
THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC3-SPACEMICHAEL KAPOVICH*, JOHN J. MILLSONy, AND THOMAS TRELOARAbstract. We study the symplectic geometry of the moduli spaces Mr =Mr(H 3 ) ofclosed n-gons with �xed side-lengths in hyperbolic three-space. We prove that thesemoduli spaces have almost canonical symplectic structures. They are the symplecticquotients of Bn by the dressing action of SU(2) (here B is the subgroup of the Borelsubgroup of SL2(C ) de�ned below). We show that the hyperbolic Gauss map setsup a real analytic isomorphism between the spaces Mr and the weighted quotientsof (S2)n by PSL2(C ) studied by Deligne and Mostow. We construct an integrableHamiltonian system on Mr by bending polygons along nonintersecting diagonals. Wedescribe angle variables and the momentum polyhedron for this system. The results ofthis paper are the analogues for hyperbolic space of the results of [KM2] for Mr(E3 ),the space of n-gons with �xed side-lengths in E3 . We prove Mr(H 3 ) and Mr(E3 ) aresymplectomorphic. 1. IntroductionAn (open) n-gon P in hyperbolic space H 3 is an ordered (n+1)-tuple (x1; :::; xn+1) ofpoints in H 3 called the vertices. We join the vertex xi to the vertex xi+1 by the uniquegeodesic segment ei, called the i-th edge. We let Poln denote the space of n-gons in H 3 .An n-gon is said to be closed if xn+1 = x1. We let CPoln denote the space of closedn-gons. Two n-gons P = [x1; :::; xn+1] and P 0 = [x01; :::; x0n+1] are said to be equivalentif there exists g 2 PSL2(C ) such that gxi = x0i, for all 1 � i � n + 1. We will eitherrepresent an n-gon P by its vertices or its edges, P = [x1; :::; xn+1] = (e1; :::en):Let r = (r1; :::; rn) be an n-tuple of positive numbers. This paper is concerned withthe symplectic geometry of the space of closed n-gons in H 3 such that the i-th edge eihas side-length ri, 1 � i � n, modulo PSL2(C ). We will assume in this paper (withthe exception of x3) that r is not on a wall of Dn (see x2), hence Mr is a real-analyticmanifold.The starting point of this paper is (see x4)Theorem 1.1. The moduli spaces Mr are the symplectic quotients obtained from thedressing action of SU(2) on Bn.Here B = AN is the subgroup of the Borel subgroup of SL2(C ), B = f� � z0 ��1 � :� 2 R+ ; z 2 C g. B is given the Poisson Lie group structure corresponding to the ManinDate: July 24, 2000.* Research partially supported by NSF grant DMS-96-26633.y Research partially supported by NSF grant DMS-98-03520.1



2 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARtriple (sl(2; C ); su(2); b) with h; i on sl(2; C ) given by the imaginary part of the Killingform.Remark 1.2. As a consequence of Theorem 1.1, the spaces Mr have an almost canonicalsymplectic structure (the symplectic structure depends on a choice of Iwasawa decompo-sition of SL2(C ) or a ray in H 3 , but given two such choices, there exist (in�nitely many)g 2 SL2(C ) inducing an isomorphism of the two Poisson structures).Our next theorem relates the moduli spaces Mr to the weighted quotients Qsst =Qsst(r) of (S2)n constructed by Deligne and Mostow in [DM]. By extending the sidesof the n-gon in the positive direction until they meet S2 = @1H 3 , we obtain a map, thehyperbolic Gauss map 
 : Poln ! (S2)n. We then have (here we assume Mr is smooth)Theorem 1.3. The hyperbolic Gauss map induces a real analytic di�eomorphism 
 :Mr ! Qsst(r).Remark 1.4. In [KM2], the �rst two authors constructed an analogous analytic iso-morphism 
 : Mr(E 3) ! Qsst(r) where Mr(E 3 ) is the moduli space of n-gons with theside-lengths r = (r1; :::; rn) in Euclidean space E 3 . Although they gave a direct proof, thislatter result was a consequence of the Kirwan-Kempf-Ness theorem, [Ki],[KN], relatingMumford quotients to symplectic quotients. Our new result (Theorem 1.3 above) relatesa Mumford quotient to a quotient of a symplectic manifold by a Poisson action.The key step (surjectivity) in the proof of Theorem 1.3 is of independent interest. Wecould try to invert 
 :Mr ! Qsst as follows. Suppose we are given � = (�1; :::; �n) 2 Qsst.We wish to construct P 2Mr with 
(P ) = �. Choose x 2 H 3 . Put the �rst vertex x1 = x.Let �1 be the geodesic ray from x1 to �1. Let x2 be the point on �1 with d(x1; x2) = r1.Let �2 be the ray from x2 to �2. Cut o� �2 at x3 so that d(x2; x3) = r2. We continue inthis way until we get P = [x1; :::; xn+1]. However it may not be the case that P closesup (i.e. xn+1 = x1).Theorem 1.5. Suppose � is a stable con�guration (see x3.1) on (S2)n. Then there is aunique choice of initial point x = x(r; �) such that P closes up.Remark 1.6. Let e� be the atomic \measure" on S2 which assigns mass ri to the point�i, 1 � i � n, keeping track of the order of the �i's. Then the rule that assigns x =x(e�) = x(�; r) above is PSL2(C )-equivariant and is a multiplicative analogue of theconformal center of mass, C(�), of Douady and Earle [DE], see also [MZ, x4]. Here �is the measure � =Pni=1 ri�(� � �i).Remark 1.7. We may use Theorem 1.3 to construct a length-shrinking 
ow on CPoln.Namely, let 0 � t � 1. Replace the weights r = (r1; :::; rn) by tr = (tr1; :::; trn). We haveMr 
r�! Qsst(r) �= Qsst(tr) 
tr ��Mtr:The composition 
�1tr �
r is the length-shrinking 
ow. Note that Qsst(r) and Qsst(tr)are canonically isomorphic as complex analytic spaces. We obtain a curve x(t) = x(tr; �).We have



