Γ and Δ are two graphs on the same set of vertices, the union is denoted by $\Gamma \cdot \Delta$ (so for example $\text{deg} \Gamma + \text{deg} \Delta = \text{deg} \Gamma \cdot \Delta$), see Figure 1. (We will occasionally use additive and subtractive notation when we wish to “subtract” graphs. We apologize for this awkwardness.)

We describe the coordinates of the ith point of $(\mathbb{P}^1)^n$ by $[u_i; v_i]$. To simplify formulas, we may write $[u_i; v_i] = [p_i; 1]$ where p_i could take on the value ∞. We leave it to the reader to re-homogenize such formulas.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{multiplying-directed-graphs.png}
\caption{Multiplying (directed) graphs}
\end{figure}
For each graph Γ, define $X_\Gamma \in H^0((\mathbb{P}^1)^n, \mathcal{O}_{(\mathbb{P}^1)^n}(\deg \Gamma))$ by

\begin{equation}
X_\Gamma = \prod_{\text{edge } e \text{ of } \Gamma} (p_{h(e)} - p_{t(e)}) = \prod_{\text{edge } e \text{ of } \Gamma} (u_{h(e)}v_{t(e)} - u_{t(e)}v_{h(e)}).
\end{equation}

If S is a non-empty set of graphs of the same multidegree, $[X_\Gamma]_{\Gamma \in S}$ denotes a point in projective space $\mathbb{P}^{|S|-1}$ (assuming some such X_Γ is nonzero of course). For any such S, the map $(\mathbb{P}^1)^n \rightarrow [X_\Gamma]_{\Gamma \in S}$ is easily seen to be invariant under SL_2: replacing p_i by $p_i + a$ preserves X_Γ; replacing p_i by ap_i changes each X_Γ by the same factor; and replacing p_i by $1/p_i$ also changes each X_Γ by the same factor.

The First Fundamental Theorem of Invariant Theory [Do, Thm. 2.1] implies that, given a weight w, the ring of invariants R_w of $(\mathbb{P}^1)^n//SL_2$ is generated (as a \mathbb{Z}-module) by the X_Γ where $\deg \Gamma$ is a multiple of w. The translation to the traditional language of tableaux is as follows. Choose any ordering of the edges $e_1, \ldots, e_{|\Gamma|}$ of Γ. Then X_Γ corresponds to any $2 \times |\Gamma|$ tableau where the top row of the ith column is $t(e_i)$ and the bottom row is $h(e_i)$. We will soon see advantages of this graphical description as compared to the tableaux description.

We now describe several types of relations among the X_Γ, which will all be straightforward: the sign relations, the Plücker (or straightening) relations, the simple binomial relations, and the Segre cubic relation.

2.1. The sign (linear) relations. The sign relation $X_{\Gamma - xy} = -X_{\Gamma - yx}$ (Figure 2) is immediate from the definition (1). Because of the sign relation, we may omit arrowheads in identities where it is clear how to consistently insert them (see for example Figures 9 and 11, where even the vertices are implicit). We have an equivalence relation on directed graphs, where two are equivalent if their corresponding undirected graphs are the same. Our graphs will have labeled vertices, and when we want to pick a representative of the equivalence class, we will arbitrarily choose the one where if $a < b$, all edges ab are directed $a \rightarrow b$. We call such a graph an upwards graph. For example, two of the three graphs in Figure 3 are upwards. (This choice is completely arbitrary, and breaks symmetry, so we prefer not to do this in general.)

2.2. The Plücker (linear) relations. The identity of Figure 3 may be verified by direct calculation. If Γ is any graph on n vertices, and $\Delta_1, \Delta_2, \Delta_3$ are three graphs on the same vertices given by identifying the four vertices of Figure 3 with the some four of the n vertices of Γ, then

\begin{equation}
X_{\Gamma - \Delta_1} + X_{\Gamma - \Delta_2} + X_{\Gamma - \Delta_3} = 0.
\end{equation}
These relations are called Plücker relations (or straightening rules). See Figure 4 for an example. We will sometimes refer to this relation as the Plücker relation for $\Gamma \cdot \Delta_1$ with respect to the vertices of Δ_1.

Using the Plücker relations, one can reduce the number of generators to a smaller set, which we will do shortly (Proposition 2.4). However, a central thesis of this article is that this is the wrong thing to do too soon; not only does it obscure the S_n symmetry of this generating set, it also makes certain facts opaque. As an example, we give a new proof of Kempe’s theorem. The proof will also serve as preparation for the proof of the First Main Theorem 1.1.

2.3. Kempe’s Theorem. — The lowest degree invariants generate the ring of invariants R_w.

Note that the lowest-degree invariants are of weight ϵ_ww, where $\epsilon_w = 1$ if $|w|$ is even, and $\epsilon_w = 2$ if $|w|$ is odd.

Proof. We begin in the case when $w = (1, \ldots, 1)$ where n is even. Recall Hall’s Marriage Theorem: given a finite set of men M and women W, and some men and women are compatible (a subset of $M \times W$), and it is desired to compatibly pair each woman with a unique man, then it is necessary and sufficient that for each subset S of women, the number of men compatible with at least one of them is at least $|S|$.

Given a graph Γ of multidegree (d, \ldots, d), we show that we can find an expression $X_{\Gamma} = \sum \pm X_{\Delta_i} \cdot X_{\Xi_i}$ where $\deg \Delta_i = (1, \ldots, 1)$. Arbitrarily divide the vertices into two equal-sized sets, one called the “positive” vertices and one called the “negative” vertices. This creates three types of edges: positive edges (both vertices positive), negative edges (both vertices negative), and neutral edges (one vertex of each sort). When one applies the Plücker relation to a positive edge and a negative edge, all resulting edges are neutral (see Figure 3, and take two of the vertices to be of each type). Also, each regular graph must have the same number of positive and negative edges. Working inductively on the number of positive edges, we can use the Plücker relations so that all resulting graphs have only neutral edges. We thus have an expression $\Gamma = \sum \pm \Gamma_i$, where each Γ_i has only
neutral edges and is hence a bipartite graph. Each vertex of Γ_i has the same valence d, so any set of p positive vertices must connect to at least p negative edges. By Hall’s Marriage Theorem, we can find a matching Δ_i that is a subgraph of Γ_i, with “residual graph” Ξ_i (i.e. $\Gamma_i = \Delta_i \cdot \Xi_i$). Thus the result holds in the equilateral case.

We next treat the general case. If $|w|$ is odd, it suffices to consider the case $2w$, so by replacing w by $2w$ if necessary, we may assume $\epsilon_w = 1$. The key idea is that the quotient M_w is a linear section of $M_{|w|}$. Suppose $\deg \Gamma = d_w$. Construct an auxiliary graph Γ' on $|w|$ vertices, and a map of graphs $\pi: \Gamma' \to \Gamma$ such that (i) the preimage of vertex i of Γ consists of w_i vertices of Γ', (ii) π gives a bijection of edges, and (iii) each vertex of Γ' has valence d, i.e. Γ' is d-regular. (See Figure 5 for an illustrative example. There may be choice in defining Γ'.) Then apply the algorithm of the previous paragraph to Γ'. By taking the image under π, we have our desired result for Γ. □

Choosing a planar representation of these graphs (as we shall now describe) makes termination of certain algorithms straightforward as well, as illustrated by the following argument. Consider the vertices of the graph to be the vertices of a regular n-gon, numbered (clockwise) 1 through n. A graph is said to be non-crossing if no two edges cross. Two edges sharing one or two vertices are considered not to cross. A variable X_{Γ} is said to be non-crossing (resp. upwards, §2.1) if Γ is. In Part 3, we will use regular upwards non-crossing graphs. This is a mouthful, so we dub them Kempe graphs.

2.4. Proposition (graphical version of “straightening algorithm”). — For each w, the upwards non-crossing variables of multidegree w generate $\langle X_{\Gamma} \rangle_{\deg \Gamma = w}$ (as a \mathbb{Z}-module).

This is essentially the straightening algorithm (e.g. [Do, §2.4] or [St2]) in this situation. This fact first appeared in [Ke] and the proof there is much the same as the one we present. The six non-crossing (undirected) graphs on 5 vertices are given in Figure 6. The fourteen non-crossing graphs on 8 vertices are given in Figure 7.

Proof. We explain how to express X_{Γ} in terms of upwards non-crossing variables. In this proof, we assume all variables are upwards, using the sign relation (§2.1). If Γ has a crossing, choose one crossing $wx \cdot yz$ (say $\Gamma = wx \cdot yz \cdot \Gamma'$), and use the Plücker relation (2) involving $wxyz$ to express Γ in terms of two other graphs $wy \cdot xz \cdot \Gamma'$ and $wz \cdot xy \cdot \Gamma'$. Repeat this if possible. We now show that this process terminates, i.e. that this algorithm will express X_{Γ} in terms of upwards non-crossing variables. Both of these graphs have lower sum of edge-lengths than Γ (see Figure 8, using the triangle inequality on the two triangles with side lengths a, d, f and b, c, e). As there are finite number of graphs of weight w, and hence a finite number of possible sums of edge-lengths, the process must terminate. □
Figure 6. The six non-crossing (undirected) graphs on $n = 5$ vertices. (The ordered quadruples will be relevant for the toric degeneration of Part 3.)

Figure 7. The fourteen non-crossing (undirected) graphs on $n = 8$ vertices.

Figure 8. The triangle inequality implies termination of straightening: $b + c > e, a + d > f$
2.5. Theorem (non-crossing basis of invariants). — For each w, the upwards non-crossing variables of multidegree w form a basis for $\langle X_\Gamma \rangle_{\deg \Gamma = w}$.

Proof. Proposition 2.4 shows that the upwards non-crossing variables span, so it remains to show that they are linearly independent. Assume otherwise that they are not always linearly independent, and thus there is a simplest nontrivial relation R for some smallest w (where the w are partially ordered by $|w|$ and $\# w$). The relation R states that some combination of these graphs is 0. Suppose this relation involves $\# w = n$ vertices. Then not all of the graphs in R contain edge $(n-1)n$ (or else we could remove one copy of the edge from each term in R and get a smaller relation).

Then identify vertices $(n-1)$ and n, throwing out the graphs containing edge $(n-1)n$. This “contraction” gives a natural bijection between upwards non-crossing graphs on n vertices with multidegree w, not containing edge $(n-1)n$, and upwards non-crossing graphs on $n-1$ vertices with multidegree w' (where $w'_{n-1} = w_{n-1} + w_n$). The resulting relation still holds true (in terms of invariants, we insert the relation $p_{n-1} = p_n$ into the older relation). We have contradicted the minimality of R, so no such counterexample R exists.

2.6. Binomial (quadratic) relations. We next describe some obvious binomial relations. If $\deg \Gamma_1 = \deg \Gamma_2$ and $\deg \Delta_1 = \deg \Delta_2$, then clearly $X_{\Gamma_1 \cdot \Delta_1} X_{\Gamma_2 \cdot \Delta_2} = X_{\Gamma_1 \cdot \Delta_2} X_{\Gamma_2 \cdot \Delta_1}$. We call these the binomial relations. A special case are the simple binomial relations when $\deg \Delta_i = (1,1,1,0,\ldots,0) = 140^{n-4}$, or some permutation thereof. Examples are shown in Figures 9 and 11.

(We have now defined all the relations relevant to the First Main Theorem 1.1, so the reader is encouraged to reread its statement.)

In the even equilateral case, the smallest quadratic binomial relations that are not simple binomial relations appear for $n = 12$, with $\deg \Gamma_i$ any 12-tuple with six 0’s and six 1’s, and $\deg \Delta_i$ the “complementary” 12-tuple with the 0’s and 1’s switched. In the introduction, we asked if these quadratics are linear combinations of the simple binomial relations.

By the sign and Plücker relations, the binomial relations are generated by those where the Γ_i and Δ_i are upwards non-crossing, and similarly for the simple binomial relations. This restriction can be useful to reduce the number of equations, but as always, symmetry-breaking obscures other algebraic structure. (Note that even though we may restrict to the case where Γ_i and Δ_i are non-crossing, we may not restrict to the case where $\Gamma_i \cdot \Delta_j$ are non-crossing, as the examples below with $n = 5$ and $n = 8$ show.)

2.7. Example: five points. As an example, consider the case $n = 5$ (with the smallest equilateral linearization $(2,2,2,2,2)$). One of the simple binomial relations is shown in Figure 9. The building blocks Γ_i and Δ_j are shown Figure 10. These quadric relations cut out M_5 in \mathbb{P}^5, as can be checked directly, or as follows from Theorem 1.1. It is well-known
2.8. Example: eight points. As a second example, consider \(n = 8 \) (and the equilateral linearization \((1, \ldots, 1) \)). Because there are \(\binom{8}{4}/2 = 35 \) ways of partitioning the 8 vertices into two subsets of size 4, and each such partition gives one simple binomial relation (where the \(\Gamma_i \) and \(\Delta_j \) are upwards non-crossing, see comments two paragraphs previous), we have 35 quadric relations on \(M_8 \), shown in Figure 11.

The space of quadric relations forms an irreducible 14-dimensional \(S_8 \)-representation, which we show by representation theory. If \(V \) is the vector space of quadratic relations, we have the exact sequence

\[
0 \rightarrow V \rightarrow \text{Sym}^2 H^0(M_8, \mathcal{O}(1)) \rightarrow H^0(M_8, \mathcal{O}(2)) \rightarrow 0
\]

of representations. By counting non-crossing (undirected or upwards) graphs, we can calculate \(h^0(M_8, \mathcal{O}(1)) = 14 \) (the 4th Catalan number), from which \(\dim V = 14 \). As the representation \(H^0(M_8, \mathcal{O}(1)) \) is identified, we can calculate the representation \(\text{Sym}^2 H^0(M_8, \mathcal{O}(1)) \), and observe that the only 14-dimensional subrepresentations it contains are irreducible. (Simpler still is to compute the character of the 196-dimensional representation \(H^0(M_8, \mathcal{O}(1))^\otimes 2 \), and decompose it into irreducible representations, using Maple for example, finding that it decomposes into representations of dimension \(1 + 14 + 14 + 20 + 35 + 56 + 56 \); \(\text{Sym}^2 H^0(M_8, \mathcal{O}(1)) \) is of course a subrepresentation of this.)

As our quadric relations are nontrivial, and form an \(S_8 \)-representation, we have given generators of the 14-dimensional space of quadric relations. We now give a basis. The
variables are those of Figure 7, where the labels are clockwise, with 1 and 2 the top two vertices. We organize them into three orbits under the action of $(12345678) \in \mathfrak{S}_8$.

0 = $hl - ij$
0 = $mc - na$
0 = $dk - ej$
0 = $bf - ga$
0 = $ad + aj + di - bc - bh - cl$
0 = $jf + ja + fn - hk - hm - kc$
0 = $al + aj + le - mb - md - bk$
0 = $jc + ja + cg - dh - df - hb$
0 = $ak + aj + ki - fm - fl - mh$
0 = $j + ja + bn - ld + lc + dm$
0 = $ah + aj + he - cf - ck - fd$
0 = $jm + ja + mg - kl - kb - lf$
0 = $aj + bh + bj - cg + df + dh + dj + dk + fj - gn + hj + hl + j^2 + jk + jl + jm$
0 = $ja + hm + ha - ki + fl + fm + fa + fb + la - ie + ma + mc + a^2 + ab + ac + ad$

By straightforward computer calculation, one may verify that the quadratic relations generate the cubic and quartic relations when $n = 8$. By the Second Main Theorem 1.3, we thus know that all relations are generated by these quadratic relations (over the integers, i.e. without denominators).

Our 35 graphical relations have the advantage that the \mathfrak{S}_8-action is clear, but the major disadvantage that it is not a priori clear that the vector space they span has dimension 14. We suspect there is an elegant \mathfrak{S}_8-equivariant description of the linear relations among the graphical generators, but we have not found one.

We will use the fact that the ideal of relations of M_8 are generated by our 35 simple binomial quadrics as the base case of an induction in our proof of the First Main Theorem 1.1.

2.9. **Example: ten points.** Here there are 42 generators and 300 quadric relations. By a nontrivial computer calculation we find that the quadrics generate all the cubic and quartic relations, and hence (by the Second Main Theorem 1.3) they generate the ideal of all relations. This gives credence to our conjecture that the ideal is generated by quadrics unless $n = 6$.

2.10. **The Segre cubic relation.** Other relations are also clear from this graphical perspective. For example, Figure 12 shows an obvious relation for M_6. This space is well-known to be a cubic hypersurface (the Segre cubic hypersurface, see for example [DoO, p. 17] or [Do, Example 11.6]). As Figure 12 is a nontrivial cubic relation (this can be verified by writing it in terms of a non-crossing basis), it must be the Segre cubic relation. Interestingly, although the relation is not \mathfrak{S}_6-invariant, it becomes so modulo the Plücker relations (2).
Note that there are no (nontrivial) binomial relations for M_6 (which is cut out by this cubic), so the Segre relation cannot be in the ideal generated by the binomial relations. The “usual” description of the Segre cubic is, in appropriate coordinates,

$$z_1 + z_2 + z_3 + z_4 + z_5 + z_6 = z_1^3 + z_2^3 + z_3^3 + z_4^3 + z_5^3 + z_6^3 = 0$$

which has the advantage over Figure 12 of obvious symmetry. On the other hand, Figure 12 has the advantage of being patently true — while even the definition of the z_i is not so simple (and is best understood in terms of the outer automorphism of S_6). Also, the usual description of the Segre cubic doesn’t work in characteristic 3 (although it is easily patched), while Figure 12 is characteristic-independent (and works over \mathbb{Z}).

2.11. Remark: Segre cubic relations for $n \geq 8$. There are analogous cubic relations for $n \geq 8$, by simply adding other vertices. The $n = 8$ case is given in Figure 13. For $n \geq 8$, these Segre cubic relations lie in the ideal generated by the simple binomial relations. We will use this in the proof of Theorem 1.1. This follows from the case $n = 8$, which can be verified in a couple of ways. As stated above, the ideal cutting out M_8 is generated by the fourteen quadrics of §2.8, which by §2.8 is the ideal generated by the simple binomial relations, and the cubic lies in this ideal. One may also verify that the Segre relation lies in the ideal generated by the fourteen quadrics by explicit calculation (omitted here).

2.12. Other relations. There are other relations, that we will not discuss further. For example, consider the equilateral case for n even. Then S_n acts on the set of graphs. Choose any graph Γ. Then

$$\sum_{\sigma \in S_n} \text{sgn}(\sigma) X_{\sigma(\Gamma)}^i = 0$$

is a relation for i odd and $1 < i < n - 1$. Reason: substituting for X’s in terms of p’s (or more correctly the u’s and v’s) using (1) to obtain an expression E, and observing that S_n acts oddly on E, we see that we must obtain a multiple of the Vandermonde, which has degree $(n - 1, \ldots, n - 1) > \text{deg} E$. Hence $E = 0$. It is not clear that this is a nontrivial relation, but it is in small cases. In particular, the case $n = 6, i = 3$ is the Segre cubic relation. In the introduction, we asked if these relations lie in the ideal generated by the simple binomial quadric relations.
2.13. Degree of the GIT quotient \(M_w \). As an application of these coordinates, we compute the degree of all \(M_w \) (under the Kempe embedding in projective space). For example, we will use this to verify that the degree is 1 when \(|w| = 6 \) and \(w \neq (1, \ldots, 1) \), although this can also be done directly.

We would like to intersect the moduli space \(M_w \) with \(n - 3 \) coordinate hyperplanes of the form \(X_{\Gamma} = 0 \) and count the number of points, but these hyperplanes will essentially never intersect properly. Instead, we note that the intersection of each hyperplane \(X_{\Gamma} = 0 \) with \(M_w \) is reducible, and consists of a finite number of components of the form \(M_{w'} \) where the number of points \(#w' \) is \(n - 1 \). We can compute the multiplicity with which each of these components appears. The algorithm is then complete, given the base case \(n = 4 \). Here, more precisely, is the algorithm.

(a) (trivial case) If \(n = 3 \), the moduli space is a point, so the degree is 1.

(b) (base case) If \(w = (d, d, d, d) \), then \(\deg M_w = d \), as the moduli space is isomorphic to \(\mathbb{P}^1 \), embedded by the \(d \)-uple Veronese. (This may be seen by direct calculation, or by noting that a base-point-free subset of those variables of multidegree \((d, d, d, d) \) are “\(d \)th powers” of variables of multidegree \((1, 1, 1, 1) \).)

(c) (main inductive step) If \(n > 4 \) and \(w \) satisfies \(w_j + w_k \leq \sum w_i / 2 \) for all \(j, k \), we give an inductive formula for the degree in terms of degrees for smaller \(w \). We choose any \(\Gamma \) of weight \(w \). We can understand the components of \(X_{\Gamma} = 0 \) by considering the morphism \(\pi : (\mathbb{P}^1)^n - U_w \to [X_{\Gamma}]_{\deg \Gamma = w} \), where \(U_w \) is the unstable locus. Directly from the formula for \(X_{\Gamma} \), we see that for each pair of vertices \(j, k \) with an edge joining them, such that \(w_j + w_k < \sum w_i / 2 \), there is a component that can be interpreted as \(M_{w'} \), where \(w' \) is the same as \(w \) except that \(w_j \) and \(w_k \) are removed, and \(w_j + w_k \) is added (call this \(w_0 \) for convenience). We interpret this as removing vertices \(j \) and \(k \), and replacing them with vertex 0. This component corresponds to the divisor

\[
(u_j v_k - u_k v_j)^{m_{jk}} = 0
\]

on the source of \(\pi \), where \(m_{jk} \) is the number of edges joining vertices \(j \) and \(k \). If \(\Delta \) is the reduced version of this divisor, \(u_j v_k - u_k v_j = 0 \), then the correspondence between \(\Delta \to M_{w} \) and \((\mathbb{P}^1)^{n-1} - U_{w'} \to M_{w'} \) is as follows. For each \(\Gamma' \) of multidegree \(w' \), we lift \(X_{\Gamma'} \) to any \(X_{\Gamma} \) where \(\Gamma \) is a graph on \(\{1, \ldots, n\} \) of multidegree \(w \) whose “image” in \(\{1, \ldots, n\} \cup \{0\} \setminus \{j, k\} \) is \(\Gamma' \). (In other words, to \(w_j \) of the \(w_0 \) edges meeting vertex 0 in \(\Gamma' \), we associate edges meeting vertex \(j \) in \(\Gamma \), and similarly with \(j \) replaced by \(k \).) If \(\Gamma'' \) is any other lift, then \(X_{\Gamma} = \pm X_{\Gamma'} \) on \(\Delta \), because using the Plücker relations, \(X_{\Gamma} \pm X_{\Gamma'} \) can be expressed as a combination of variables containing edge \(jk \), which all vanish on \(\Delta \).

From (3), the multiplicity with which this component appears is \(m_{ij} \), the number of edges joining vertices \(j \) and \(k \).

We take the sum of the degrees of all such cases, weighted by the corresponding multiplicity.

(Note that if \(w_j + w_k = \sum w_i / 2 \), then \(M_{w'} \) is a strictly semistable point, and of dimension \(0 < \dim M_w - 1 \), and hence is not a component. Our base case is \(n = 4 \), not 3, for this reason.)
(c) (reduction of “base locus” case) If \(n \geq 4 \) and there are \(j \) and \(k \) such that \(w_j + w_k > \sum w_i/2 \), then the rational map \((\mathbb{P}^1)^4 \to M_w\) has a base locus. Any graph \(X_\Gamma \) of degree \(w \) necessarily contains a copy of edge \(jk \), so \((u_jv_k - u_kv_j) \) is a factor of any of the \(X_\Gamma \). Hence \(M_w \) is naturally isomorphic to \(M_{w-e_j-e_k} \), so we replace \(w \) by \(w - e_j - e_k \), and repeat the process. Note that if \(n = 4 \), then the final resulting quadruple must be of the form \((d, d, d, d)\).

For example, \(\deg M_4 = 1, \deg M_6 = 3, \deg M_8 = 40, \) and \(\deg M_{10} = 1225 \) were computed by hand. (This appears to be sequence A012250 on Sloane’s On-line encyclopedia of integer sequences [Sl].) The calculations \(\deg M_6 = 3 \) and \(\deg M_{2,2,2,2,2} = 5 \) are shown in Figures 14 and 15 respectively. At each stage, \(w \) is shown, as well as the \(\Gamma \) used to calculate the next stage. In these examples, there is essentially only one such \(w \) at each stage, but in general there will be many. The vertical arrows correspond to identifying components of \(X_\Gamma \) (step (c)). The first arrow in Figure 14 is labeled \(\times 3 \) to point out the reader that the next stage can be obtained in three ways. The degrees are obtained inductively from the bottom up. (The reader is encouraged to show that \(\deg M_8 = 40 \), and that this algorithm indeed gives \(\deg M_{dw} = d^{n-3} \deg M_w \).)

2.14. Reduction to the equilateral case (proof of Theorem 1.2). We next prove Theorem 1.2, hence reducing questions about relations in general weight to the equilateral case. The argument is similar in spirit to our proof of Kempe’s Theorem 2.3.

Suppose that \(w = (w_1, \ldots, w_m) \) and \(|w| = n \) is even. Then \(w \) defines a natural partition of \(\{1, \ldots, n\} \) into \(m \) parts which we call clumps. The first clump is \(\{1, \ldots, w_1\} \), the second clump is \(\{w_1 + 1, \ldots, w_1 + w_2\} \), etc. For example, if \(w = (2, 2, 1, 1) \) then it partitions \(\{1, 2, 3, 4, 5, 6\} \) into four clumps; \(\{1, 2\}, \{3, 4\}, \{5\} \) and \(\{6\} \). We shall also be interested in the case where all \(w_i \) are even. Then \(w \) naturally partitions \(\{1, \ldots, n/2\} \) into \(m \) clumps:
the first clump is \{1, \ldots, w_1/2\}, the second clump is \{w_1/2 + 1, \ldots, w_1/2 + w_2/2\}, etc. In what follows, the weight \(\tilde{w}\) can be either \(1^n\) or \(2^n/2\), but the latter case is only allowed if each \(w_i\) is even.

Consider the commutative diagram:

\[
\begin{array}{cccccc}
0 & \longrightarrow & I_{\tilde{w}} & \longrightarrow & \mathbb{Z}[\{\tilde{X}_\Gamma\}_\Gamma] & \phi \longrightarrow & R_{\tilde{w}} & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & I_w & \longrightarrow & \mathbb{Z}[\{\tilde{X}_\Delta\}_\Delta] & \psi \longrightarrow & R_w & \longrightarrow & 0,
\end{array}
\]

where \(R_{\tilde{w}}\) (respectively \(R_w\)) is the ring of invariants associated to the weight \(\tilde{w}\) (respectively \(w\)), the \(\Gamma\)'s range over all graphs of multidegree \(\tilde{w}\), and the \(\Delta\)'s range over all graphs of multidegree \(w\). The \(\tilde{X}_\Gamma\)'s and \(\tilde{X}_\Delta\)'s are formal variables, and the surjective map \(\phi\) (resp. \(\psi\)) is given by \(\tilde{X}_\Gamma \mapsto X_\Gamma\) (resp. \(\tilde{X}_\Delta \mapsto X_\Delta\)). The map \(e\) takes \(\tilde{X}_\Gamma\) to \(\tilde{X}_\Delta\) where \(\Delta\) is given by identifying vertices of \(\Gamma\) within the same clump; if a loop is introduced then it maps to zero.

2.15. Theorem. — The map \(\alpha : I_{\tilde{w}} \rightarrow I_w\) is surjective.

In other words, all relations for \(M_w\) are “inherited” from \(M_{\tilde{w}}\).

Proof. It is clear that \(e\) is surjective (and hence \(\gamma\) too). Thus by the five lemma, it suffices to prove that \(\ker e\) surjects onto \(\ker \gamma\).

We have that \(R_{\tilde{w}} = \oplus G \mathbb{Z} \cdot X_G\), where \(G\) ranges over upwards non-crossing graphs of multidegree \(N\tilde{w}\) for some \(N \geq 0\) (such \(X_G\) form a \(\mathbb{Z}\)-basis of \(R_{\tilde{w}}\)). Similarly \(R_w = \oplus H \mathbb{Z} \cdot X_H\) as \(H\) ranges over upwards non-crossing graphs of multidegree \(Nw\) for some \(N \geq 0\). For each upwards non-crossing \(H\), there is exactly one upwards non-crossing \(G\) for which \(\gamma(X_G) = X_H\). Thus \(\ker(\gamma) = \oplus G \mathbb{Z} \cdot X_G\) where the sum is over those upwards non-crossing \(G\) which contain least one edge which connects two vertices in a single clump. Fix such a \(G\), with an edge \(ab\) where \(a\) and \(b\) are in the same clump.

First we treat the case that \(\tilde{w} = 1^n\). Partition \(\{1, \ldots, n\}\) into two equal sized subsets \(A\) and \(B\) (“positive” and “negative”) such that \(a \in A\), and \(b \in B\). As in the proof of Kempe’s theorem 2.3, we can write \(X_G = \sum_i X_{\Gamma_i}\), where the \(\Gamma_i\) are bipartite graphs and each \(\Gamma_i\) contains the edge \(ab\). (The process described in the proof of Theorem 2.3 involves trading a pair of edges, one positive and one negative, for two neutral edges. No neutral edges such as \(ab\) are affected by this process.)

By applying Hall’s marriage theorem (repeatedly) to \(\Gamma_i\), we can write \(X_{\Gamma_i} = \prod_{j=1}^k X_{\Gamma_{i,j}} = \phi(\prod_{j=1}^k \tilde{X}_{\Gamma_{i,j}})\), where the \(\Gamma_{i,j}\) are matchings, and \(k = \deg(X_G)\). There exists some \(j\) such that \(\Gamma_{i,j}\) contains the edge \(ab\), so \(e(\prod_{j=1}^k \tilde{X}_{\Gamma_{i,j}}) = 0\). This holds for each \(i\). Therefore \(e(\sum_i \prod_{j=1}^k \tilde{X}_{\Gamma_{i,j}}) = 0\), and also \(\phi(\sum_i \prod_{j=1}^k \tilde{X}_{\Gamma_{i,j}}) = X_G\). Hence \(\ker e\) surjects onto \(\ker \gamma\).
2. Part \(\Gamma \)

where \(S \) were verified to have degree \(1 \). As before, \(\tilde{w} = 2^{n/2} \) and each vertex of \(G \) has valence \(2v \). Choose an auxiliary \(v \)-regular graph \(G' \) with \(n \) vertices that maps to \(G \) by “clumping” vertices \(\ell \) and \(\ell + 1 \) for each odd \(\ell, 1 \leq \ell \leq n - 1 \) (call this map on graphs \(\rho \)). Let \(a'b' \) be an edge of \(G' \) which maps to the edge \(ab \) of \(G \). As above, write \(X_{G'} = \sum_{i} X_{\Gamma_i'} \) such that each \(X_{\Gamma_i'} = \prod_{j=1}^{w} X_{\Gamma_{i,j}'} \) and each \(\Gamma_{i,j}' \) is an \(n \)-matching, where for all \(i \), there exists \(j \) such that \(\Gamma_{i,j}' \) contains the edge \(a'b' \). Let \(\Gamma_i = \rho(\Gamma_i') \) and \(\Gamma_{i,j} = \rho(\Gamma_{i,j}') \) for each \(i, j \). Now, \(X_G = \sum_{i} \prod_{j=1}^{w} X_{\Gamma_{i,j}}, \) each \(\Gamma_{i,j} \) is a 2-regular graph on \(n/2 \) vertices, and for each \(i \) there is a \(j \) such that \(\Gamma_{i,j} \) contains the edge \(ab \). As before, \(e\left(\sum_{i} \prod_{j=1}^{w} \tilde{X}_{\Gamma_{i,j}} \right) = 0. \) Hence \(\ker e \) surjects onto \(\ker \gamma. \)

\[\square \]

Part 2. The moduli space of \(n \) points on the line is cut out by simple quadrics when \(n \) is not six

In Part 2, we prove the First Main Theorem 1.1. We begin by verifying it in small cases.

3. Verification of the First Main Theorem 1.1 in small cases

The cases \(|w| = 2 \) and \(|w| = 4 \) are trivial. If \(|w| = 6 \) and \(w \neq (1, \ldots, 1) \), then \(w = (3, 2, 1), (2, 2, 2), (2, 2, 1, 1) \), or \((2, 1, 1, 1, 1) \). The first two cases are points, and the next two cases were verified to have degree 1 in §2.13 (see Figure 14). The case \(w = (1, 1, 1, 1, 1, 1, 1) \) was verified in §2.8, so by §2.14, the case \(|w| = 8 \) follows. Thus the cases \(|w| \geq 10 \) remain.

4. An analysis of a neighborhood of a strictly semistable point

We now show the result in a neighborhood of a strictly semistable point, in the equilateral case \(w = 1^{n-2m} \) in characteristic 0, by explicitly describing an affine neighborhood of such a point. This affine neighborhood has a simple description: it is the space of \((m - 1) \times (m - 1) \) matrices of rank at most 1, where no entry is 1 (Lemma 4.3). The strictly semistable point corresponds to the zero matrix.