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 3Theorem 1.8. limt!0 x(tr; �) = C(�), the conformal center of mass of Douady andEarle.Remark 1.9. We see that C(�) is \semi-classical," it depends only on the limit as thecurvature goes to zero (or the speed of light goes to in�nity), see x3.3.Our �nal theorems are connected with the study of certain integrable systems onMrobtained by \bending an n-gon along nonintersecting diagonals" Precisely, we proceedas follows. We de�ne the diagonal dij of P to be the geodesic segment joining xi to xj .Here we assume i < j. We let `ij be the length of dij . Then `ij is a continuous functionon Mr but is not smooth at the points where `ij = 0. We have the following descriptionof the Hamiltonian 
ow of `ij (it is de�ned provided `ij 6= 0).Theorem 1.10. The Hamiltonian 
ow 	tij of `ij applied to an n-gon P 2Mr is obtainedas follows. The diagonal dij separates P into two halves. Leave one half �xed and rotatethe other half at constant speed 1 around dij.For obvious reasons we call 	tij \bending along dij ."De�nition 1.11. We say two diagonals dij and dab of P do not intersect if the interiorsof d�ij and d�ab do not intersect, where d�ij (resp. d�ab) is the diagonal of a convex planarn-gon P � corresponding to dij (resp. dab).We then haveTheorem 1.12. Suppose dij and dab do not intersect, thenf`ij ; `abg = 0:Remark 1.13. We give two proofs of this theorem. The �rst is a direct computation ofthe Poisson bracket due to Hermann Flaschka. The second is an elementary geometricone depending on the description of the 
ows in Theorem 1.10. It corresponds to thegeometric intuition that we may wiggle 
aps of a folded piece of paper independently ifthe fold lines do not intersect.We obtain a maximal collection of commuting 
ows if we draw a maximal collectionof nonintersecting diagonals fdij ; (i; j) 2 Ig. Later we will take the collection of alldiagonals starting at the �rst vertex, I = f(1; 3); (1; 4); :::; (1; n�1)g. Each such collectioncorresponds to a triangulation of a �xed convex planar n-gon P �. There are n � 3diagonals in such a maximal collection. Since dim Mr = 2n� 6, we obtainTheorem 1.14. For each triangulation of a convex planar n-gon P � we obtain an in-tegrable system on Mr. Precisely, we obtain a Hamiltonian action of an (n-3)-torus onMr which is de�ned on the Zariski open subset M 0r de�ned by the nonvanishing of thelengths of the diagonals in the triangulation.We have a simple description of the angle variables and the momentum polyhedronattached to the above integrable system. Let Mor �M 0r be the subset such that none ofthe n� 2 triangles in the triangulation are degenerate. Let b�ij be the dihedral angle atdij . Put �ij = � � b�ij. Then the �ij are angle variables.



4 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARTo obtain the momentum polyhedron we follow [HK] and note that there are threetriangle inequalities associated to each of the n� 2 triangles in the triangulation. Theseare linear inequalities in the `ij's and the rij 's. If they are satis�ed, we can build then�2 triangles then glue them together and get an n-gon P with the required side-lengthsri and diagonal lengths `ij. We obtainTheorem 1.15. The momentum polyhedron of the above torus action (the image of Mrunder the `ij's) is the subset of (R�0)n�3 de�ned by the 3(n � 2) triangle inequalitiesabove.As a consequence we obtainCorollary 1.16. The functions `ij ; (i; j) 2 I, are functionally independent.Our results on n-gon linkages in H 3 are the analogues of those of [KM2] for n-gonlinkages in E3 . We conclude the paper by comparing the symplectic manifolds Mr(H 3 )and Mr(E 3). Assume henceforth that r is not on a wall of Dn.Since the Euclidean Gauss map 
e :Mr(H 3)! Qsst(r) is a canonical di�eomorphismas is the hyperbolic Gauss map 
h :Mr(E 3 )! Qsst(r) we obtainTheorem 1.17. The hyperbolic and Euclidean Gauss maps induce a canonical di�eo-morphism Mr(E 3) 'Mr(H 3 ):The last part of the paper is devoted to provingTheorem 1.18. Mr(E 3 ) and Mr(H 3 ) are (noncanonically) symplectomorphic.This theorem is proved as follows. Let X� be the complete simply-connected Rie-mannian manifold of constant curvature �. In [Sa], Sargent proved that there exists � > 0and an analytically trivial �ber bundle � : E ! (�1; �) such that ��1(�) = Mr(X�).We construct a closed relative 2-form !� on Ej(�1;0] such that !� induces a symplecticform on each �ber of � and such that the family of cohomology classes [!�] on Ej(�1;0]is parallel for the Gauss-Manin connection. Theorem 1.18 then follows from the Mosertechnique [Mo].The results are closely related to but di�erent from those of [GW] and [A].Acknowledgments. It is a pleasure to thank Hermann Flaschka for his help andencouragement. He explained to us the set-up for the Sklyanin bracket (see x4.1) andprovided us with the �rst proof of Theorem 1.12. Also, this paper was inspired byreading [FR] when we realized that the dressing action of SU(2) on Bn was just thenatural action of SU(2) on based hyperbolic n-gons. We would also like to thank Jiang-Hua Lu for explaining the formulas of x5.1 to us. We would also like to thank her forpointing out that it was proved in [GW] that the cohomology class of the symplecticforms !� on an adjoint orbit in the Lie algebra of a compact group was constant.2. Criteria for the moduli spaces to be smooth and nonemptyIn this chapter we will give necessary and su�cient conditions for the moduli spaceMr to be nonempty and su�cient conditions for Mr to be a smooth manifold.