4.1. The Gel’fand-MacPherson correspondence: the moduli space as a quotient of the Grassmannian. We begin by recalling the Gel’fand-MacPherson correspondence, an alternate description of the moduli space. The Plücker embedding of the Grassmannian \(G(2, n) \rightarrow \mathbb{P}^{n \choose 2} - 1 \) is via the line bundle \(\mathcal{O}(1) \) that is the positive generator for \(\text{Pic} \ G(2, n) \). This generator may be described explicitly as follows. Over \(G(2, n) \), we have a tautological exact sequence of vector bundles

\[0 \longrightarrow S \longrightarrow \mathcal{O}^{\oplus n} \longrightarrow Q \longrightarrow 0 \]

where \(S \) is the tautological rank 2 subbundle, and \(Q \) is the tautological rank \(n - 2 \) quotient bundle. Then \(\wedge^2 S = \mathcal{O}(-1) \) is a line bundle, and is the dual to \(\mathcal{O}(1) \). Dualizing (4) we get a map \(\wedge^2 \mathcal{O}^{\oplus n} \rightarrow \wedge^2 S^* \). Then \(\wedge^2 S^* \) can be easily checked to be generated by these global
sections. We call these sections \(s_{ij} \) and note that they satisfy the following relations: the sign relations \(s_{ij} = -s_{ji} \) inherited from \(\wedge^2 O^{s_n} \) (so \(s_{ii} = 0 \)), and the Plücker relations

\[
s_{ij} s_{kl} - s_{ik} s_{jl} - s_{jk} s_{il} = 0.
\]

These equations cut out the Grassmannian in \(\mathbb{P}^{\binom{n}{2} - 1} \).

The connection to \(n \) points on \(\mathbb{P}^1 \) is as follows. Given a general point of the Grassmannian corresponding to the subspace \(\Lambda \) of \(n \)-space, we obtain \(n \) points on \(\mathbb{P}^1 \), by considering the intersection of \(\Lambda \) with the \(n \) coordinate hyperplanes, and projectivizing. This breaks down if \(\Lambda \) is contained in a coordinate hyperplane. (The point \([\Lambda] \) is GIT-stable if the resulting \(n \) points in \(\mathbb{P}^1 \) are GIT-stable, and similarly for semistable. We recover the cross-ratio of four points via \(s_{ij} s_{kl} / s_{ik} s_{jl} \).)

Let \(D(s_{1n}) \) be the distinguished open set where \(s_{1n} \neq 0 \). (In the correspondence with marked points, this corresponds to the locus where the first point is distinct from the last point.) Then \(D(s_{1n}) \) is isomorphic to \(\mathbb{A}^{2(n-2)} \), with good coordinates as follows. Given \(\Lambda \notin D(s_{1n}) \), choose a basis for \(\Lambda \), written as a \(2 \times n \) matrix. As \(\Lambda \notin D(s_{1n}) \), the first and last columns are linearly independent, so up to left-multiplication by \(GL_2 \), there is a unique way to choose a basis where the first column is \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \) and the last column is \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \). We choose the “anti-identity” matrix rather than the identity matrix, because we will think of the first column as \([0; 1] \in \mathbb{P}^1 \), and the last column as \([1; 0] \). (Another interpretation is as follows. If \(\Lambda \) is interpreted as a line in \(\mathbb{P}^{n-1} \), and \(H_1, \ldots, H_n \) are the coordinate hyperplanes, then if \(\Lambda \) does not meet \(H_1 \cap H_n \), then it meets \(H_1 \) at one point of \(H_1 - H_1 \cap H_n \) and \(H_n \) at one point of \(H_n - H_1 \cap H_n \), and \(\Lambda \) is determined by these two points. The coordinates on the first space are the \(x \)'s, and the coordinates on the second are the \(y \)'s.)

Thus if the \(2 \times n \) matrix is written

\[
\begin{bmatrix}
0 & x_2 & x_3 & \cdots & x_{n-1} & 1 \\
1 & y_2 & y_3 & \cdots & y_{n-1} & 0
\end{bmatrix}
\]

then we have coordinates \(x_2, \ldots, x_{n-1}, y_2, \ldots, y_{n-1} \) on our affine chart. For convenience, we define \(x_1 = 0, y_1 = 1, x_n = 1, y_n = 0 \).

Under the trivialization \((\mathcal{O}(1), s_{1n})|_{D(s_{1n})} \cong (\mathcal{O}, 1)|_{D(s_{1n})} \), in these coordinates, the section \(s_{ij} \) may be interpreted as

\[
s_{ij} = x_j y_i - x_i y_j.
\]

We can use this to immediately verify the Plücker relations. We also recover the \(x_i \) and \(y_j \) from the sections via

\[
x_i = s_{1i} / s_{1n} \quad y_j = s_{jn} / s_{1n}.
\]

The Grassmannian has dimension \(2(n-2) = 2n-4 \). To obtain our moduli space, we take the quotient of \(G(2, n) \) by the maximal torus \(T \subset SL_n \), which has dimension \(n - 1 \). (Thus as expected the quotient has dimension \(n - 3 \).) We will write elements of this maximal torus as \(\lambda = (\lambda_1, \ldots, \lambda_n) \). To describe the linearization, we must describe how \(\lambda \) acts on each \(s_{ij} \): \(\lambda_i \) acts on \(s_{ij} \) with weight 1, and on the rest of the \(s_{ij} \)'s by weight 0. This action certainly preserves our relations.
Then we can see how to construct the quotient as a Proj: the terms that have weight (d, d, \ldots, d) correspond precisely to d-regular graphs on our n vertices. Hence we conclude that this projective scheme is precisely the GIT quotient of n points on the projective line, as the graded rings are the same. This is the Gel’fand-MacPherson correspondence. The relations we have described on our X clearly come from the relations on the Grassmannian. (That is of course no guarantee that we have them all!)

4.2. A neighborhood of a strictly semistable point. Let $\pi : G(2, 2m)^{ss} \to M_w$ be the quotient map. Let p be a strictly semistable point of the moduli space M_w, without loss of generality the image of $(0, \ldots, 0, \infty, \ldots, \infty)$. We say an edge ij on vertices $\{1, \ldots, 2m\}$ is good is $i \leq m < j$ (if it “doesn’t connect two 0’s or two ∞’s”). We say a graph on $\{1, \ldots, 2m\}$ is good all of its edges are good. We say an edge or graph is bad if it is not good. Let P be the set of good matchings of $\{1, \ldots, 2m\}$. Let

$$U_P = \{q \in M_w : X_\Gamma(q) \neq 0 \text{ for all } \Gamma \in P\}.$$

(In the dictionary to n points on \mathbb{P}^1, this corresponds to the set where none of the first m points is allowed to be the same as any of the last m points.) Note that $p \in P$, and $\pi^{-1}(U_P) \subset D(s_{1,2m})$.

4.3. Lemma. — U_P is an affine variety, with coordinate ring generated by W_{ij} and Z_{ij} ($1 < i \leq m < j < 2m$) with relations

$$W_{ij}W_{kl} = W_{il}W_{kj} \quad (\text{i.e. the matrix } [W_{ij}] \text{ has rank 1}) \quad \text{and} \quad Z_{ij}(W_{ij} - 1) = 1 \quad (\text{i.e. the matrix } [W_{ij}] \text{ has no entry 1}).$$

This has a simple interpretation: U_P is isomorphic to the space of $(m - 1) \times (m - 1)$ matrices of rank at most 1, where each entry differs from 1, and p is the unique singular point, corresponding to the zero matrix. (We remark that this is the cone over the Segre embedding of $\mathbb{P}^{m-1} \times \mathbb{P}^{m-1}$.) Hence we have described a neighborhood of the singular point rather explicitly.

Proof. Let $V_P = \{[\Lambda] \in G(2, 2m) : s_{ij}(\Lambda) \neq 0 \text{ for all } i \leq m < j \}$, so $V_P = \pi^{-1}(U_P)$. Then V_P is an open subset of $D(s_{1,2m})$. In terms of the coordinates on $D(s_{1,2m}) \cong \mathbb{A}^{4m-4}$ described above, V_P is described by

$$x_jy_i - x_iy_j \neq 0, \quad x_j \neq 0, \quad y_i \neq 0$$

for $i \leq m < j$. Let T be the maximal torus $T \subset SL_{2m}$. By our preceding discussion, using (5), λ_k ($1 < k < 2m$) acts on x_k and y_k with weight 1, and on the other x_i and y_i’s with weight 0. The torus λ_1 acts on x_j with weight 0, and on y_j with weight 1. The torus λ_{2m} acts on x_i with weight 0, and on y_i with weight 0.

We analyze the quotient V_P/T by writing T as a product, $T = T'T''$, and restricting to invariants of T', then of T''. Let T' be the subtorus of T such that $\lambda_1 = \lambda_{2m}$, and T'' be the subtorus ($\lambda, 1, \ldots, 1, \lambda^{-1}$). We take the quotient first by T'. It is clear that the invariants
are given by $u_i = x_i/y_i$ for $1 < i \leq m$ and $v_j = y_j/x_j$ for $m + 1 \leq j < 2m$. From (8), the quotient of V_ρ is cut out by the inequality $u_i v_j - 1 \neq 0$.

T'' acts on this quotient as follows: λ acts on u_i by weight -2, and v_j by weight 2. The invariants of this quotient by T'' are therefore generated by $u_i v_j$ and $1/(u_i v_j - 1)$.

Hence if we take $W_{ij} = u_i v_j$, the invariants are generated by the W_{ij}, subject to the relations that the matrix $[W_{ij}]$ has rank 1, and also $W_{ij} \neq 1$. \hfill \square

Now let $I \subset \mathbb{Z}[\{X_\Gamma\}]$ be the ideal of relations of the invariants of M_ω, and let I_V be the ideal generated by the linear Plücker relations and the simple binomial relations. We have already shown that $I_V \subset I$.

Let S be the multiplicative system of monomials in X_Γ generated by those X_Γ where $\Gamma \in P$.

4.4. Theorem. — If $n = 2m \geq 8$, then $S^{-1}I_V = S^{-1}I$. In other words, the sign, Plücker, and simple binomial relations cut out the moduli space on this open subset.

As the First Main Theorem 1.1 is true for $n = 2m = 8$ (§2.8), Theorem 4.4 holds in that “base” case.

Proof. (Note that these arguments work over \mathbb{Z}.) The idea of the proof is to compare the minimal presentation given in Lemma 4.3 for $S^{-1}(R_n)$ with the localization in terms of ratios X_Γ/X_Δ in n-matchings Γ, Δ. This will be done by embedding the polynomial ring in the W_{ij}’s and Z_{ij}’s into $\mathbb{Z}[\{X_\Gamma/X_\Delta\}]$, and show that the contractions of $S^{-1}(I)$ and $S^{-1}(I_V)$ to the image of this embedding agree. We will also show that any element of $\mathbb{Z}[\{X_\Gamma/X_\Delta\}]$ differs from an element of the embedded subring by an element of $S^{-1}I_V$.

By Γ we will mean a general matching, and by Δ, we will mean a matching in P. We have a surjective map

$$\mathbb{Z}[\{X_\Gamma/X_\Delta\}]/S^{-1}I_V \to \mathbb{Z}[\{X_\Gamma/X_\Delta\}]/S^{-1}I$$

(that we wish to show is an isomorphism), and Lemma 4.3 provides an isomorphism

$$\mathbb{Z}[\{X_\Gamma/X_\Delta\}]/S^{-1}I \cong O(U_P) \cong \mathbb{Z}[\{W_{ij}, Z_{ij}\}]/J_{WZ},$$

where $J_{WZ} \subset \mathbb{Z}[\{W_{ij}\}, \{Z_{ij}\}]$ is the ideal generated by the relations (6) and (7). By comparing the moduli maps, we see that this isomorphism is given by

$$W_{ij} \mapsto \frac{X_{1i-j(2m)} \cdot \Gamma}{X_{1j-i(2m)} \cdot \Gamma}, \quad Z_{ij} \mapsto \frac{X_{1j-i(2m)} \cdot \Gamma}{X_{1(2m)-ij} \cdot \Gamma}$$

where Γ is any matching on $\{1, \ldots, 2m\} - \{1, i, j, 2m\}$ such that $1j \cdot i(2m) \cdot \Gamma \in P$. (By the simple binomial relations, this is independent of Γ.) The description of the isomorphism in the reverse direction is not so pleasant, and we will spend much of the proof avoiding describing it explicitly.

We thus have a surjective map

$$\psi : \mathbb{Z}[\{X_\Gamma/X_\Delta\}] \to \mathbb{Z}[\{W_{ij}, Z_{ij}\}]/J_{WZ}.$$
whose kernel is $S^{-1}I_V$, which contains $S^{-1}I_V$. We wish to show that the kernel is $S^{-1}I_V$. We do this as follows. For each $1 < i < m < j < 2m$, fix a matching Γ_{ij} on $\{1, \ldots, 2m\} - \{1, i, j, 2m\}$ so that $1 \cdot i(2m) \cdot \Gamma_{ij} \in P$. Consider the subring of $\mathbb{Z}[[X_\Gamma/X_\Delta]]$ generated by

$$w_{ij} = \frac{X_{1i(j(2m))\Gamma_{ij}}}{X_{1j(i(2m))\Gamma_{ij}}}, \quad z_{ij} = \frac{X_{1j-i(2m)\Gamma_{ij}}}{X_{1(2m)-i\Gamma_{ij}}}.$$

(Compare this to (9). Note that we want $W_{ij} \mapsto w_{ij}$. Call this subring $\mathbb{Z}[[w_{ij}, z_{ij}]]/J_{wz}$.

The proof consists of two steps. Step 1. We show that any element of $\mathbb{Z}[[X_\Gamma/X_\Delta]]$ differs from an element of $\mathbb{Z}[[w_{ij}, z_{ij}]]/J_{wz}$ by an element of $S^{-1}I_V$. We do this in several smaller steps. Step 1a. We show that any X_Γ/X_Δ can be written as a linear combination of $X_{\Delta'}/X_\Delta$ (where Δ' is also good). Step 1b. We show that any such $X_{\Delta'}/X_\Delta$ may be expressed (modulo $S^{-1}I_V$) in terms of $X_{ik,jl,\Gamma}/X_{il,jk,\Gamma}$, where $i, j \leq m < k, l$, and Γ is good. Step 1c. We show that any such expression can be written (modulo $S^{-1}I_V$) in terms of w_{ij} and z_{ij}, i.e. modulo $S^{-1}I_V$, any such expression lies in $\mathbb{Z}[[w_{ij}, z_{ij}]]/J_{wz}$.

Step 2. The kernel of the map $\psi : \mathbb{Z}[[w_{ij}, z_{ij}]]/J_{wz} \to \mathbb{Z}[[W_{ij}, Z_{ij}]]/J_{WZ}$ (given by $w_{ij} \mapsto W_{ij}, z_{ij} \mapsto Z_{ij}$) lies in $S^{-1}I_V$.

We now execute this strategy.

Step 1a. We first claim that $X_\Gamma/X_\Delta (\Delta \in P)$ is an integral combination of units $X_{\Delta'}/X_\Delta$ (i.e. $\Delta' \in P$) modulo the Plücker relations (the linear relations, which are in $S^{-1}I_V$). We prove the result by induction on the number of bad edges. The base case (if all edges of Γ are good, i.e. $\Gamma \in P$) is immediate. Otherwise, Γ has at least two bad edges, say ij and kl, where $i, j \leq m < k, l$. Then $X_\Gamma = \pm X_{\Gamma-(ij,kl)+(ik,jl)} \pm X_{\Gamma-(ij,kl)+(il,jk)}$ is a Plücker relation, and the latter two terms have two fewer bad edges, completing the induction.

Step 1b. We show that any element $X_{\Delta'}/X_\Delta$ of $\mathbb{Z}[[X_\Gamma/X_\Delta]]$ (Δ' good) is congruent (modulo $S^{-1}I_V$) to an element of the form $X_{ik,jl,\Gamma}/X_{il,jk,\Gamma}$, where $i, j \leq m < k, l$, and Γ is good. We prove this by induction on m. If $m = 4$, the result is true (§2.8). Assume now that $m > 4$. If Δ' and Δ share an edge e, then let Δ' and Δ be the graphs on $2m - 2$ vertices obtained by removing this edge e. Then by the inductive hypothesis, the result holds for $X_{\Delta'}/X_\Delta$. By taking the resulting expression, and “adding edge e to the subscript of each term”, we get an expression for $X_{\Delta'}/X_\Delta$. Finally, if Δ' and Δ share no edge, suppose in Δ', 1 is connected to $(m + 1)$; in Δ, 1 is connected to $(m + 2)$; and in Δ', $(m + 2)$ is connected to 2. This is true after suitable reordering. Say $\Delta' = 1(m + 1) \cdot 2(m + 2) \cdot \Gamma'$ and $\Delta = 1(m + 2) \cdot \Gamma$. Then

$$\frac{X_{\Delta'}}{X_\Delta} = \frac{X_{1(m+2)(m+1)\Gamma'}^1}{X_{1(m+2)\Gamma}} \cdot \frac{X_{1(m+1)(m+2)\Gamma'}^1}{X_{1(m+2)(m+1)\Gamma'}}.$$

For each factor of the right side, the numerator and the denominator “share an edge”, so we are done.

Step 1c. We next show that any such can be written (modulo $S^{-1}I_V$) in terms of w_{ij} and z_{ij}, i.e. modulo $S^{-1}I_V$ lies in $\mathbb{Z}[[w_{ij}, z_{ij}]]/J_{wz}$. If $2m = 8$, the result again holds (§2.8). Assume now that $2m > 8$. Given any $X_{ik,jl,\Gamma}/X_{ij,kl,\Gamma}$ as in Step 1b, we will express it (modulo $S^{-1}I_V$) in terms of w_{ij} and z_{ij}. By the simple binomial relation (i.e. modulo
$S^{-1}I_V$, we may assume that Γ is any good matching on $\{1, \ldots, 2m\} - \{i, j, k, l\}$, and in particular that there are edges $ab, cd \in \Gamma$ such that $\{1, 2m\} \subset \{a, b, c, d, i, j, k, l\}$. Then the result for $m = 4$ implies that we can write $X_{ik, jl; ab, cd}/X_{ij, kl; ab, cd}$ can be written in terms of w_{ij} and z_{ij} (in terms of the “$m = 4$ variables”). By taking this expression, and “adding in the remaining edges of Γ”, we get the desired result for our case.

\[\text{Step 2. We will show that the kernel of the map } \psi : \mathbb{Z}[\{w_{ij}, z_{ij}\}]/J_{wz} \to \mathbb{Z}[\{W_{ij}, Z_{ij}\}]/J_{WZ} \text{ (given by } w_{ij} \mapsto W_{ij}, z_{ij} \mapsto Z_{ij} \text{) lies in } S^{-1}I_V.\]

In order to do this, we need only verify that the relations (6) and (7) are consequences of the relations in $S^{-1}I_V$.

We first verify (6). By the simple binomial relation, we may write

\begin{equation}
W_{ij} = \frac{X_{1i,j(2m)}\Gamma_{i,j}}{X_{1j,i(2m)}\Gamma_{i,j}}, \quad W_{kl} = \frac{X_{1k,l(2m)}\Gamma_{i,j}}{X_{1l,k(2m)}\Gamma_{i,j}},
\end{equation}

\begin{equation}
W_{il} = \frac{X_{1i,l(2m)}\Gamma_{i,j}}{X_{1l,i(2m)}\Gamma_{i,j}}, \quad W_{jk} = \frac{X_{1j,k(2m)}\Gamma_{i,j}}{X_{1k,j(2m)}\Gamma_{i,j}}.
\end{equation}

We thus wish to show that modulo $S^{-1}I_V$, the product of the terms in (10) equals the product of the terms in (11). Choose any edge $e \in \Gamma$. The analogous question with $m = 4$, with $\Gamma - e$ “removed from the subscripts”, is true (§2.8). Hence, by “adding $\Gamma - e$ back in to the subscripts”, we get the analogous result here.

We next verify (7):

\[1 - W_{ij} = \frac{X_{1i,j(2m)}\Gamma_{i,j}}{X_{1j,i(2m)}\Gamma_{i,j}} - \frac{X_{1i,j(2m)}\Gamma_{i,j}}{X_{1j,i(2m)}\Gamma_{i,j}} = \frac{X_{1(2m)}\Gamma_{i,j}}{X_{1j,i(2m)}\Gamma_{i,j}} = 1/Z_{i,j} \pmod{S^{-1}I_V},\]

where the equivalence uses a linear Plücker relation. \hfill \square

5. PROOF OF FIRST MAIN THEOREM 1.1

We have reduced to the equilateral case $w = 1^n, n = 2m$, where $n \geq 10$. Define V_n to be the scheme cut out by the simple binomial relations. We wish to show that $V_n \equiv M_n$.

The reader will notice that we will use the simple binomial relations very little. In fact we just use the inductive structure of the moduli space: given a matching Δ on $n - k$ of n vertices ($4 \leq k < n$), and a point $[X_{\Gamma}]$ of V_n, then either these X_{Γ} with $\Delta \subset \Gamma$ are all zero, or $[X_{\Gamma}] \nabla \Gamma$ satisfies the Plücker and simple binomial relations for k, and hence is a point of V_k if $k \neq 6$. (The reader should think of this rational map $[X_{\Gamma}] \to [X_{\Gamma}] \nabla \Gamma$ as a forgetful map, remembering only the moduli of the k points.) In fact, even if $k = 6$ (and $n \geq 8$), the point must lie in M_6, as the simple binomial relations for $n > 6$ induce the Segre cubic relation (§2.11). The central idea of our proof is, ironically, to use the case $n = 6$, where Theorem 1.1 doesn’t apply.

We will call such Δ, where the X_{Γ} with $\Delta \subset \Gamma$ are not all zero and the corresponding point of M_6 is stable, a stable $(n - 6)$-matching. One motivation for this definition is that
given a stable configuration of \(n \) points on \(\mathbb{P}^1 \), there always exists a stable \((n-6)\)-matching. (Hint: Construct \(\Delta \) inductively as follows. We say two of the \(n \) points are in the same clump if they have the same image on \(\mathbb{P}^1 \). Choose any \(y \) in the largest clump, and any \(z \) in the second-largest clump; \(yz \) is our first edge of \(\Delta \). Then repeat this with the remaining vertices, stopping when there are six vertices left.) Caution: This is false with 6 replaced by 4 — consider the point of \(M_6 \) where \(p_1 = p_2, p_3 = p_4, p_5 = p_6 \).

The First Main Theorem 1.1 is a consequence of the following two statements, and Theorem 4.4. Indeed, (I) and (II) show Theorem 1.1 set-theoretically, and scheme-theoretically away from the strictly semistable points, and Theorem 4.4 deals with (a neighborhood of) the strictly semistable points.

(I) There is a natural bijection between points of \(V_n \) with no stable \((n-6)\)-matching, and strictly semistable points of \(M_n \).

(II) If \(B \) is any scheme, there is a bijection between morphisms \(B \to V_n \) missing the “no stable \((n-6)\)-matching” locus (i.e. missing the strictly semistable points of \(M_n \), by (I)) and stable families of \(n \) points \(B \times \{1, \ldots, n\} \to \mathbb{P}^1 \). (In other words, we are exhibiting an isomorphism of functors.)

One direction of the bijection of (I) is immediate. The next result shows the other direction.

5.1. Claim. — If \([X_\Gamma]_F\) is a point of \(V_n \) \((n \geq 10)\) having no stable \((n-6)\)-matching, then \([X_\Gamma]_F\) is a strictly semistable stable point of \(M_n \).

Several of the steps will be used in the proof of (II). We give them names so they can be referred to later.

Proof. Our goal is to produce a partition of \(n \) into two subsets of size \(n/2 \), such that the point of \(M_n \) given by this partition is our point of \(V_n \). Throughout this proof, partitions will be assumed to mean into two equal-sized subsets.

We work by induction. We will use the fact that the result is also true for \(n = 6 \) (tautologically) and \(n = 8 \) (as \(V_8 = M_8 \), §2.8).

Fix a matching \(\Delta \) such that \(X_\Delta \neq 0 \). By the inductive hypothesis, each edge \(xy \) yields a strictly semistable point of \(M_{n-2} \), and hence a partition of \(\{1, \ldots, n\} - \{x, y\} \), by considering all matchings containing \(xy \). Thus for each \(xy \in \Delta \), we get a partition of \(\{1, \ldots, n\} - \{x, y\} \). If \(wx, yz \) are two edges of \(\Delta \), then we get the same induced partition of \(\{1, \ldots, n\} - \{w, x, y, z\} \) (from the inductive hypothesis for \(n - 4 \)), so all of these partitions arise from a single partition \(\{1, \ldots, n\} = S_0 \coprod S_1 \).

5.2. \(\Delta \) two-overlap argument. As this partition is determined using any two edges of \(\Delta \), we would get the same partition if we began with any \(\Delta' \) sharing two edges with \(\Delta \), such that \(X_{\Delta'} \neq 0 \).
Defining the map to \(\mathbb{P}^1 \). Define \(\phi : S_0 \coprod S_1 = \{1, \ldots, n\} \to \mathbb{P}^1 \) by \(S_0 \to 0 \) and \(S_1 \to 1 \). For each matching \(\Gamma \), define \(X'_\Gamma \) using these points of \(\mathbb{P}^1 \). Rescale (or normalize) all the \(X_\Gamma \) so \(X'_\Delta = X_\Delta \). We will show that \(X'_\Gamma = X_\Gamma \) for all \(\Gamma \), which will prove Claim 5.1. The reader should keep in mind that \(X_\Gamma \neq 0 \) precisely when \(\Gamma \) is a bipartite graph with parts \(S_0 \) and \(S_1 \).

5.3. One-overlap argument. For any \(\Gamma \) sharing an edge \(xy \) with \(\Delta \), \(X'_\Gamma = X_\Gamma \), for the following reason: \([X_\Xi]_{xy \in \Xi} \) lies in \(M_{n-2} \) by the inductive hypothesis, and this point of \(M_{n-2} \) corresponds to the map \(\phi \) (as the partition \(S_0 \coprod S_1 \) was determined using this point of \(M_{n-2} \)), so \([X_\Xi]_{xy \in \Xi} = [X'_\Xi]_{xy \in \Xi} \), and the normalization \(X'_\Delta = X_\Delta \neq 0 \) ensures that \(X'_\Xi = X_\Xi \) for all \(\Xi \) containing \(xy \).

5.4. \(pqrs \) argument, first version. First, assume that \(X'_\Gamma \neq 0 \) and that \(\Gamma \) shares no edge with \(\Delta \). See Figure 16. Let \(qr \) be an edge of \(\Gamma \) (so \(\phi(q) \neq \phi(r) \)), and let \(pq \) and \(rs \) be edges of \(\Delta \) containing \(q \) and \(r \) respectively (so \(\phi(p) \neq \phi(q) \) and \(\phi(r) \neq \phi(s) \)). Then \(\phi(p) \neq \phi(s) \), as \(\phi \) takes on only two values. Let \(\Delta' = \Delta - pq - rs + qr + ps \), so \(X'_{\Delta'} \neq 0 \) as \(\phi(q) \neq \phi(r) \) and \(\phi(p) \neq \phi(s) \). Then \(X'_{\Delta'} = X'_{\Delta'} \) by the one-overlap argument 5.3, as \(\Delta' \) shares an edge with \(\Delta \) (indeed all but two edges), so \(X'_{\Delta'} \neq 0 \). Hence by the \(\Delta \) two-overlap argument 5.2, \(\Delta' \) defines the same partition \(S_0 \coprod S_1 \), and hence the same map \(\phi : \{1, \ldots, n\} \to \mathbb{P}^1 \). Finally, \(\Gamma \) shares an edge with \(\Delta' \), so \(X'_\Gamma = X_\Gamma \) by the one-overlap argument 5.3.

5.5. Reduction to \(\Gamma \) with \(X'_\Gamma \neq 0 \). We now reduce the general case to the case considered in §5.4. It suffices to prove the result for those graphs \(\Gamma \), all of whose edges connect \(S_0 \) and \(S_1 \) (i.e. no edge is contained in \(S_0 \) or \(S_1 \); equivalently, \(X'_\Gamma \neq 0 \)). We show this by showing that any \(X_\Gamma \) is an integral combination of such graphs, by induction on the number \(i \) of edges of \(\Gamma \) contained in \(S_0 (= \) the number contained in \(S_1 \) \). The base case \(i = 0 \) is tautological. For the inductive step, choose an edge \(wx \in \Gamma \) contained in \(S_0 \) and an edge \(yz \) contained in \(S_1 \). Then the Plücker relation using \(\Gamma \) and \(wxyz \) (with appropriate signs depending on the directions of edges) is

\[
\pm X_\Gamma \pm X_{\Gamma - wx - yz + wy + xz} \pm X_{\Gamma - wx - yz + wz + xy} = 0,
\]

and both \(\Gamma - wx - yz + wy + xz \) and \(\Gamma - wx - yz + wz + xy \) have \(i - 1 \) edges contained in \(S_0 \), and the result follows.

We have thus completed the proof of Claim 5.1. \(\square \)
5.6. Proof of (II). This proof will take us to the end of Section 5. The result boils down to the following desideratum: Given any \((n - 6)\)-matching \(\Delta\) on some \(\{1, \ldots, n\} - \{a, b, c, d, e, f\}\), there should be a bijection between:

(a) morphisms \(\pi : B \to V_n\) contained in the open subset where \(\Delta\) is a stable \((n - 6)\)-matching, and

(b) stable families of points \(\phi : B \times \{1, \ldots, n\} \to \mathbb{P}^1\) where \(\phi|_{B \times \{a, \ldots, f\}}\) is also a stable family, and for any edge \(xy\) of \(\Delta\), \(\phi|_{B \times \{x\}}\) does not intersect \(\phi|_{B \times \{y\}}\).

We have already described the map (b) \(\Rightarrow\) (a) in §2 equ. (1). We now describe the map (a) \(\Rightarrow\) (b), and verify that (a) \(\Rightarrow\) (b) \(\Rightarrow\) (a) is the identity. (It will then be clear that (b) \(\Rightarrow\) (a) \(\Rightarrow\) (b) is the identity: given a stable family of points parameterized by \(B\), we get a map from \(B\) to an open subset of \(M_n\) which is a fine moduli space, hence (b) \(\Rightarrow\) (a) is an injection. The result then follows from the fact that (a) \(\Rightarrow\) (b) \(\Rightarrow\) (a) is the identity.)

We work by induction on \(n\). The case \(n = 8\) was checked earlier (§2.8).

The map to \(\mathbb{P}^1\). Given an element of (a), define a family of \(n\) points of \(\mathbb{P}^1\) (an element of (b)) as follows. (i) \(\phi : B \times \{a, \ldots, f\} \to \mathbb{P}^1\) is given by the corresponding map \(B \to M_6\). (ii) If \(yz\) is an edge of \(\Delta\), we define \(B \times \{1, \ldots, n\} - \{y, z\}\) \(\to\) \(\mathbb{P}^1\) extending (i) by considering the matchings containing \(yz\), which by the inductive hypothesis give a point of \(M_{n-2}\). (iii) The morphisms of (ii) agree “on the overlap”, as given two edges \(wx\) and \(yz\) of \(\Delta\), we get \(B \times \{1, \ldots, n\} - \{w, x, y, z\}\) \(\to\) \(\mathbb{P}^1\) by considering the matchings containing \(wx\cdot yz\), which by the inductive hypothesis give a map to \(M_{n-4}\). Here we are using that \(n \geq 10\); and if \(n = 10\), we need the fact that the Segre cubic relation cutting out \(M_6\) is induced by the quadrics cutting out \(M_n\) for \(n \geq 8\) (Remark 2.11). Thus we get a well-defined morphism \(\phi : B \times \{1, \ldots, n\} \to \mathbb{P}^1\).

5.7. \(\Delta\) two-overlap argument, cf. §5.2. If \(\Delta'\) is another matching on \(\{1, \ldots, n\} - \{a, \ldots, f\}\) sharing at least 2 edges with \(\Delta\), with \(X_{\Delta'\Xi} \neq 0\) for some matching \(\Xi\) of \(\{a, \ldots, f\}\), we obtain the same \(\phi\), as \(\phi\) can be recovered by considering only two edges of \(\Delta\) when using (ii).

Defining \(X'\). Define \(X'_\Gamma\) for all matchings \(\Gamma\) using \(\phi\) and the moduli morphism of eqn. (1). The coordinates \(X'_\Gamma\) are projective (i.e. the set of \(X'_\Gamma\) is defined only up to scalars); scale them so that \(X_{\Delta'\Xi} = X'_{\Delta'\Xi}\) for all matchings \(\Xi\) of \(\{a, \ldots, f\}\). Note that if \(xy\) is an edge of \(\Delta\), then \(\phi(x) \neq \phi(y)\), as there exists a matching \(\Xi\) of \(\{a, \ldots, f\}\) such that \(X'_{\Delta'\Xi} \neq 0\).

The following result will confirm that (a) \(\Rightarrow\) (b) \(\Rightarrow\) (a) is the identity, concluding the proof of (II).

5.8. Claim. — We have the equality \(X_\Gamma = X'_\Gamma\) for all \(\Gamma\).

Proof. This proof will occupy us until the end of §5.15.