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 5First we need some more notation. Let � be the point in H 3 which is �xed byPSU(2). We let Poln(�) denote the space of n-gons [x1; :::; xn+1] with x1 = � andCPoln(�) = CPoln \ Poln(�). We let eNr � Poln(�) be the subspace of those n-gonsP = [x1; :::; xn+1] such that d(xi; xi+1) = ri, 1 � i � n. We put Nr = eNr=PSU(2) andfMr = eNr \CPoln(�). Hence, Mr = fMr=PSU(2).Let � : CPoln ! (R�0)n be the map that assigns to an n-gon e its set of side-lengths.�(e) = (r1; :::; rn) with ri = d(xi; xi+1); 1 � i � n.Lemma 2.1. The image of � is the closed polyhedral cone Dn de�ned by the inequalitiesr1 � 0; :::; rn � 0and the triangle inequalitiesri � r1 + � � �+ r̂i + � � � + rn; 1 � i � n(here the ^means that ri is omitted).Proof: The proof is identical to the proof of the corresponding statement for Euclideanspace, [KM1, Lemma 1].We next give su�cient conditions for Mr to be a smooth manifold. We will use tworesults and the notation from x4:3 (the reader will check that no circular reasoning isinvolved here). By Theorem 4.27 we �nd that Mr is a symplectic quotient.Mr �= ('j eNr )�1(1)=SU(2)By Lemma 4.23, 1 is a regular value of ' unless there exists P 2 fMr such that thein�nitesimal isotropy (su2)jP = fx 2 SU(2) : X̂(P ) = 0g is nonzero.De�nition 2.2. An n-gon P is degenerate if it is contained in a geodesic.We now haveLemma 2.3. Mr is singular only if there exists a partition f1; :::; ng = I q J with#(I) > 1;#(J) > 1 such that Xi2I ri =Xj2J rJ :Proof: Clearly (su2)jP = 0 unless P is degenerate. But if P is degenerate there existsa partition f1; :::; ng = I q J as above (I corresponds to the back-tracks and J to theforward-tracks of P ).Remark 2.4. In the terminology of [KM1], [KM2], Mr is smooth unless r is on a wallof Dn. Note that if jIj = 1 or jJ j = 1 then r 2 @Dn and Mr is reduced to a single point.There is a technical point concerning smoothness. We could also de�ne Mr as the�ber of �� : CPoln=PSL2(C ) ! Dn over r. It is not quite immediate that smoothnessof the symplectic quotient coincides with the smoothness of ���1(r): Fortunately, this isthe case (note r is a regular value of �� , r is a regular value of �).



6 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARLemma 2.5. r is a regular value of � , 1 is a regular value of 'j eNr.Proof: The lemma follows from a consideration of the diagrameNr�� 'r ""FFFFFFFFFFCPoln(�) //� &&LLLLLLLLLL Poln(�) ' //�� B(R�0)nand the observation that ' : Poln(�)! B (see x4.2) and the side-length map Poln(�)!(R�0)n are obviously submersions. Here we have abbreviated 'j eNr to 'r.3. The geometric invariant theory of hyperbolic polygons3.1. The hyperbolic Gauss map and weighted quotients of the con�gurationspaces of points on the sphere. The goal of the next two sections is to constructa natural homeomorphism 
 : Mr ! Qsst where Qsst is the r-th weighted quotient of(S2)n by PSL2(C ) constructed in [DM] in the case thatMr is smooth. Qsst is a complexanalytic space. We now review the construction of Qsst.Let M � (S2)n be the set of n-tuples of distinct points. Then Q = M=PSL2(C ) isa (noncompact) Hausdor� manifold.De�nition 3.1. A point ~u 2 (S2)n is called r-stable (resp. semi-stable) ifXuj=v rj < jrj2 (resp. � jrj2 )for all v 2 S2. Here jrj = Pnj=1 rj. The set of stable and semi-stable points will bedenoted by Mst and Msst respectively. A semi-stable point ~u 2 (S2)n is said to be a nicesemi-stable point if it is either stable or the orbit PSL2(C )~u is closed in Msst.We denote the space of nice semi-stable points by Mnsst. We have the inclusionsMst �Mnsst �Msst:Let Mcusp = Msst �Mst. We obtain the points Mcusp in the following way. PartitionS = f1; :::; ng into disjoint sets S = S1 [ S2 with S1 = fi1; :::; ikg; S2 = fj1; :::; jn�kg insuch a way that ri1 + � � �+ rik = jrj2 (whence rj1 + � � �+ rjn�k = jrj2 ). Then ~u is in Mcuspif either ui1 = � � � = uik or uj1 = � � � = ujn�k . The reader will verify that ~u 2 Mcusp isa nice semi-stable point if and only if both sets of the equations above hold. relation Rvia:~u � ~w (mod R) if either(a) ~u; ~w 2Mst and ~w 2 PSL2(C )~u,or(b) ~u; ~w 2Mcusp and the partitions of S corresponding to ~u; ~w coincide.



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 7The reader will verify that ~u; ~w 2 Mnsst �Mst then ~u � ~w (mod R) if and only if~w 2 PSL2(C )~u.It is clear that R is an equivalence relation. SetQsst =Msst=R; Qnsst =Mnsst=R; Qst =Mst=R; Qcusp =Mcusp=Reach with the quotient topology. The elements of Qcusp are uniquely determined bytheir partitions. Thus Qcusp is a �nite set. It is clear that each equivalence class in Qcuspcontains a unique PSL2(C )-orbit of nice semi-stable points whence the inclusionMnsst �Msstinduces an isomorphism Qnsst =Mnsst=PSL2(C ) ! Qsst:In case r1; :::; rn are rational then the quotient space Qsst can be given a structure ofa complex projective variety by the techniques of geometric invariant theory applied tocertain equivariant projective embeddings of (S2)n, see [DM, x4.6]. This concludes ourreview of [DM, x4]. We now establish the connection with the moduli space Mr.For the rest of this section (with one exception) we will use the ball model of hyper-bolic space (so � = (0; 0; 0)). We will compactify H 3 by enlarging the open three ballto the closed three ball, thus we add S2 = @1H 3 . Each point of S2 corresponds to anequivalence class of geodesic rays in H 3 . Two rays � and � are equivalent if they areasymptotic, i.e. limt!1 �(t) = limt!1 �(t) in the closed three ball. Intrinsically theequivalent rays are characterized by the property that they are within �nite Hausdor�distance from each other.In what follows all geodesic segments, geodesics and geodesic rays will be parameter-ized by arc-length. We now de�ne the hyperbolic Gauss map 
 (in various incarnations).Let � = [x; y]; x; y 2 H 3 , be the oriented geodesic segment from x to y. Let e�(0) bethe ray, e� : [0;1) ! H 3 with e�(0) = x and e�(`) = y (here ` = `(�) is the length of thegeodesic segment �). We de�ne the (forward) Gauss map 
 on oriented segments by
(�) = limt!1 e�(t):We may now de�ne 
 : eNr ! (S2)n by
(e) = (
(e1); :::; 
(en)):One of the main results of this paper is the following theorem { an analogue for Poissonactions of the theorem of Kirwan, Kempf, and Ness, [Ki], [KN].Theorem 3.2. (i) 
(fMr) �Mnsst.(ii) If P is nondegenerate, then 
(P ) 2Mst.(iii) 
 induces a real analytic homeomorphism 
 :Mr ! Qsst.(iv) Mr is smooth if and only if Mst = Msst. In this case Qsst is also smooth and
 :Mr ! Qsst is an analytic di�eomorphism.Let � 2 S2. We recall the de�nition of the geodesic 
ow �t� associated to �. (Strictlyspeaking, this 
ow is rather the projection to H 3 of the restriction of the geodesic 
ow on