5.9. One-overlap argument. As in §5.3, the result holds for those \(\Gamma\) sharing an edge \(yz\) with \(\Delta\): by considering only those variables \(X_\Gamma\) containing the edge \(yz\) (including both \(X_\Gamma\) and
X_Δ, we obtain a point of M_{n-2}. This point of M_{n-2} is the one given by ϕ (this was part of how ϕ was defined), so $[X_{\Delta}]_{yzG}$ = $[X_{\Gamma}]_{yzG}$. By choosing a matching Ξ on $\{a, \ldots, f\}$ so that $X_{\Delta} \neq 0$, we have that $X_\Gamma X_{\Delta} = X_{\Delta} X_{\Gamma}$. Using $X_{\Delta} X_{\Delta} = X_{\Delta} \neq 0$, we have $X_\Gamma = X_{\Gamma}'$, as desired.

We now deal with the remaining case, where Γ and Δ share no edge.

5.10. **Reduction to Γ with $X_{\Gamma}' \neq 0$ (cf. §5.5).** It suffices to prove the result for those graphs such that $X_{\Gamma}' \neq 0$, or equivalently that for each edge xy of Γ, $\phi(x) \neq \phi(y)$. We show this by showing that any X_{Γ} is an integral combination of such graphs, by induction on the number of edges xy of Γ with $\phi(x) = \phi(y)$. For the purposes of this paragraph, call these bad edges. The base case $i = 0$ is tautological. For the inductive step, choose a bad edge $wx \in \Gamma$ (with $\phi(w) = \phi(x)$), and another edge yz such that $\phi(y), \phi(z) \neq \phi(w)$. (Such an edge exists, as by stability, less than $n/2$ elements of $\{1, \ldots, n\}$ take the same value in \mathbb{P}^1.) Then the Plücker relation using Γ with respect to $wxyz$ is

$$\pm X_{\Gamma} \pm X_{\Gamma-wx-yz+wy+xz} \pm X_{\Gamma-wx-yz+wz+xy} = 0,$$

and both $\Gamma - wx - yz + wy + xz$ and $\Gamma - wx - yz + wz + xy$ have at most $i - 1$ bad edges, and the result follows.

Recall that we are proceeding by induction. We first deal with the case $n \geq 14$, assuming the cases $n = 10$ and $n = 12$. We will then deal with these two stray cases. This logically backward, but the $n \geq 14$ case is cleaner, and the two other cases are similar but more ad hoc.

5.11. **The case $n \geq 14$.** pqrs argument, second version. As $n \geq 14$, there is an edge qr of Γ not meeting abcdef. See Figure 16. By §5.10, we may assume $\phi(q) \neq \phi(r)$. Let pq and rs be the edges of Δ meeting q and r respectively (so $\phi(p) \neq \phi(q)$ and $\phi(r) \neq \phi(s)$). (i) (cf. the similar argument of §5.4) If $\phi(p) \neq \phi(q)$, then let $\Delta' = \Delta - pq - rs + qr + ps$; then Δ' defines the same family of n points as Δ by the two-overlap argument §5.7, and Γ and Δ' share an edge, so we are done by the one-overlap argument §5.9. (More precisely, this argument applies on the open subset of B where $\phi(p) \neq \phi(s)$.) (ii) If $\phi(p) = \phi(s)$, then $\phi(p) \neq \phi(r)$. (More precisely, this argument applies on the open set where $\phi(p) \neq \phi(r)$.) Let st be the edge of Γ containing s. (It is possible that $t = p$.) Let $\Gamma' = \Gamma - qr - st + rs + qt$ and $\Gamma'' = \Gamma - qr - st + qs + rt$ be the other two terms in the Plücker relation for Γ for pqrs. Then Γ' shares edge rs with Δ, so $X_{\Gamma'} = X_{\Gamma'}$ by the one-overlap argument §5.9, and by applying (i) to Γ'' (swapping the names of r and s), $X_{\Gamma'''} = X_{\Gamma''}$, so by the Plücker relation, $X_{\Gamma'} = X_{\Gamma}$ as desired.

5.12. **The cases $n = 10$ and $n = 12$.** We are assuming that Γ and Δ share no edges. If there is an edge of Γ not meeting $\{a, \ldots, f\}$, the pqrs-argument §5.11 applies, so assume otherwise. Divide $\{1, \ldots, n\}$ into two subsets abcdef and ghij (respectively ghijkl) if $n = 10$ (respectively $n = 12$), where the edges of Δ are gh, ij, and (if $n = 12$) kl. By renaming abcdef, we may assume the edges of Γ are ag, bh, ci, dj, and either ef (if $n = 10$, see Figure 17) or ek and fl (if $n = 12$, see Figure 18).
5.13. Suppose that $\phi(a) \neq \phi(b)$. Note that we will only use that $ag, bh \in \Gamma$, $gh \in \Delta$, and $\phi(a) \neq \phi(b)$ — we will use this argument again below. There is a matching Ξ of $cdef$ so that if $xy \in \Xi$, then $\phi(x) \neq \phi(y)$. (This is a statement about stable configurations of 6 points on \mathbb{P}^1: if we have a stable set of 6 points on \mathbb{P}^1, then no three of them are the same point. Hence for any four of them $cdef$, we can find a matching of this sort.) Let $\Delta' = \Xi \cdot ab \cdot \Delta$. Then by the simple binomial relations (our first invocation!) $X_{\Delta'}X_{\Gamma} = X_{\Delta'-ab-gh+ag+bh}X_{\Gamma+ab+gh-ag-bh}$ and $X'_{\Delta'}X_{\Gamma}' = X'_{\Delta'-ab-gh+ag+bh}X'_{\Gamma+ab+gh-ag-bh}$. However, by the one-overlap argument §5.9, $X_{\Delta'} = X_{\Delta'}' \neq 0$ (if Δ' and Δ share edge ij), $X_{\Delta'-ab-gh+ag+bh} = X'_{\Delta'-ab-gh+ag+bh} (\Delta' - ab - gh + ag + bh)$ and Δ share edge ij, and $X_{\Gamma+ab+gh-ag-bh} = X'_{\Gamma+ab+gh-ag-bh} (\Gamma + ab + gh - ag - bh)$, so we are done.

We are left with the case $\phi(a) = \phi(b)$.

5.14. Suppose now that $n = 10$. As $\phi(a) = \phi(b)$, $\phi(b)$ is distinct from $\phi(e)$ and $\phi(f)$ (as $\phi(a)$, ... , $\phi(f)$ are a stable set of six points on \mathbb{P}^1). By the Plücker relations for Γ (using $agef$),

$$\pm X_{\Gamma} \pm X_{\Gamma-ag-ef+ae+gf} \pm X_{\Gamma-ag-ef+af+eg} = 0,$$

and similarly for the X' variables. By applying the argument of §5.13 with e and a swapped, we have $X'_{\Gamma-ag-ef+af+eg} = X_{\Gamma-ag-ef+af+eg'}$ and by applying the argument of §5.13 with f and a swapped, we have $X'_{\Gamma-ag-ef+ae+gf} = X_{\Gamma-ag-ef+ae+gf'}$ from which $X'_{\Gamma} = X_{\Gamma}$, concluding the $n = 10$ case.

5.15. Suppose finally that $n = 12$. If $\phi(c) \neq \phi(d)$, we are done (by the same argument as §5.13, with ab replaced by cd), and similarly if $\phi(e) \neq \phi(f)$. Hence the only case left is if $\phi(a) = \phi(b)$, $\phi(c) = \phi(d)$, and $\phi(e) = \phi(f)$, and (by stability of the 6 points $\phi(a), \ldots, \phi(f)$) these are three distinct points of \mathbb{P}^1. Consider the Plücker relation for Γ with respect to $bhci$. One of the other two terms is $\Gamma - bh - ci + bi + ch$, and $X'_{\Gamma-bh-ci+bi+ch} = X_{\Gamma-bh-ci+bi+ch}$ (by the same argument as in §5.13, as $\phi(a) \neq \phi(c)$). We thus have to prove that $X_{\Gamma} = X'_{\Gamma}$, for the third term in the Plücker relation, where

$$\Gamma' = ag \cdot bc \cdot hi \cdot dj \cdot ek \cdot fl.$$

For this, apply the argument of §5.14, with $abghef$ replaced by $felkbc$ respectively. □
Part 3. THE IDEAL OF RELATIONS IS GENERATED IN DEGREE AT MOST FOUR

In Part 3, all graphs will be assumed to be directed upwards (§2.1): if $a < b$, all edges ab are directed $a \to b$. Recall that Kempe graphs are regular upwards non-crossing graphs (§2).

We shall assume here that each point has weight 1, but we will not assume that n is even. (If n is odd then the ring will be zero in odd degrees.) The ring of projective invariants we denote by R. We continue to work over the integers. We will show that the relations of R are generated in degree at most four, by showing the same fact holds for the associated graded ring $\text{gr}(R)$ of some filtration F of R. We quickly outline how this works.

An (exhaustive) increasing \mathbb{N}-filtration of the \mathbb{Z}-algebra R is a set of \mathbb{Z}-submodules $F_i(R)$ of R, $i \in \mathbb{N}$, such that $1 \in F_0(R), \bigcup_{i \in \mathbb{N}} F_i(R) = R$, and for all $i, j \in \mathbb{N}$, $F_i(R) \subset F_{i+j}(R)$ and $F_i(R)F_j(R) \subset F_{i+j}(R)$. Similarly, if M is an R-module and F is filtered, then an increasing \mathbb{N}-filtration of M compatible with R is given by an increasing chain of submodules $F_m(M)$, for $m \in \mathbb{N}$, such that for all $i, j \in \mathbb{N}$, $F_i(R)F_j(M) \subset F_{i+j}(M)$.

The associated graded algebra is $\text{gr}(R) = \bigoplus_{m=0}^{\infty} F_m(R)/F_{m-1}(R)$ (taking $F_{-1}(R) = 0$). Likewise the associated graded module $\text{gr}(M) = \bigoplus_{m=0}^{\infty} F_m(M)/F_{m-1}(M)$.

Now suppose that $F_m(R), m \in \mathbb{N}$, is an increasing filtration of R. Suppose that π_1, \ldots, π_ℓ are homogeneous generators for $\text{gr}(R)$. Let J be the kernel of the surjection $\mathbb{Z}[X_1, \ldots, X_\ell] \to \text{gr}(R)$, where $X_i \to \pi_i$. Assign $\deg(X_i) := \deg(\pi_i)$. This yields a filtration of the polynomial ring $\mathbb{Z}[X_1, \ldots, X_\ell]$. The kernel J is given the induced filtration as a $\mathbb{Z}[X_1, \ldots, X_\ell]$-module, and it is homogeneous with respect to the degree of the X_i’s.

Now choose any lifts $x_i \in R$, such that π_i is the leading term of x_i. Then the x_i generate R. Let I be the kernel of the surjection $\mathbb{Z}[X_1, \ldots, X_\ell] \to R$, where $X_i \to x_i$. Now R has the quotient filtration, that is $F_m(R)$ is the image of $F_m(\mathbb{Z}[X_1, \ldots, X_\ell])$. We give the kernel I the induced filtration $F_m(I) = I \cap F_m(\mathbb{Z}[X_1, \ldots, X_\ell])$, considered as a $\mathbb{Z}[X_1, \ldots, X_\ell]$-module. By [B, p. 169, Prop. 2] we have that $J = \text{gr}(I)$. Let $r_j, 1 \leq j \leq \ell$ be homogeneous generators of J. Let r_j be lifts in I, that is the leading term of r_j is π_j. Then the r_j generate I. Hence a presentation of $\text{gr}(R)$ may be lifted to a presentation of R.

6. THE TORIC FILTRATION OF THE RING

6.1. The toric filtration of R. We shall introduce an \mathbb{N}-filtration on R such that the associated graded ring $\text{gr}(R)$ is toric. It is given by taking the same type of filtration on the standard coordinate ring \bar{R} of the Grassmannian $G(2, n)$ (we studied this ring in §4), and restricting to the T invariants $R = \bar{R}^T$. For all pairs (i, j) such that $1 \leq i < j \leq n$, let x_{ij} be a formal variable. The polynomial ring $\mathbb{Z}[\{x_{ij}\}_{1 \leq i < j \leq n}]$ surjects onto \bar{R}, by $x_{ij} \mapsto s_{ij}$. The kernel \bar{I} of this map is generated by the quadric Plücker relations $x_{ac}x_{bd} - x_{ad}x_{bc} - x_{ab}x_{cd}$ for $1 \leq a < b < c < d \leq n$. The variables x_{ij} may be given weights $w(x_{ij})$ such that the associated initial ideal $\tilde{J} = \text{in}_w(\bar{I})$ to this weighting is generated by the binomials
already seen (Theorem 2.5) that the set graphs.

\[x_{ac}x_{bd} - x_{ad}x_{bc}, \text{ for } 1 \leq a < b < c < d \leq n. \]

Such a weighting (which gives a toric Gröbner degeneration) first appeared in [St1]. A complete description of all such weights appeared in [SpSt]. The weighting we will use is \(w(x_{ij}) := i + 2j. \) This weighting also coincides with one of the toric filtrations of \(\tilde{R} \) given by Lakshmibai-Gonciulea in [GL], who studied toric degenerations of flag varieties.

6.2. Kempe (upwards non-crossing regular) graphs. Let \(\mathcal{K}_{(N)} \) denote the set of \(N \)-regular Kempe graphs (on \(n \) vertices). Let \(\mathcal{K} = \bigcup_{N=0}^{\infty} \mathcal{K}_{(N)} \) be the set of all Kempe graphs. We will use Roman letters (for example \(G \)) rather than Greek letters (such as \(\Gamma \)) to denote Kempe graphs.

For a regular graph \(\Gamma \), recall that \(X_\Gamma \) denotes the associated element of \(R \). We have already seen (Theorem 2.5) that the set \(\{ X_G \}_{G \in \mathcal{K}_{(N)}} \) is a basis for the \(N \)-th graded piece \(R_{(N)} \) of \(R \).

For each Kempe graph \(G \) let

\[
w(G) = \sum_{ij \text{ an edge of } G} (i + 2j).
\]

Let

\[
F_m(R) = \langle X_G \rangle_{w(G) \leq m}.
\]

Since the filtration levels \(F_m(R) = \langle X_G \rangle_{G \in \mathcal{K}, w(G) \leq m} \) are an increasing chain of free summands of \(R \) (and each \(F_m(R) \) is a free summand of \(F_{m+1}(R) \)), it follows that \(\text{gr}(R) = \bigoplus_{m=0}^{\infty} F_m(R)/F_{m-1}(R) \) is again a free \(\mathbb{Z} \)-module. For each Kempe graph \(G \), let \(Y_G \) be the leading term of \(X_G \); that is, \(Y_G \) is the image of \(X_G \) under the surjective map \(F_{w(G)}(R) \to F_{w(G)}(R)/F_{w(G)-1}(R) \). Note that \(\{ Y_G \mid w(G) = m, G \in \mathcal{K} \} \) is a basis for \(F_m(R)/F_{m-1}(R) \) as a \(\mathbb{Z} \)-module. Let the standard grading of \(\text{gr}(R) \) be given by

\[
\text{gr}(R)_{(N)} = \langle Y_G \rangle_{G \in \mathcal{K}_{(N)}}.
\]

Hence \(\text{gr}(R) \) is bigraded; however we shall not be concerned with the grading of \(\text{gr}(R) \) that comes about from the filtration. We are only interested in lifting a presentation for \(\text{gr}(R) \). Henceforth when we say that an element of \(\text{gr}(R) \) has degree \(N \), we mean the standard degree of the element (as defined above) is equal to \(N \).

The following theorem implies that the \(F_m(R) \) form an increasing \(\mathbb{N} \)-filtration of \(R \) as an algebra, and also that the associated graded ring \(\text{gr}(R) = \bigoplus_{m \geq 0} F_m(R)/F_{m-1}(R) \) is toric.

6.3. Theorem. — Suppose \(G_1 \in \mathcal{K}_{(N)} \) and \(G_2 \in \mathcal{K}_{(M)} \). Let the integers \(c_G \) be the (unique) coefficients in the expansion of the product,

\[
X_{G_1}X_{G_2} = \sum_{G \in \mathcal{K}_{(N+M)}} c_G X_G.
\]

There exists an \(X_G \) occurring on the right hand side with \(c_G = 1 \), such that \(w(G) = w(G_1) + w(G_2) \); furthermore if \(G' \neq G \) and \(c_{G'} \neq 0 \) then \(w(G') < w(G) \).
Proof. Let Δ_1 be the graph consisting of the two crossing edges ik and jl, where $i < j < k < l$. Let Δ_2 be the graph with non-crossing edges il and jk, and let Δ_3 be the graph with non-crossing edges ij and kl. The Plücker relations $X_{\Delta_1} = X_{\Delta_2} + X_{\Delta_3}$ applied two edges at a time are sufficient to enable one to re-express any Γ (with correctly oriented edges) as a sum of Kempe graphs. However, $w(\Delta_1) = w(\Delta_2) > w(\Delta_3)$ since $i + j + 2(k + l) > i + k + 2(j + l)$. Hence with each application of said Plücker relations $X_{\Delta_1} = X_{\Delta_2} + X_{\Delta_3}$, we have $w(\Gamma \cdot \Delta_1) = w(\Gamma \cdot \Delta_2) > w(\Gamma \cdot \Delta_3)$. Finally once enough Plücker relations have been applied (starting from the initial $X_{G_1}X_{G_2}$) the final leftmost term X_G of the expansion will satisfy $w(G) = w(G_1) + w(G_2)$, and if $X_{G'}$ is any term other than the leftmost term X_G then $w(G') < w(G_1) + w(G_2)$. □

It will be useful to have a notation for the unique G above as a function of G_1, G_2. Let this G be denoted $G_1 \ast G_2$. It is obtained from $G_1 \cdot G_2$ by replacing crossing pairs of edges ik and jl ($i < j < k < l$), with the non-crossing pair il and jk, until no crossing edges remain.

6.4. Corollary to Theorem 6.3. — The sequence $(F_n(R))_{n=0}^{\infty}$ is an increasing filtration of R as a \mathbb{Z}-algebra.

6.5. Corollary to Theorem 6.3. — If G_1 and G_2 are Kempe graphs then

$$Y_{G_1}Y_{G_2} = Y_{G_1 \ast G_2}.$$

The set of all Y_G for $G \in \mathcal{K}$ forms a graded semigroup. The ring $gr(R)$ is the \mathbb{Z}-algebra generated by the semigroup $\{Y_G \mid G \in \mathcal{K}\}$.

We will now identify the semigroup $\{Y_G \mid G \in \mathcal{K}\}$ explicitly as the set of lattice points in a rational cone.

Let $D \subset \mathbb{R}^{n-1}$ be given by $(d_1, d_2, d_3, \ldots, d_{n-1}) \in D$ if and only if each $d_i \geq 0$, $d_1 = d_{n-1}$ and for each i, $1 \leq i \leq n-2$, we have

$$d_i \leq d_{i+1} + d_1, \quad d_{i+1} \leq d_i + d_1, \quad d_1 \leq d_i + d_{i+1}.$$

It is easy to see that D is a rational cone of dimension $n - 2$. Let $D_{(N)}$ be intersection of the affine hyperplane $d_1 = N$ with D.

6.6. Remark. Note that the inequalities defining $D_{(N)}$ hold for the diagonal lengths $d_i = |v_i - v_0|$ of an n-gon with vertices $v_0 = v_n, v_1, \ldots, v_{n-1}$ with all side lengths equal to N. Indeed the triple of inequalities holds for a triangle having side lengths d_1, d_i, d_{i+1}.

Let Λ be the lattice in \mathbb{R}^{n-1} given by the conditions $(d_1, d_2, \ldots, d_{n-1}) \in \Lambda$ if and only if $d_1 = d_{n-1} \in \mathbb{Z}$, and

$$d_i \equiv d_1 \text{ (mod 2)},$$

for each i, $1 \leq i \leq n-1$. (This is equivalent to the condition that each triple (d_i, d_1, d_{i+1}) sums to an even integer.)
Let $S = D \cap \Lambda$ be the semigroup of lattice points in D. We have that S is also graded, where $S_{(N)}$ consists of those elements $(d_1, d_2, \ldots, d_{n-1})$ in S such that $d_1 = N$. Hence $S_{(N)} = D_{(N)} \cap \Lambda$. Let $\mathbb{Z}[S]$ be the (graded) semigroup algebra.

For each Kempe graph $G \in \mathcal{K}$, let

$$\phi(G) = (d_1, d_2, \ldots, d_{n-1}) \in \mathbb{Z}^{n-1},$$

where d_i is the number of edges kl in G such that $k \leq i$ and $l \geq i + 1$.

For example, for $n = 5$, there are six 2-regular Kempe graphs, and Figure 6 illustrates their images under ϕ.

6.7. Lemma. For each $N \geq 0$ the map ϕ is a bijection between $\mathcal{K}_{(N)}$ and $S_{(N)}$.

Proof. First we will show that the image of ϕ is contained within $S_{(N)}$. The valence of a vertex i in G is equal to N by assumption. On the other hand, d_1 is the number of edges ij in G where $i = 1$, and d_{n-1} is the number of edges ij in G where $j = n$. Hence d_1 is the valence of vertex 1 and d_{n-1} is the valence of vertex n. But G is N-regular so $d_1 = d_{n-1} = N$. For each i, $1 \leq i \leq n - 1$, let A_i be the multi-set of edges kl in G such that $k \leq i$ and $l \geq i + 1$. Hence $|A_i| = d_i$ for each $i \in \{1, \ldots, n - 1\}$. Let W_{i+1} be the multi-set of edges kl of G such that $k = i + 1$ or $l = i + 1$. Hence $|W_{i+1}|$ is the valence of the vertex $i + 1$, which is equal to $N = d_1$. It is clear that any edge $kl \in A_i \cup A_{i+1} \cup W_{i+1}$ belongs to exactly two of these three sets. From this the triangle inequalities for the triple d_i, d_{i+1}, d_1 follow easily, and it is also easy to see that $d_i + d_{i+1} + d_1$ must be an even integer, since each edge is counted twice in the sum.

Using the criterion above, we now show that for each $d \in S_{(N)}$ there is exactly one N-regular Kempe graph G such that $\phi(G) = d$. For each i, $2 \leq i \leq n - 1$, let

$$a_i = (N + d_{i-1} - d_i)/2, \quad b_i = (N - d_{i-1} + d_i)/2, \quad c_i = (N - d_{i-1} + d_i)/2.$$

Let $a_1 = c_1 = c_n = b_n = 0$ and let $b_1 = a_n = N$. For each $i \in \{2, \ldots, n - 1\}$, we now have

$$a_i + c_i = N, \quad a_i + c_i = d_{i-1}, \quad b_i + c_i = d_i.$$

Since the sum $N + d_{i-1} + d_i$ is even, and the triple N, d_{i-1}, d_i satisfy the triangle inequalities, we have that a_i, b_i, c_i are all non-negative integers.

We now construct G such that $\phi(G) = d$. Suppose that we have a graph G such that for each i, a_i is the number of edges terminating at i, b_i is the number of edges beginning at i, and c_i is the number of edges kl with $k < i < l$. It follows from the above computation then that $\phi(G) = d$. So we need only show the existence of a unique Kempe graph G satisfying these conditions.

We’ll begin by partially drawing edges with a beginning vertex i but without committing to a final vertex j; these partially defined edges beginning at vertex i we shall denote by $i*$. Eventually each $i*$ will be assigned a terminal vertex $j > i$. For each $i \in \{1, \ldots, n - 1\}$, and $t \geq i$, let E_i^t be the multiset of partially defined edges $i*$ which will eventually terminate at some vertex $j > t$. Hence the total number of elements of E_i^t will equal $\sum_{j > t} m_{i,j}$ once the graph G has been fully defined. In particular we will have
\(|E_i^t| = b_i \) for each \(i \). Also we shall denote \(E^t = \cup_{i \leq t} E_i^t \). Then we must have \(d_k = |E^t| \) for each \(t \); this is equivalent to the condition that \(\phi(G) = d \). We shall order the elements of \(E^t \) lexicographically, that is \(i \ast < j \ast \) if \(i < j \). Once we define \(E^t \), we will have assigned all the edges \(i_j \) for \(j < t \). Once we get to \(t = n \), we will have constructed \(G \) entirely. Clearly \(G \) is Kempe if and only if \(|E_i^{t+1}| > 0 \) implies \(m_{i,t} = |E_i^{t-1}| - |E_i^t| = 0 \) for all \(1 \leq i < t \leq n \).

First of all \(E_1^1 = E_1^1 \) consists of \(N \)-many partial edges \(1 \ast \) since the valence of vertex \(1 \) (or any vertex) is \(N \). Now assume that we have defined all the \(E_i^t \) for \(i, j < k \), so that \(|E^t| = d_i \) for each \(i < k \), and \(|E_i^{t+1}| > 0 \) implies \(m_{i,t} = |E_i^{t-1}| - |E_i^t| = 0 \) for all \(1 \leq i < t < k \). In particular we have also assigned the multiplicities \(m_{i,j} \) for \(i, j < k \), since \(m_{i,j} = |E_i^{j-1}| - |E_i^j| \).

We must have \(a_k \) edges terminating at \(k \). Assume now that we assign the value of \(m_{i,k} \); this is equivalent to setting the value of \(|E_i^k| \), since \(|E_i^k| = |E_i^{k-1}| - m_{i,k} \). If \(|E_i^k| > 0 \) then we must have that \(m_{a,k} = 0 \) for all \(a < i \). So if \(|E_i^k| > 0 \) then \(\sum_{b < k} m_{b,k} = \sum_{i < b < k} m_{b,k} = a_k \).

Hence if \(m_{i,k} < |E_i^{k-1}| \) then we must have \(m_{i,k} + m_{i+1,k} + \cdots + m_{k-1,k} = a_k \), and \(m_{j,k} = |E_j^{k-1}| \) for all \(j \) such that \(i < j < k \). Therefore there is only one way to assign the multiplicities \(m_{i,k} \) for \(i < k \). First we must have that \(m_{k-1,k} = \min(|E_{k-1}^{k-1}|, a_k) \). If \(a_k \leq |E_{k-1}^{k-1}| = b_{k-1} \) then we’re done. We assign the other \(m_{i,k} \)’s to zero for \(i < k - 1 \). If, on the other hand, \(a_k > b_{k-1} = |E_{k-1}^{k-1}| \), then we assign \(m_{k-1,k} = b_{k-1} = |E_{k-1}^{k-1}| \), and then we must assign \(a_k - m_{k-1,k} \) more edges to terminate at \(k \). We then proceed to \(k - 2 \), making \(m_{k-2,k} \) as large as possible, etc. It is easy to check that a formula for \(m_{i,k} \) is given by

\[
m_{i,k} := \max \left\{ 0, \min \left\{ a_k - \sum_{j=i+1}^{k-1} |E_j^{k-1}|, |E_i^{k-1}| \right\} \right\}.
\]

Finally we set \(|E_k^k| = b_k \). We claim now that \(|E^k| = d_k \). We know that that \(|E^{k-1}| = d_{k-1} \), and we assigned \(a_k \) elements of \(E^{k-1} \) to terminate at \(k \). Then \(b_k \) new edges were introduced, initiating at \(k \). Hence \(|E^k| = |E_k^k| + |E^{k-1}| - a_k = b_k + d_{k-1} - a_k = d_k \). This process terminates at \(k = n \), with \(E^n = \emptyset \), since for each \(i \leq n - 1 \) we have \(|E^i| = b_1 - a_2 + b_2 - \cdots - a_i + b_i = d_i \) and so \(|E^n| = |E^{n-1}| - a_n + b_n = d_{n-1} - N + 0 = N - N = 0 \). The multiplicities \(m_{i,j} \) were uniquely determined by the conditions that \(G \) is a Kempe graph and \(\phi(G) = d \). □

6.8. Lemma. — If \(G_1 \) and \(G_2 \) are Kempe graphs then

\[\phi(G_1 \ast G_2) = \phi(G_1) + \phi(G_2). \]

Hence \(\phi \) is an isomorphism of semigroups, and induces an isomorphism (also denoted \(\phi \)) on the semigroup algebras,

\[\phi : \text{gr}(R) \cong \mathbb{Z}[S]. \]

Proof. First extend the domain of \(\phi \) to general multi-graphs \(\Gamma \) (edges may cross) by the same rule:

\[\phi(\Gamma) = (d_1, d_2, d_3, \ldots, d_{n-1}), \]
where \(d_i \) is the number of edges \(kl \) of \(\Gamma \) such that \(k \leq i \) and \(l \geq i + 1 \). With this extension of the definition it is clear that \(\phi(G_1 \cdot G_2) = \phi(G_1) + \phi(G_2) \).

Now we show that \(\phi(G_1 \cdot G_2) = \phi(G_1 * G_2) \). Let \(\Delta_1 \) be the graph with the two crossing edges \(ik \) and \(jl \), where \(i < j < k < l \). Let \(\Delta_2 \) be the graph with non-crossing edges \(il \) and \(jk \), and let \(\Delta_3 \) be the graph with non-crossing edges \(ij \) and \(kl \). We know the Plücker relations \(X_{\Gamma^*} \cdot \Delta_1 = X_{\Gamma^*} \cdot \Delta_2 + X_{\Gamma^*} \cdot \Delta_3 \) applied two edges at a time are sufficient to enable one to re-express any \(X_{\Gamma} \) (with correctly oriented edges) as a sum of Kempe graphs. We have that \(\phi(\Delta_1) = \phi(\Delta_2) \), hence with each application of a Plücker relation \(X_{\Gamma^*} \cdot \Delta_1 = X_{\Gamma^*} \cdot \Delta_2 + X_{\Gamma^*} \cdot \Delta_3 \) we have \(\phi(\Gamma^* \cdot \Delta_1) = \phi(\Gamma^* \cdot \Delta_2) \). Finally once enough Plücker relations have been applied (starting from the initial \(X_{G_1}X_{G_2} \)) the final leading term \(X_{G_1+G_2} \) of the expansion will satisfy \(\phi(G_1 * G_2) = \phi(G_1 \cdot G_2) = \phi(G_1) + \phi(G_2) \). \(\square \)

6.9. Corollary. — The rings \(\text{gr}(R) \) and \(\mathbb{Z}[S] \) are isomorphic as graded rings. That is, \(\phi : \text{gr}(R)_{(N)} \to \mathbb{Z}(S_{(N)}) \) for each \(N \geq 0 \), and \(\phi \) is a ring isomorphism.

7. The Projective Coordinate Ring of \(\text{gr}(R) \)

We shall show in this section that the degree one and degree two elements of the semigroup algebra \(\mathbb{Z}[S] \) generate \(\mathbb{Z}[S] \). Furthermore we will show that the ideal of relations of \(\mathbb{Z}[S] \) is generated by relations of degrees two, three, and four.

We shall also be interested in the semigroup \(S_{\text{even}} \) which is defined by \(S_{\text{even}} = \bigcup_{m=0}^\infty S_{(2m)} \), and we give \(S_{\text{even}} \) the grading \(S_{\text{even}} := S_{(2m)} \). We may think of \(\mathbb{Z}[S_{\text{even}}] \) as a “Veronese re-grade” of \(\mathbb{Z}[S] \). Indeed if we set \(R_{\text{even}} = \bigoplus_{m=0}^\infty R_{(2m)} \), and restrict the filtration given in the previous section to \(R_{\text{even}} \), then clearly \(\text{gr}(R_{\text{even}}) \cong \mathbb{Z}[S_{\text{even}}] \). It will follow from the proofs given for \(S \) that \(\mathbb{Z}[S_{\text{even}}] \) has a presentation by degree one generators and quadratic relations.

7.1. Generators for \(\mathbb{Z}[S] \).

If \(A, B \) are subsets of a vector space, let \(A + B := \{a + b \mid a \in A, b \in B\} \) (the Minkowski sum of \(A \) and \(B \)).

7.2. Lemma. — For each positive integer \(m \), \(S_{(2m+1)} = S_{(1)} + S_{(2m)} \).

Proof. Given \(d \in S_{(2m+1)} \) we shall construct \(d' \in S_{(1)} \) in the proximity of \(d/(2m+1) \) such that \(d - d' = d'' \in S_{(2m)} \). An element \(d' = (d'_1, \ldots, d'_{n-1}) \) in \(D_{(1)} \) is a lattice point if and only if each \(d'_i \equiv i \pmod{2} \). On the other hand \(d'' = (d''_1, \ldots, d''_{n-1}) \in D_{(2m)} \) is a lattice point if and only if each \(d''_i \) is an even integer. Define

\[
d'_i = k, \text{ such that } k \in \mathbb{Z}, k \equiv i \pmod{2}, \text{ and } \left| k - \frac{d_i}{2m+1} \right| < 1.
\]

For this to be well-defined we need to show that \(k \) exists and is unique. Uniqueness follows immediately since there can be only one integer of a given parity in an open
interval of length 2. For existence we must check that $d_i/(2m + 1)$ does not have opposite parity to i, since in this case there is no integer of the correct parity less than one unit from $d_i/(2m + 1)$. But $d_i \equiv i \pmod{2}$ since $d \in S_{(2m+1)}$ is a lattice point and $2m + 1$ is odd. Hence if $d_i/(2m + 1)$ is an integer then $d_i/(2m + 1) \equiv i \pmod{2}$ as well since $2m + 1$ is odd. Therefore the parity condition for d' is satisfied.