8 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARUT (H 3) to the stable submanifold corresponding to �.) Given z 2 H 3 there is a uniquearc-length parameterized ray � with �(0) = z; limt!1 �(t) = �. By de�nition,�t�(z) = �(t):We will also need the de�nition of the Busemann function b(x; �); x 2 H 3 ; � 2 @1H 3 .Let � be an arc-length parameterized geodesic ray from � to �. Thenb(x; �) = limt!1(d(x; �(t)) � t):Note that for k 2 PSU(2) = Stab(�) we haveb(kx; k�) = b(x; �):Also, in the upper half space for H 3 , we haveb((x; y; z);1) = � log z:We now proveLemma 3.3. For �xed �, �rb(x; �) is the in�nitesimal generator of the geodesic 
ow�t�.Proof: From the �rst formula above, it su�ces to check this statement in the upper halfspace model (so � = (0; 0; 1)) for � =1. By the second formula�rb(x; y; z) = z @@z :We will now prove (i) and (ii) in the statement of Theorem 3.2 above.Lemma 3.4. (i) 
(fMr) �Mnsst.(ii) P is nondegenerate , 
(P ) 2Mst:Proof: Let P 2 fMr be a polygon with the vertices x1; :::; xn+1 = xn, we will use thenotation xi(t); 0 � t � ri; for the parameterized edge ei (so that xi(0) = xi). We teststability of 
(P ) with respect to a point � 2 S2. Let b(x) := b(x; �) be the correspondingBusemann function. Then for any unit vector v 2 Tx(H 3)�rb(x) � v � 1(1)with the equality if and only if the geodesic ray exp(R+v) is asymptotic to �. Similarly,�rb(x) � v � �1(2)with the equality if and only if the geodesic ray exp(R�v) is asymptotic to �. LetI � f1; :::; ng be the subset of indices such that 
(ei) = �. Let J be the complement of



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 9I in f1; :::; ng. Put rI =Pi2I ri; rJ =Pj2J rj . Since the polygon P is closed, using (1)and (2) we get: 0 = �b����xn+1x1 = n�1Xi=1 Z ri0 �x0i(t) � rb(xi(t))dt�Xi2I ri �Xj2J rj = rI � rJwith the equality if and only if every edge ej ; j 2 J; is contained in the geodesic through� and xj. Thus rI � rJ , i.e. 
(P ) is semi-stable. If 
(P ) is not stable then each edgeei; 1 � i � n; of P is contained in the geodesic through � and xi, which implies that thisgeodesic is the same for all i. Hence P is degenerate in this case.In order to prove that 
 : Mr ! Qnsst is injective and surjective, we will �rst needto study a certain dynamical system fr;� 2Di�(H 3 ) attached to the con�guration of npoints � = (�1; :::; �n) on S2 weighted by r = (r1; :::; rn). The weights r will usually be�xed and we will drop r in fr;�.3.2. A dynamical system on H 3 and the proof that the Gauss map is anisomorphism. Let � = (�1; :::; �n) 2 (S2)n. We de�ne a di�eomorphism f� : H 3 ! H 3as follows. Assume that r = (r1; :::; rn) 2 Dn is given. Let z 2 H 3 be given. Let �1be the ray emanating from z with limt!1 �1(t) = �1. Put x1 = z and x2 = �1(r1).Now let �2 be the ray emanating from x2 with limt!1 �2(t) = �2. Put x3 = �2(r2).We continue in this way until we obtain xn+1 = �n(rn) where �n is the geodesic rayemanating from xn with limt!1 �n(t) = �n. We de�ne f� by f�(z) = xn+1. Note thatthe polygon P = (x1; :::; xn+1) belongs to ~Nr.We now give another description of f�:f� = �rn�n � � � � � �r1�1where �t� is the time t geodesic 
ow towards �. We may interpret the previous formulafor f� as a product (or multiplicative) integral [DF]. Partition the interval [0; 1] into nequal subintervals, 0 = t0 < t1 < � � � < tn = 1. Let � be the atomic measure on [0; 1]given by �(t) =Pn�1i=0 ri+1�(t� ti). Let � : [0; 1]! S2 be the map given by �j[ti; ti+1) =vi; 0 � i � n� 1. De�ne A : [0; 1]! C1(H 3 ; T (H 3)) by A(t)(z) = r b(z; �(t)). Then inthe notation of [DF], f� = 1Y0 eA(t)d�(t):in Di�(H 3).Remark 3.5. In fact, in [DF] the only integrals considered take values in GLn(C ). Wehave included the above formula to stress the analogy with the conformal center of mass.The above integral is the multiplicative analogue of the gradient of the averaged Busemannfunction rb�(z) = ZS2 rb(z; �)(��d�)(�)