Let $d'' = d - d'$. Note that each d'_i is even since d_i and d''_i have the same parity. We have that in fact d''_i is the nearest even integer to $2md_i/(2m + 1)$. Thus we have checked that $d', d'' \in \Lambda$. Now we only need to show that $d' \in D^{(1)}$ and $d'' \in D^{(2m)}$.

Since $d_1 = 2m + 1$ and $d_{n-1} = 2m + 1$ we have that $d'_1 = 1, d''_1 = 2m, d''_{n-1} = 1$, and $d''_{n-1} = 2m$. It remains to show the triangle inequalities,

\((1) \ d'_{i-1} \leq d'_i + 1, d''_{i-1} \leq d''_i + 2m, \)

\((2) \ d'_i \leq d''_{i-1} + 1, d''_i \leq d''_{i-1} + 2m, \)

\((3) \ 1 \leq d''_{i-1} + d''_i, 2m \leq d''_{i-1} + d''_i. \)

Let $\ell = 2m + 1$. We have that $|d_{i-1} - d_i| \leq \ell$, hence $|d_{i-1}/\ell - d_i/\ell| \leq 1$. Recall that d'_{i-1} is the nearest integer to d_{i-1}/ℓ congruent to $i - 1 \pmod{2}$ and d'_i is the nearest integer to d_i/ℓ with parity $i \pmod{2}$. The distance between d_{i-1}/ℓ and d_i/ℓ is at most 1 and also $d'_{i-1} - d'_i \equiv i \pmod{2}$. We also have that $|d''_{i-1} - d_{i-1}/\ell| < 1$ and $|d''_i - d_i/\ell| < 1$. Therefore $|d''_{i-1} - d''_i| < 3$ and consequently $|d'_{i-1} - d'_i| \leq 2$. But $d'_i - d'_i$ is odd so $|d'_{i-1} - d'_i| = 1$. Also $|d''_{i-1} - d''_{i-1}/\ell| < 1$ and $|d''_i - d''_i/\ell| < 1$. Therefore $|d''_{i-1} - d''_i| \leq (\ell - 1)/2 = \ell + 1$, so $|d''_{i-1} - d''_i| \leq \ell$. But $d''_{i-1} - d''_i$ is even and ℓ is odd, so $|d''_{i-1} - d''_i| \leq (\ell - 1)r_i = 2mr_i$. Therefore both (1) and (2) hold.

We have $d''_{i-1} + d''_i > d_{i-1}/\ell + d_i/\ell - 2 \geq 1 - 2 = -1$. Thus $d''_{i-1} + d''_i$ is odd, so $d''_{i-1} + d''_i \geq 1$. We have $d''_{i-1} + d''_i > \ell/\ell(d_{i-1} + d_i) - 2 \geq (\ell - 1) - 2 = \ell - 3$. But $d''_{i-1} + d''_i$ is even and so $d''_{i-1} + d''_i \geq \ell - 1 = 2m$. Therefore (3) holds. \(\square \)

7.3. Lemma. — For each positive integer m,

\[S_{(2m)} = \sum_{\substack{i=1}}^{m} S_{(2)}. \]

Proof. We show the lemma by induction on $m \geq 1$. The case $m = 1$ is a tautology. Suppose that $m \geq 2$. We show that $S_{(2m)} = S_{(2)} + \cdots + S_{(2)}$. Suppose $d = (d_1, \ldots, d_{n-1}) \in S_{(2m)}$. We construct $d' \in S_{(2)}$ and $d'' \in S_{(2m-2)}$ where $d' + d'' = d$, by placing d' in the proximity of d/m. Recall that the integrality condition is that the components of d, d', and d'' are even integers.

Let $e^- : \mathbb{R} \to 2\mathbb{Z}$ be the function which assigns the nearest even integer, where odd integers $2t + 1$ are mapped to $2t$. To be concise,

\[e^-(x) = \min\{k \in 2\mathbb{Z} : k \geq x - 1\} = 2\lceil (x - 1)/2 \rceil. \]
Similarly let $e^+ : \mathbb{R} \rightarrow 2\mathbb{Z}$ assign the nearest even integer where odd integers $2t + 1$ are mapped to $2t + 2$,

$$e^+(x) = \max\{ k \in 2\mathbb{Z} : k \leq x + 1 \} = 2[(x + 1)/2].$$

We will often use the following properties of e^- and e^+:

- each of e^- and e^+ is weakly increasing.
- if $k \in 2\mathbb{Z}$, then $e^\pm (x + k) = e^\pm (x) + k$.
- $e^+(-x) = -e^-(x)$.
- if $x + y \in 2\mathbb{Z}$, then $e^+(x) + e^-(y) = x + y$.
- if $x + y \geq k \in 2\mathbb{Z}$, then $e^+(x) + e^-(y) \geq k$.

Let $d = (d_1, \ldots, d_{n-1}) \in S_{(2m)}$. Let

$$J_d^0 = \{ i \in \{2, \ldots, n-1\} \mid d_{i-1}/m \text{ and } d_i/m \text{ are odd integers, } d_{i-1} + d_i = 2m \},$$

$$J_d^1 = \{ i \in \{2, \ldots, n-1\} \mid d_{i-1} \leq 2m, d_i \leq 2m \}.$$

Clearly $J_d^0 \subset J_d^1$. Let \mathcal{J}_d be such that $\mathcal{J}_d \subset J_d^0 \subset J_d^1$. Let $\{i_1, \ldots, i_s\} = \mathcal{J}_d$ such that $i_t < i_{t+1}$ for all t, and set $i_0 = 1$ and $i_{s+1} = n$.

Let $d' = (d'_1, \ldots, d'_{n-1}) \in (2\mathbb{Z})^{n-1}$ be

$$d'_i = \begin{cases} e^-(d_i/m) & \text{for } i_{2t} \leq i < i_{2t+1}, 2t \leq s, \\ e^+(d_i/m) & \text{for } i_{2t+1} \leq i < i_{2t+2}, 2t + 1 \leq s. \end{cases}$$

Let $d'' = (d''_1, \ldots, d''_{n-1}) \in (2\mathbb{Z})^{n-1}$ be

$$d''_i = \begin{cases} e^+(d_i/m + (m-1)d_i/m) & \text{for } i_{2t} \leq i < i_{2t+1}, 2t \leq s, \\ e^-(d_i/m - (m-1)d_i/m) & \text{for } i_{2t+1} \leq i < i_{2t+2}, 2t + 1 \leq s. \end{cases}$$

We will show that $d' + d'' = d$, $d' \in S_{(2)}$, and $d'' \in S_{(2m-2)}$. Note that $e^\pm(x) + e^\mp(y) = k$ whenever $x + y = k$ and $k \in 2\mathbb{Z}$. We have that $d_i/m + (m-1)d_i/m = d_i \in 2\mathbb{Z}$ for all i, so $d'_i + d''_i = e^\pm(d_i/m) + e^\mp((m-1)d_i/m) = d_i$.

Thus $d' + d'' = d$.

We show that $d' \in D_{(2)}$. The proof that $d'' \in D_{(2m-2)}$ is similar. Since $d_1 = 2m$ and $d_{n-1} = 2m$, we have $d'_1 = 2$ and $d''_{n-1} = 2$. Now suppose $2 \leq i \leq n-1$. We must show the three triangle inequalities that define $D_{(2)}$:

1. $d_{i-1}' \leq d_i' + 2$,
2. $d_i' \leq d_{i-1}' + 2$,
3. $2 \leq d_{i-1}' + d_i'$

Suppose that $i \notin \mathcal{J}_d$. We have $d_{i-1}' = e^+(d_{i-1}/m)$ and $d_{i-1}' = e^+(d_{i}/m)$ (the same function is applied to each). The functions e^- and e^+ are weakly increasing, and since $d_i/m \leq d_{i-1}/m + 2$ we have that

$$d_i' = e^+(d_i/m) \leq e^+(d_{i-1}/m + 2) = e^+(d_{i-1}/m) + 2 = d_{i-1}' + 2$$

so (2) holds. Similarly inequality (1) holds. Since $i \notin \mathcal{J}_d^0$ we know that either $d_{i-1} + d_i > 2m$ or one of d_{i-1}/m or d_i/m is not an odd integer. Suppose $d_{i-1} + d_i > 2m$. We have that
for the graded semigroup word problem \mathcal{S}.

Section 7.5. The word problem for \mathcal{S} follows from Lemma 7.3. □

Proof. The first statement is a direct consequence of Lemmas 7.2 and 7.3. The second statement follows from Lemma 7.3.

Section 7.4. Theorem. — The toric ring $\mathbb{Z}[S]$ is generated by elements of degrees one and two; furthermore, $\mathbb{Z}[S_{\text{even}}]$ is generated by elements of degree one.

Proof. The first statement is a direct consequence of Lemmas 7.2 and 7.3. The second statement follows from Lemma 7.3. □

Section 7.5. The word problem for \mathcal{S} and the relations for $\mathbb{Z}[S]$.

We will solve the presentation problem for $\mathbb{Z}[S]$ by solving the seemingly more difficult word problem for the graded semigroup $\mathcal{S} = \bigcup_{N \geq 0} S(N)$. Our technique is to define a normal form for words in \mathcal{S} expressed in terms of degree one and degree two elements, then show that any word can be brought into normal form by a sequence of relations of degrees two, three, and four.

Section 7.6. Remark. It would be interesting to know if our normal monomials form a SAGBI basis. Also, it would interesting to know whether the polytope $D(1)$ has a regular unimodal triangulation.

Let $\xi_{2m+1} : S_{(2m+1)} \to S_{(1)}$ be given by $\xi_{2m+1}(d) = d'$ where d' is as in the proof of Lemma 7.2.

If A is an integer matrix let the jth column of A be denoted $c_j(A)$. If each column of A belongs to either $S_{(1)}$ or $S_{(2)}$ then we say that A is an S-matrix. (S-matrices represent monomials in $\mathbb{Z}[S]$ which are products of degree one and degree two generators.) We define $\deg(A)$ to be the sum of the degrees of the columns of A whenever A is an S-matrix.
7.7. Definition: normal form. Suppose that A is an S-matrix. Let

$$a = (a_1, \ldots, a_{n-1}) = \sum_j c_j(A) \in S_{(\deg(A))}.$$

Suppose that $\deg(A) = 2m$ is even. Let $J_a = \{i_1, \ldots, i_k\}$ be the set of all i, $2 \leq i \leq n - 1$, such that $a_{i-1} \leq 2m$ and $a_i \leq 2m$, where $i_t < i_{t+1}$ for all t, $1 \leq t < k$. Let $i_0 = 1$ and let $i_{k+1} = n$. (Note that $J_a = J_a^1$ as in the proof of Lemma 7.3.) Suppose A has the following properties:

(N0) Each column of A has degree two.
(N1) For each i the row entries $a_{i,j}$ satisfy $|a_{i,j} - a_i/m| < 2$.
(N2) For $i_{2t} \leq i < i_{2t+1}$, row i is weakly increasing. For $i_{2t+1} \leq i < i_{2t+2}$, row i is weakly decreasing.

Then we say that A is in normal form.

Now suppose that $\deg(A) = 2m + 1$ is odd. Then we say that A is in normal form if the first column of A is equal to $\xi_{2m+1}(a)$ and if the matrix A' obtained from A by removing the first column is in normal form.

7.8. Lemma (uniqueness). — For any $a = (a_1, \ldots, a_{n-1}) \in S_{(\ell)}$ there is at most one matrix A in normal form such that the columns of A sum to a.

Proof. Suppose $\ell = 2m = \deg(A)$ is even and A is in normal form. Then each column of A is degree two so all the matrix entries are even integers and there are m columns. For each i let k_i be an even integer such that $k_i \leq a_i/m \leq k_i + 2$. By condition (N1) we know that each $a_{i,j}$ is either k_i or $k_i + 2$. Let t_i be the number of $a_{i,j}$ equal to k_i. Then, $t_i k_i + (m - t_i)(k_i + 2) = a_i$, so $2t_i = m(k_i + 2) - a_i$, and thus t_i is determined by the value of a_i. Finally the monotonicity condition (N2) determines each $a_{i,j}$.

Suppose $\ell = 2m + 1 = \deg(A)$ is odd and A is in normal form. The first column of A must be equal to $\xi_{2m+1}(a)$ so it is determined. Now the matrix A' which is A with the first column removed is degree $2m$ and is in normal form, so its entries are determined by the argument given above for matrices of even degree.

We say that two S-matrices A and B are equivalent if the sum a of the columns of A is equal to the sum b of the columns of B. (Note that each equivalence class contains at most one representative in normal form by the above lemma — later we will see that a normal form representative always exists.)
7.9. Example. Here is an example of two S-matrices A and B where B is the normal form representative of A. Here $n = 8$.

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 2 & 0 \\ 1 & 0 & 2 \\ 2 & 2 & 4 \\ 3 & 0 & 4 \\ 2 & 2 & 2 \\ 1 & 2 & 2 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 4 \\ 1 & 2 & 4 \\ 2 & 2 & 2 \\ 1 & 2 & 2 \end{pmatrix}$$

Let A be a S-matrix and let d_1 and d_2 be two different columns of A. We define operations of types (F2), (F3), and (F4) as follows. Here (F2) denotes a degree two relation, (F3) is a degree three relation, and (F4) is a degree four relation.

(F2) If $\deg(d_1) = \deg(d_2) = 1$ then remove columns d_1 and d_2 and place $d_1 + d_2$ as the last column.

(F3) If $\deg(d_1) = 1$ and $\deg(d_2) = 2$, let $d = d_1 + d_2$. If d_1 is to the left of d_2 then replace d_1 with $\xi_3(d)$ and replace d_2 with $d - \xi_3(d)$. If d_2 is to the left of d_1 then replace d_2 with $\xi_3(d)$ and replace d_1 with $d - \xi_3(d)$.

(F4) If $\deg(d_1) = \deg(d_2) = 2$ then choose d'_1 and d'_2 each of degree two such that $d'_1 + d'_2 = d_1 + d_2$. Replace d_1 with d'_1 and replace d_2 with d'_2.

7.10. Remark. Actually the (F4) operations can be restricted to the so-called f^-, f^+ and g^-, g^+ relations; see the proof of Lemma 7.11 below.

7.11. Lemma. — Suppose that A is a S-matrix. Then there is a finite sequence (A_0, A_1, \ldots, A_p) of equivalent S-matrices where $A_0 = A$, the final matrix A_p is in normal form, and for each i the matrix A_{i+1} is obtained from A_i by a single operation of type (F2), (F3), or (F4). (In the special case that A is even degree and all columns are degree two then all these operations are of type (F4).)

Proof. First note that (F2) operations can be applied to any pair of degree one columns until either every column is degree two (when $\deg(A)$ is even) or there is only one column of degree one (when $\deg(A)$ is odd.) Assume now that A has at most one column of degree one.

Case I: $\deg(A)$ is even. Suppose that $\deg(A) = 2m$ is even, and so each column of A is degree two and there are m columns. We will show that special operations (called f^-, f^+ operations) can be applied enough times so that finally the resulting matrix A will satisfy condition (N1) for normality, but possibly fail (N2). After A satisfies (N1), we may switch to a different types of operation (called g^-, g^+ operations) which will not disrupt the (N1) condition, and will eventually lead to a matrix which also satisfies (N2).

For $d = (d_1, \ldots, d_{n-1}) \in S_{(s)}$, let $J_d = J_d^0$ where J_d^0 is as in the proof of Lemma 7.3, and let $f^-, f^+: S_{(s)} \to S_{(2)}$ be given by $f^-(d) = d'$ and $f^+(d) = d''$ where d' and d'' are again as in the proof of Lemma 7.3. Let an f^-, f^+ operation be the following. Choose j, j' such that
Therefore after sufficiently many places row i further from the constant vector \(a \) and each of $a_{i,j} - a_{i,j}' \) is an odd integer. Since $a_{i,j} - a_{i,j}'$ is even we have $|a_{i,j} - a_{i,j}'| > 2$ since $\sum_j a_{i,j} = a_i$. Suppose that \(a_{i,j} - a_{i,j}' \) is even we have $|a_{i,j} - a_{i,j}'| > 2$ since $\sum_j a_{i,j} = a_i$. Hence f^-, f^+ operations cannot take the \(i \)th row further from the constant vector \((a_{i,m}, \ldots, a_{i,m}) \). Now suppose that the \(i \)th row is as close as possible to \((a_{i,m}, \ldots, a_{i,m}) \) by applying f^-, f^+ operations. Suppose there is some $a_{i,j}$ such that $|a_{i,j} - a_{i,j}'| > 2$ since $\sum_j a_{i,j} = a_i$. Since $a_{i,j} - a_{i,j}'$ is even we have $|a_{i,j} - a_{i,j}'| \geq 4$. But now an f^-, f^+ operation on columns j, j' places row i strictly closer to \((a_{i,m}, \ldots, a_{i,m}) \), a contradiction. Therefore after sufficiently many f^-, f^+ operations the resulting matrix satisfies (N1).