10 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARused to de�ne the conformal center of mass (see x3.3).We will �rst proveProposition 3.6. Suppose � consists of three or more distinct points. Then f� is astrict contraction. Hence, if � is stable, f� is a strict contraction.We will need the following lemmaLemma 3.7. Let � 2 S2 and �t� be the geodesic 
ow towards �. Then, for each t > 0,(i) d(�t�(z1); �t�(z2)) � d(z1; z2) with equality if and only if z1 and z2 belong to the samegeodesic � with end-point �.(ii) If Z 2 Tz(H 3) is a tangent vector, thenjjD�t�(Z)jj � jjZjjwith equality if and only if Z is tangent to the geodesic � through z which is asymp-totic to �.Proof: We prove (ii) noting that (ii) implies (i). Use the upper half space model for H 3and send � to 1. Then, if Z = (a; b; c) is tangent to H 3 at (x; y; z), we have�t1(x; y; z) = (x; y; etz)and jjD�t1(a; b; c)jj����(x;y;etz) =pe�2ta2 + e�2tb2 + c2 :Remark 3.8. 1. In case of equality in (i), the points z1; z2; �t�(z1); �t�(z2) all belong to�. 2. The above lemma also follows from the fact that D�t�(Z) is a stable Jacobi �eldalong �.We can now prove the proposition. By the previous lemma, f� = �rn�n � � � � � �r1�1 doesnot increase distance. Suppose then that d(f�(z1); f�(z2)) = d(z1; z2). Then,d(�r1�1 (z1); �r1�1(z2)) = d(z1; z2):Hence, z1; z2; �r1�1(z1); �r1�1(z2) are all on the geodesic �1 joining z1 to �1.Next, d(�r2�2(�r1�1(z1)); �r2�2 (�r1�1(z2))) = d(�r1�1 (z1); �r1�1(z2)):Hence, �r1�1(z1); �r1�1(z2); �r2�2(�r1�1(z1)); �r2�2(�r1�1(z2)) are all on the same geodesic. Thisgeodesic is necessarily �2, the geodesic joining �r1�1(z1) to �2, since it contains �r1�1(z1) and�r2�2(�r1�1(z1)). But since �2 contains �r1�1(z1) and �r1�1(z2) it also coincides with �1. Hence,either �2 = �1 or �1 is the opposite end ��1 of the geodesic �1. We continue in this wayand �nd that either �i = �1 or �i = ��1, for all 1 � i � n.Our next goal is to prove that f� has a �xed-point in H 3 . Let H be the convex hullof f�1; :::; �ng. Let �i be the negative of the Busemann function associated to �i so �i



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 11increases along geodesic rays directed toward �i. Fix a vector r = (r1; :::; rn) and r-stablecon�guration � = (�1; :::; �n) 2 S2. For 1 � h > 0, we shall consider fhr;� : H 3 ! H 3where hr = (hr1; :::; hrn). Note that fhr;�(H) � H.Lemma 3.9. There exist open horoballs, Oi; 1 � i � n, centered at �i, which dependonly on r and �, such that for each 1 � i � n, if x 2 Oi \H, then�i(fhr;�(x)) < �i(x)(so fhr;�(x) is \further away from" �i than x).Proof: The angle between any two geodesics asymptotic to �i is zero, thus by continuity,for each � > 0, there exists a horoball Oi(�) centered at �i so that for each x 2 Oi(�)\Hand for each point �j which is di�erent from �i, the angle between the geodesic ray fromx to �j and rb(x; �i) is � �. Let I = f` 2 f1; :::; ng : �` = �ig; J := f1; :::; ng � I. Recallthe stability condition means: rI := X̀2I r` < rJ :=Xj2J rjthus we can choose �=2 > � > 0 so thatrI � cos(�)rJ < 0:We de�ne L by Oi(�) = f�i > Lg for this choice of �, then we de�ne Oi by Oi := f�i >L+ jrjg. Pick x 2 H \Oi, this point is the initial vertex of the linkage P with verticesx1 = x; x2 = �hr1�1 (x1); :::; xn+1 = �hrn�n (xn) = fhr;�(x):Note that since the length of P equals hjrj, (and h � 1), the whole polygon P is containedin H \ Oi(�). We let xj(t); t 2 [0; hrj ] be the geodesic segment connecting xj to xj+1(parameterized by the arc-length). Then,�i(xn+1)� �i(x1) = nXk=1 �i(x)����xk+1xk= nXk=1 Z hrk0 r�i(xk(t)) � x0k(t)dt= X̀2I Z hr`0 r�i(x`(t)) � x0̀ (t)dt+Xj2J Z hrj0 r�i(xj(t)) � x0j(t)dt:Recall that jjr�i(xk(t))jj = 1; jjx0k(t)jj = 1, if ` 2 I thenr�i(x`(t)) � x0̀ (t) = 1;if j 2 J then r�i(xj(t)) � x0j(t) � � cos(�)since xj(t) 2 Oi(�) for each 0 � t � hrj . Thus,�i(xn+1)� �i(x1) � hX̀2I r` � h cos(�)Xj2J rj = h(rI � cos(�)rJ) < 0:



12 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARWe let O0i := f�i > L+ 2jrjg, thenProposition 3.10. fhr;� has a �xed point in K := H �Sni=1O0i.Proof: We claim that if x 2 H � Sni=1Oi then for all m � 0; f (m)� (x) =2 Sni=1O0i. We�rst treat the case m = 1. Since d(x; f�(x)) � jrj we see that x 2 H �Sni=1Oi impliesf�(x) =2 Sni=1O0i. But if there exist an m� 1 such that y = f (m�1)� (x) 2 Sni=1(Oi �O0i),then f (m)� (x) = f�(y) =2 Sni=1O0i by Lemma 3.9 and the claim is proved.We �nd that the sequence ff (m)� (x)g is relatively compact and contained in K. LetA � K be the accumulation set for this sequence. This is a compact subset suchthat f�(A) � A. If f� does not have a �xed point in A then the continuous function�(x) := d(x; f�(x)); x 2 A is bounded away from zero. Let x0 2 A be a point where �attains its minimum. However (since f� is a strict contraction)�(f�(x0)) = d(f�(x0); f2� (x0)) < d(x0; f(x0)) = �(x0);contradiction.We can now prove Theorem 3.2. We �rst prove that 
 :Mr ! Qsst is injective. Thiseasily reduces to proving that if P;Q 2 fMr with 
(P ) = 
(Q), then P = Q. Let x1 bethe �rst vertex of P , x01 be the �rst vertex of Q, and � = 
(P ) = 
(Q). Since P closesup, we have f�(x1) = x1. Since Q closes up, we have f�(x01) = x01. But, f� is a strictcontraction, hence x1 = x01. It follows immediately that P = Q.We now prove that 
 is surjective. Let � 2Mst. There exists x 2 H 3 with f�(x) = x.Let P be the n-gon with 
(P ) = � and �rst vertex x. Then P closes up and we haveproved that 
 is onto the stable points. If � is nice semi-stable but not stable, then� = 
(P ) for a suitable degenerate n-gon. Hence, 
 is surjective and Theorem 3.2 isproved.Remark 3.11. We have left the proof that the inverse map to 
 : Mr ! Qst is smooth(resp. analytic) in the case Mr is smooth to the reader. This amounts to checking thatthe �xed-point of f� depends smoothly (resp. analytically) on �.3.3. Connection with the conformal center of mass of Douady and Earle. Inthis section, we prove Theorem 1.8 of the Introduction. We begin by reviewing thede�nition of the conformal center of mass C(�) 2 H 3 , where � is a stable measure onS2 = @1H 3 . Here we are usingDe�nition 3.12. A measure � on S2 is stable if�(fxg) < j�j2 ; x 2 S2:Here, j�j is the total mass of �.We de�ne the averaged Busemann function, b� : H 3 ! R, byb�(x) = ZS2 b(x; �)d�(�):



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 13We recall the following proposition ([DE], [MZ, Lemma 4.11]):Proposition 3.13. Suppose � is stable. The b� is strictly convex and has a uniquecritical point (necessarily a minimum).De�nition 3.14. The conformal center of mass C(�) is de�ned to be the above criticalpoint. Thus, rb� jC(�) = 0:The main point is the following,Lemma 3.15. The assignment � ! C(�) is PSL2(C )-equivariant,C(g��) = gC(�):Here g�� is the push-forward of � by g 2 PSL(2; C ).We now return to the set-up of the previous sections. We are given r = (r1; :::; rn)and a stable con�guration � = (�1; :::; �n) 2 (S2)n. We have the dynamical system ftr;�of the previous chapter, with �xed-point x = x(tr; �). We put � = Pni=1 ri�(� � �i),where � is the Dirac probability measure supported on the origin in R3 . We now have,Lemma 3.16. ddtftr;� ��t=0= �rb� :Proof: We abbreviate �rb(x; �i), the in�nitesimal generator of the geodesic 
ow associ-ated to �i, to Xi. Thus we want to proveddtftr;� ��t=0= nXi=1 riXi:But if 't and  t are 
ows with in�nitesimal generators X and Y respectively, thenddt ����t=0 ' �  (x) = @2@t1@t2 ����t1=t2=0 't1 �  t2(x)= @@t2 ����t2=0 'o �  t2(x) + @@t1 ����t1=0 't1 �  o(x)= @@t2 ����t2=0  t2(x) + @@t1 ����t1=0 't1(x)= Y (x) +X(x):Recall that ftr;�(x) = �trn�n � �trn�1�n�1 � � � � � �tr1�1 (x):Hence, ddt ����t=0 ftr;�(x) = nXi=1 Xi(x):We are ready to prove Theorem 1.8 of the Introduction. We abbreviate �rb� by X.



14 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARTheorem 3.17. Let x(tr; �) be the unique �xed point of ftr;�; 0 < t � 1. Thenlimt!0x(tr; �) = C(�):Proof: We note that f0r;� = id. Hence, applying Lemma 3.16, the Taylor approximationof ftr;�(x) around t = 0 is ftr;�(x) = x+ tX(x) + t2R(x; t)(where R(x; t) is smooth). Let '(x; t) = X(x) + tR(x; t). By de�nition, the conformalcenter of mass C(�) is the unique solution of'(x; 0) = X(x) = 0:Since b� is strictly convex, if � is stable, [MZ, Corollary 4.6], C(�) is a nondegeneratezero of X and we may apply the implicit function theorem to solve'(x; t) = 0for x as a function of t near (C(�); 0). Thus, there exists � > 0 and smooth curve, x̂(t),de�ned for jtj < �, satisfying(i) '(x̂(t); t) = 0(ii) x̂(0) = C(�).But clearly, (i) implies ftr;�(x̂(t)) = x̂(t); 0 < t < �. Since the �xed-point of ftr;�; 0 <t � 1, is unique, we conclude x̂(t) = x(tr; �); 0 < t < �. Hence,limt!0 x(tr; �) = limt!0 x̂(t) = C(�):4. The Symplectic geometry of Mr(H 3)4.1. The Poisson-Lie group structure on Bn. In this section we letG be any (linear)complex simple group, B = AN be the subgroup of the Borel subgroup such that Nis its unipotent radical and A is the connected component of the identity in a maximalsplit torus over R, and K be a maximal compact subgroup. We will construct a PoissonLie group structure on G which will restrict to a Poisson Lie group structure on B. Forthe basic notions of Poisson Lie group, Poisson action, etc. we refer the reader to [Lu1],[GW], [LW], and [CP].Let Rg and Lg be the action of g onG by the right and left multiplication respectively.Let g denote the Lie algebra of G, k be the Lie algebra of K and b be the Lie algebraof B. Then g = b � k and G = BK. Let �k (resp. �b) be the projection on k (resp. onb). We de�ne R := �k � �b and let 12h; i be the imaginary part of the Killing form on g.In the direct sum splitting g = k� b we see that k and b are totally-isotropic subspacesdually paired by h; i.Let ' 2 C1(G). De�ne D' : G! g and D0' : G! g byhD0'(g); �i = ddt jt=0'(get� )



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 15hD'(g); �i = ddt jt=0'(et�g)for � 2 g.We extend h; i to a biinvariant element of C1(G;S2T �(G)) again denoted h; i. Nowde�ne r' 2 C1(G;T �(G)) byhr'(g); xi = d'g(x); x 2 Tg(G)We have D'(g) = dR�1g r'(g)D0'(g) = dL�1g r'(g) = Adg�1D'(g)The Sklyanin bracket f'; g is de�ned for '; 2 C1(G) byf'; g(g) = 12(hRD0'(g);D0 (g)i � hRD'(g);D (g)i)where R = �k � �b.Lemma 4.1. The bracket f'; g is a Poisson bracket on C1(G).Proof: See Theorem 1 of [STS].Let w 2 C1(G;�2T (G)) be the bivector �eld corresponding to f�; �g. We now showthat f�; �g induces a Poisson bracket on C1(B).Lemma 4.2. w(b) is tangent to B , i.e. w(b) 2 �2Tb(B) � �2T (G) for all b 2 B.Proof: It su�ces to prove that if ' vanishes identically on B then f'; g vanishesidentically on B for each  . However if ' vanishes identically on B then r'(b) 2 TbBfor all b 2 B. Hence D'(b) 2 b, D0' 2 b for each b 2 B. This implies that RD' = �D',RD0' = �D0' and2f'; g(b) = �hD0'(b);D0 (b)i + hD'(b);D (b)iBut D0'(b) = Adb�1D'(b), D0 (b) = Adb�1D (b) and h; i is Ad-invariant.For the next corollary note that T �b (B) is a quotient of T �b (G).Corollary 4.3. Let � be the skew-symmetric 2-tensor on T �(G) corresponding to w.Pick b 2 B and �; � 2 T �b (G). Then �jb depends only on the images of � and � inT �b (B).We will continue to use � for the skew-symmetric 2-tensor on T �(B) induced by �above.Remark 4.4. An argument identical to that above proves that w(k) is tangent to K.Hence f�; �g induces a Poisson structure on K. With the above structures K and B aresub Poisson Lie subgroups of the Poisson Lie group G.



16 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARWe will need a formula for the Poisson tensor � on B. We will use h; i to identifyT �(G) and T (G). Under this identi�cation T �b (B) is identi�ed to Tb(G)=Tb(B). We willidentify this quotient with dRbk. We let ��jb denote the resulting skew-symmetric 2-tensoron dRbk. Finally we de�ne ��r 2 C1(B; (�2k)�) by��jrb(x; y) = ��jb(dRbx; dRby); x; y 2 kWe now recover formulae (2.25) of [FR] (or [LR, De�nition 4.2]) for ��r.Lemma 4.5. ��jrb(x; y) = h�k(Adb�1x); �b(Adb�1y)i.Proof: Choose '; 2 C1(G) with r'(b) = dRbx and r (b) = dRby. Then��jrb(x; y) = ��jb(dRbx; dRby) = ��jb(r'(b);r (b))= �jb(d'(b); d (b)) = f'; g(b)= 12hRdL�1b r'(b); dL�1b r (b)i � 12hRdR�1b r'(b); dR�1b r (b)i= 12hRAdb�1x;Adb�1yi � 12 hRx; yi:But x; y 2 k implies hRx; yi = 0. Hence,��jrb(x; y) = 12h�k(Adb�1x); Adb�1yi � 12h�b(Adb�1x); Adb�1yi= 12h�k(Adb�1x); �bAdb�1yi � 12 h�b(Adb�1x); �kAdb�1yi= h�k(Adb�1x); �b(Adb�1y)i:The last equality holds by skew-symmetry, see [LR, Lemma 4.3].We will abuse notation and drop the � and r in the notation for ��r henceforth.Remark 4.6. The Poisson tensor on K, �K, induced from the Skylanin bracket on G isthe negative of the usual Poisson tensor on K (see [FR], [Lu1]). Throughout this paperwe let �K(k) = dLkX ^ Y � dRkX ^ Y , where X = 12 � 0 1�1 0 � and Y = 12 � 0 ii 0 �.We now give Gn the product Poisson structure, hence Bn inherits the product struc-ture. We introduce more notation to deal with the product. We let gi � gn = g� :::� gbe the image of g under the embedding into i-th summand. For ' 2 C1(Gn) we de�neDi' : Gn ! gi; D0i' : Gn ! gias follows. Let g = (g1; :::; gn) 2 Gn and � 2 gi, thenhDi'; �i = ddt jt=0'(g1; :::; et�gi; :::; gn)hD0i'; �i = ddt jt=0'(g1; :::; giet� ; :::; gn)Here we extend h; i to gn by h�; 
i = nXi=1h�i; 
ii



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 17for � = (�1; :::; �n); 
 = (
1; :::; 
n). We de�ne di;ri in an analogous fashion. Finallyde�ne the Poisson bracket on C1(Gn) byf'; g(g) = 12 nXi=1 [hRD0i'(g);D0i (g)i � hRDi'(g);Di (g)i]:As expected we obtain an induced Poisson bracket on C1(Bn) using the above formulawith g 2 G replaced by b 2 B.Now let � be the Poisson tensor on Gn corresponding to the above Poisson bracket.Let �# 2 Hom(T �(Gn); T (Gn)) be de�ned by �(�#(�)) = �(�; �). Let ' 2 C1(Gn).We haveDe�nition 4.7. The Hamiltonian vector �eld associated to ' is the vector �eld X' 2C1(Gn; T (Gn)) given by X' = �#d'We will need a formula for X'.Lemma 4.8. Let g = (g1; :::; gn). Then X'(g) = (X1(g); :::;Xn(g)) whereXi(g) = 12[dRgiRDi'(g) � dLgiRD0i'(g)]:Proof: We will use the formulaf'; g = �d (X') = �hX';r iHere r is the gradient with respect to h; i on gn, see above, hence r =(r1 ; :::;rn ).We havef'; g(g) = 12 nXi=1 [hRD0i'(g);D0i (g)i � hRDi'(g);Di (g)i]= 12 nXi=1 [hRD0i'(g); dL�1gi ri (g)i � hRDi'(g); dR�1gi ri (g)i]= 12 nXi=1 [hdLgiRD0i'(g);ri (g)i � hdRgiRDi'(g);ri (g)i]= 12 h(X1(g); :::;Xn(g)); (r1 (g); :::;rn (g))i= 12 hX'(g);r (g)iRemark 4.9. Since w(b) is tangent to Bn the �eld X'(b) will also be tangent to Bn.