Assume now that A satisfies (N1). We shall now switch to a different kind of (F4) operation (which does not disrupt (N1)) which will eventually give us a matrix that also satisfies (N2). Recall the definition of \mathcal{J}_a. We have $\mathcal{J}_a = \{ i_1, \ldots, i_k \}$ is the set of all $i, 2 \leq i \leq n - 1$, such that $a_{i-1} \leq 2m$ and $a_i \leq 2m$, where $i_t < i_{t+1}$ for all $t, 1 \leq t < k$. Let $i_0 = 1$ and let $i_{k+1} = n$. Let

$$ S_{(4)}(a) = \{ d \in S_{(4)} \mid \mathcal{J}_d^0 \subset \mathcal{J}_a \subset \mathcal{J}_d^1 \}. $$

Let

$$ g^- : S_{(4)}(a) \to S_{(2)}, $$

$$ g^-(d)_i = \begin{cases}
 e^-(d_i/2) & \text{for } 2t \leq i < 2t+1, 2t \leq k, \\
 e^+(d_i/2) & \text{for } 2t+1 \leq i < 2t+2, 2t+1 \leq k.
\end{cases} $$

Let

$$ g^+ : S_{(4)}(a) \to S_{(2)}, $$

$$ g^+(d)_i = \begin{cases}
 e^+(d_i/2) & \text{for } 2t \leq i < 2t+1, 2t \leq k, \\
 e^-(d_i/2) & \text{for } 2t+1 \leq i < 2t+2, 2t+1 \leq k.
\end{cases} $$

We claim that for any two columns $c_j(A), c_j'(A)$ the sum $d = (d_1, \ldots, d_{n-1}) = c_j(A) + c_{j'}(A)$ is a member of $S_{(4)}(a)$. First we show that $\mathcal{J}_a \subset \mathcal{J}_d^1$. Suppose that $i \in \mathcal{J}_a$. Then $a_{i-1}/m \leq 2$ and $a_i/m \leq 2$, so the entries in rows $i - 1$ and i are at most 2 since $|a_{i-1,j} - a_{i-1,j}'| < 2$ and $|a_{i,j} - a_{i,j}'| < 2$ for all j. Hence the sum of any two entries in row $i - 1$ is at most 4 and the sum of any two entries in row i is at most 4. Therefore each of d_{i-1} and d_i is at most 4 so $i \in \mathcal{J}_d^1$. Next we show that $\mathcal{J}_d^0 \subset \mathcal{J}_a$. Suppose $i \in \mathcal{J}_d^0$. This means that $d_{i-1} + d_i = 4$ and each of $d_{i-1}/2$ and $d_i/2$ is an odd integer. Since $a_{i-1,j} + a_{i,j} \geq 2$ and $a_{i-1,j'} + a_{i,j'} \geq 2$ and

$$ a_{i-1,j} + a_{i-1,j'} + a_{i,j} + a_{i,j'} = d_{i-1} + d_i = 4, $$

we have that $a_{i-1,j} + a_{i,j} = 2$ and $a_{i-1,j'} + a_{i,j'} = 2$. Suppose by way of contradiction that $a_{i-1} > 2m$. Then each entry of row $i - 1$ is at least 2. Then $a_{i-1,j} = a_{i-1,j'} = 2$ and
\(a_{i,j} = a_{i,j'} = 0\). But now \(d_i = a_{i,j} + a_{i,j'} = 0\) which contradicts that \(d_i/2\) is an odd integer. Therefore \(a_{i-1} \leq 2m\). Similarly we can show \(a_i \leq 2m\). Hence \(i \in J_n\).

We define a \(g^-, g^+\) operation to be the following. Let \(j < j'\) and replace columns \(c_j(A), c_{j'}(A)\) with \(g^-(c_j(A) + c_{j'}(A)), g^+(c_j(A) + c_{j'}(A))\) in that order. Clearly any such \(g^-, g^+\) operation is of type (F4) and it preserves the inequalities \(|a_{i,j} - a_i/m| < 2\). We claim that a finite number of such operations results in a matrix in normal form. First notice that \(g^-, g^+\) operations don’t change the multi-set of entries in any given row since they preserve the (N1) condition. We determine how \(g^-, g^+\) operations affect the order of the row entries. The output of \(g^-\) and \(g^+\) is determined by the type of interval \(i\) belongs to; either \(i_2t \leq i < i_{2t+1}\) for some \(t\) or \(i_{2t+1} \leq i < i_{2t+2}\) for some \(t\). Let us examine the case \(i_{2t} \leq i < i_{2t+1}\). Here \(g^-\) applies the \(e^-\) rule and \(g^+\) applies the \(e^+\) rule. Hence the result of a \(g^-, g^+\) operation to columns \(j, j'\) with \(j < j'\) is to put entries \(a_{i,j}, a_{i,j'}\) into (weakly) increasing order. After applying these operations to all pairs \(j, j',\) the resulting \(i\) th row is weakly increasing. The case \(i_{2t+1} \leq i < i_{2t+2}\) is similar; this row will be weakly decreasing after \(g^-, g^+\) operations are performed on all pairs of columns.

Case II: deg \((A)\) is odd. Suppose deg \((A) = 2m + 1\) is odd, so there is one column of degree one and \(m\) columns of degree two. Apply a single (F3) operation so that the first column is the degree one column and columns 2 through \(m + 1\) are degree two. Always let \(A'\) denote \(A\) without the first column. We will show after enough operations of types (F3) and (F4) that the first column is \(\xi_{2m+1}(a)\) and that \(A'\) satisfies conditions (N0) and (N1) for normality. Then \(g^-, g^+\) operations can be performed on \(A'\) so that \(A'\) will eventually satisfy (N2).

The \(i\) th row must satisfy that \(a_{i,1} \equiv i \pmod{2}\), each \(a_{i,j}\) is even for \(j \geq 2\), and the sum \(\sum_j a_{i,j} = a_i\). Clearly row \(i\) is closest to the vector

\[
v_i = \left(\frac{a_i}{2m+1}, \frac{2a_i}{2m+1}, \frac{2a_i}{2m+1}, \ldots, \frac{2a_i}{2m+1}\right) \in \mathbb{Q}^{m+1}
\]

if and only if

\[
(*) \quad |a_{i,1} - a_i/(2m + 1)| < 1 \quad \text{and} \quad |a_{i,j} - a_i/(2m + 1)| < 2 \quad \text{for all} \quad j \geq 2.
\]

These inequalities are necessary for the first column \(c_1(A)\) to be \(\xi_{2m+1}(a)\) and for \(A'\) to satisfy (N1). If each row satisfies (*) then in fact \(c_1(A) = \xi_{2m+1}(a)\) and \(A'\) satisfies (N1).

Suppose that (*) holds for row \(i\). We claim that operations of types (F3) and (F4) preserve (*). We have that \(|2a_i, a_{i,j}| < 4\) for each \(j \geq 2\). But \(2a_i - a_{i,j}\) is even so in fact \(|2a_i, a_{i,j}| < 2 < 3\). Therefore, \(|(a_{i,1} + a_{i,j})/3 - a_{i,1}| < 1\). But this implies that \(\xi_i(c_1(A) + c_{j}(A))_i = a_{i,1}\) since \(a_{i,1}\) has parity \(i \pmod{2}\) and is less than one unit from \((a_{i,1} + a_{i,j})/3\). Therefore row \(i\) is fixed by any (F3) operation. On the other hand if an (F4) operation is applied to columns \(j\) and \(j'\) then it either fixes \(a_{i,j}\) and \(a_{i,j'}\) or swaps their order since \(|a_{i,j} - a_{i,j'}| \leq 2\).

Suppose that row \(i\) is as close as possible to \(v_i\) by applying (F3) and (F4) operations. Suppose by way of contradiction that \(|a_{i,1} - a_i/(2m + 1)| \geq 1\). Then there is some \(j_0 \geq 2\) such that \(a_i/(2m + 1)\) is strictly between \(a_{i,j_0}/2\) and \(a_{i,1}\) since \(a_i/(2m + 1)\) is the weighted average of the entries in row \(i\), where \(a_{i,1}\) is weighted by 1 and \(a_{i,j}\) is weighted by 2 for
each \(j \geq 2 \). Therefore \(|2a_{i,1} - a_{i,j_0}| > 2 \). But \(2a_{i,1} - a_{i,j_0} \) is even so in fact \(|2a_{i,1} - a_{i,j_0}| \geq 4 \). So \(|(a_{i,1} + a_{i,j_0})/3 - a_{i,1}| \geq 4/3 \). Without loss of generality suppose that \(a_{i,1} < a_{i,j_0}/2 \). Then we have

\[
a_{i,1} < (a_{i,1} + a_{i,j_0})/3 < a_{i,j_0}/2.
\]

Let \(k \) be the nearest integer of parity \(i \pmod{2} \) to \((a_{i,1} - a_{i,j_0})/3 \). Then we have \(a_{i,1} < k \leq a_{i,j_0}/2 \). Let \(\delta_i \) be the change in the distance between row \(i \) and \(v_i \) after applying an (F3) operation to columns 1 and \(j_0 \). Let \(a_i = a_i/(2m + 1) \) and let \(t = k - a_{i,1} \). Then

\[
\delta_i = (a_{i,1} + t - a) + (a_{i,j_0} - t - 2a) - (a_{i,1} - a) - (a_{i,j_0} - 2a)^2 = 2t(t - (a_{i,j_0} - a_{i,1} - a)).
\]

But we know that \(0 < t \leq a_{i,j_0}/2 - a_{i,1} < a_{i,j_0} - a_{i,1} - a \). The first inequality follows from the fact that \(a_{i,1} < k \) and the last inequality follows from that fact that \(a_{i,j_0} > 2a_i/(2m+1) \). Hence \(\delta_i \) is negative which means an (F3) operation takes row \(i \) strictly closer to \(v_i \), a contradiction. Hence \(|a_{i,1} - a_i/(2m + 1)| < 1 \). Now by our argument above for even degree matrices, we must have that the remaining entries \(a_{i,j} \) differ by at most 2 from one another ((F4) operations can accomplish this) and consequently we also have that \(|a_{i,j} - 2a/(2m + 1)| < 2 \) for each \(j \geq 2 \). Therefore, working row by row, we end up with a matrix \(A \) such that \(c_1(A) = \xi_{2m+1}(a) \) and \(A' \) satisfies (N1). Now apply \(g^- \), \(g^+ \) operations to \(A' \) so that finally \(A' \) satisfies (N2) as well.

\[\Box\]

7.12. Corollary. — For any \(S \)-matrix \(A \), there is a unique \(S \)-matrix \(N(A) \) in normal form which is equivalent to \(A \).

7.13. Theorem. — The ideal of relations of \(\mathbb{Z}[S] \cong \text{gr}(R) \) is generated by relations of degrees two, three, and four. Furthermore, the ideal of relations of \(\mathbb{Z}[S^{\text{even}}] \) is generated by quadrics.

Proof. One only needs to determine if two monomials in degree one and two variables are equal. This corresponds to deciding if two \(S \)-matrices are equivalent, which is true if and only if they have the same normal form. Operations of types (F2),(F3), and (F4) correspond to degree two, degree three, and degree four relations in the ideal of \(\mathbb{Z}[S] \). By Lemma 7.11 these operations are enough to place any \(S \)-matrix \(A \) into its normal form \(N(A) \). Hence relations up to degree four must generate the ideal of \(\mathbb{Z}[S] \). For the case of \(\mathbb{Z}[S^{\text{even}}] \) a \(S \)-matrix is of even degree and we only need type (F4) operations to place it into normal form. In this case an (F4) operation is a quadric. \[\Box\]

8. LIFTING THE PRESENTATION FROM \(\text{gr}(R) \) TO \(R \)

We now set up a presentation for \(R \) using both degree one and degree two Kempe graphs. Later we will remove the degree two generators (in case \(n \) is even) as they are redundant. Let \(\tilde{X}_G \) be a formal variable for each \(G \in \mathcal{K}(1) \cup \mathcal{K}(2) \).

Let \(\pi : \mathbb{Z}[ilde{X}_G]_{G \in \mathcal{K}(1) \cup \mathcal{K}(2)} \to R \) be the surjection sending \(\tilde{X}_G \) to \(X_G \in R \). We know this is a surjection for two reasons. One is that \(X_G \) has leading term \(Y_G \in \text{gr}(R) \), and the \(Y_G \) generate \(\text{gr}(R) \) for \(G \in \mathcal{K}(1) \cup \mathcal{K}(2) \). But we also know by Kempe’s theorem that the \(X_G \) for
$G \in K_{(1)}$ generate R. Let I'' be the kernel of this map. Also, let $\pi : \mathbb{Z}[\tilde{X}_G]_{G \in K_{(1)} \cup K_{(2)}} \to \text{gr}(R)$ be the surjection given by $\tilde{X}_G \to Y_G$. Let $J = \ker(\pi)$.

Recall we have the explicit isomorphism between Kempe graphs and S, by $\phi : K \to S$, where K has the semigroup structure $(G_1, G_2) \to G_1 \ast G_2$. If A is an S-matrix with m columns, let $m_A = \prod_{i=1}^{m} \tilde{X}_{\phi^{-1}(c_i(A))}$. If A is in normal form, we shall say that m_A is in normal form. Recall that $N(A)$ denotes the unique S-matrix in normal form such that $\sum c_i(N(A)) = \sum c_i(A)$.

8.1. Proposition. — The relations in the X_G for G a Kempe graph of degree one or two are generated in degrees two, three, and four. The ring $R_{e\text{ven}}$ is generated in degree one (by X_G where $G \in K_{(2)}$) and the relations are generated by quadrics.

Proof. By the previous section, we have that the ideal J is generated by elements of the form $m_A - m_{N(A)}$ as A ranges over non-normal form S-matrices of degrees 2, 3, 4. We lift these relations to get generators of $I'' = \ker(\pi)$. Take any S-matrix A of degree k, where $k \in \{2, 3, 4\}$. We know that the elements $\pi(m_B) \in R$ is a \mathbb{Z}-basis for $R_{(k)}$, as B ranges over all normal form S-matrices of degree k. On the other hand, the elements X_G for $G \in K_{(k)}$ are a basis for $R_{(k)}$. We assume this ordering to be consistent with the bijection ϕ. Let M_k be the change of basis matrix taking the basis $(\pi(m_B))_{\text{deg}(B) = k, \text{N}(B) = B}$ to the basis $(X_G)_{G \in K_{(k)}}$. Write out $\pi(m_A) = \sum_{G \in K_{(k)}} c_G X_G$ as a unique integral combination of X_G, for $G \in K_{(k)}$. Define c_B^G to be the Bth entry of $[c_G]_G \cdot M_k$. We have that $\pi(m_A) = \sum_B c_B^G \pi(m_B)$. Also the leading term of $\sum_B c_B^G m_B$ is $m_{N(A)}$, so $m_A - \sum_B c_B^G m_B \in I''$ is a lift of the relation $m_A - m_{N(A)}$. For the case of $R_{e\text{ven}}$ we need to lift quadric relations only. \hfill \Box

Proof of Second Main Theorem 1.3. Suppose that n is even. Express each X_G of degree two in terms of degree one elements (by Theorem 2.3), and re-write the lifted relations of the above Proposition as relations in the degree one generators. These lifted relations must generate the ideal (and they have degree at most four). Suppose more generally that we have m points with weight w, where $|w| = n$ is even. Recall by Theorem 2.15 there is a surjection $I_n \to I_w$. So I_w is also generated by relations of degree at most four.

Now suppose that there are m points with weight w and each weight w_i is even. Let $n = |w|/2$ (n might be odd). Let $\tilde{w} = (2, 2, \ldots, 2) \in \mathbb{Z}^n$ (earlier we abbreviated this as 2^n). Now $R_{\tilde{w}} = R_{e\text{ven}}$ and by the above Proposition, the ideal of relations $I_{\tilde{w}}$ is generated by quadrics. Now by Theorem 2.15 we have that $I_{\tilde{w}}$ surjects onto I_w, so I_w is generated by quadrics as well. \hfill \Box

\begin{thebibliography}{9}
\end{thebibliography}

B. Howard: Inst. for Mathematics and its Applications, U. of Minnesota, Minneapolis, MN 55455, USA, bhoward@ima.umn.edu

J. Millson: Department of Mathematics, University of Maryland, College Park, MD 20742, USA, jjm@math.umd.edu

A. Snowden: Department of Mathematics, Princeton University, Princeton, NJ 08544, USA, asnowden@math.princeton.edu

R. Vakil: Department of Mathematics, Stanford University, Stanford, CA 94305, USA, vakil@math.stanford.edu