18 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOAR4.2. The dressing action of K on Bn and the action on n-gons in G=K. Thebasic reference for this section is [FR]. In that paper the authors take n = 2 and writeG = KB. We will leave to the reader the task of comparing our formulae with theirs.In what follows we let G = SL2(C ); K = SU(2), and B be the subgroup of Gconsisting of upper-triangular matrices with positive diagonal entries. We let �B ; �K bethe projections relative to the decomposition G = BK. For the next theorem (in thecase n = 2) see [FR, Formula 2.15].Theorem 4.10. There is a Poisson action of K on the Poisson manifold Bn given byk � (b1; :::; bn) = (b01; :::; b0n)with b0i = �B(�K(kb1 � � � bi�1)bi); 1 � i � n.De�nition 4.11. The above action is called the dressing action of K on Bn.De�nition 4.12. For n = 1, we denote by Br = Kb the dressing orbit of b, where b 2 Band d(b �; �) = r.We will also need the formula for the in�nitesimal dressing action of k on Bn. Thisaction is given for x 2 k byx � (b1; � � � ; bn) = (�1; :::; �n) 2 Tb(Bn)with �i = dLbi�bAdb�1i �kAd(b1���bi�1)�1x. Note that �i 2 Tbi(B).Remark 4.13. In order to pass from the K-action to the k-action observe that �K(bg) =�K(g) and �B(bg) = b�B(g). Accordingly we may rewrite the K-action as k �(b1; :::; bn) =(b01; :::; b0n) with b0i = bi�B(b�1i �K((b1 � � � bi�1)�1kb1 � � � bi�1)bi); 1 � i � n:Recall, � 2 H 3 is the element �xed by the action of K, K � � = �. Since B actssimply-transitively on G=K we haveLemma 4.14. (i) The map � : Bn ! Poln(�) given by�(b1; :::; bn) = (�; b1�; :::; b1 � � � bn�)is a di�eomorphism.(ii) The map � induces a di�eomorphism from fb 2 Bn : b1 � � � bn = 1g ontoCPoln(�).We now haveLemma 4.15. � is a K-equivariant di�eomorphism where K acts on Bn by the dressingaction and on Poln(�) by the natural (diagonal) action.Proof: Let k � (b1; :::; bn) = (b001 ; :::; b00n) be the pull-back to Bn of the action of K onPoln(�). Then b001� = kb1�b001b002� = kb1b2�



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 19...b001 � � � b00n� = kb1 � � � bn�We obtain b001 � � � b00i = �B(kb1 � � � bi)b00i = �B((b001 � � � b00i�1)�1k(b1 � � � bi)) = �B((�B(b001 � � � b00i�1))�1kb1 � � � bi�1bi)= �B((�B(kb1 � � � bi�1))�1kb1 � � � bi�1bi) = �B(�K(kb1 � � � bi�1)bi)There is another formula for the dressing action of K on Bn that will be useful.Lemma 4.16. With the above notationb0i = �B(�K(� � � (�K| {z }i�1 times (kb1)b2) � � � bi�1)bi)Proof: Induction on i.We obtain a corresponding formula for the in�nitesimal dressing action of k on Bn.Lemma 4.17. x � (b1; :::; bn) = (�1; :::; �n) where�i = dLbi�bAdb�1i �kAdb�1i�1 � � � �kAdb�11 x:We now draw an important consequence.Lemma 4.18. The map � induces a di�eomorphism between Bnr = Br1 � � � � � Brnand the con�guration space of open based n-gon linkages eNr, where if b 2 Bnr , thenr = (r1; ::; rn) and d(b1 � � � bi�; b1 � � � bi�1�) = ri, for all 1 � i � n.Proof: Let b 2 Bnr be given. Then �(b) = (�; b1�; :::; b1 � � � bn�). The K-orbit of �(b) is[�; kb1�; :::; k(b1 � � � bn)�]The i-th edge ei of �(b) is the geodesic segment joining kb1 � � � bi�1� to kb1 � � � bi�. Clearlythis is congruent (by kb1 � � � bi�1) to the segment connecting � to bi�.Corollary 4.19. The symplectic leaves of Bn map to the con�guration spaces eNr under�.Proof: The Bnr are the symplectic leaves of Bn.



20 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOAR4.3. The moduli space Mr as a symplectic quotient. We have seen that � inducesa di�eomorphism from f(b1; :::; bn) 2 Bnr : b1 � � � bn = 1g=K to the moduli space Mr ofclosed n-gon linkages in H 3 modulo isometry. In this section we will prove that the map' : Bn ! B given by '(b1; � � � ; bn) = b1 � � � bn is a momentum map for the (dressing)K action on Bn. Hence, Mr is a symplectic quotient, in particular it is a symplecticmanifold if 1 is a regular value by Lemma 4.24 below.The de�nition of a momentum map for a Poisson action of a Poisson Lie group wasgiven in [Lu1].De�nition 4.20. Suppose that K is a Poisson Lie group, (M;�) is a Poisson manifold,and K �M ! M is a Poisson action. Let x 2 k, �x be the extension of x 2 k = (k�)�to a right-invariant 1-form on K�, and x̂ be the induced vector �eld on M . Then a map' :M ! K� is a momentum map if it satis�es the equation��#'��x = x̂Remark 4.21. For the de�nition of K�, the dual Poisson Lie group, see [Lu1]. Inour case K� = B.The next lemma is proved in [Lu1] and [Lu3]. We include a proof here for completeness.Lemma 4.22. Suppose that M is a symplectic manifold, K is a Poisson Lie group andK �M ! M is a Poisson action with an equivariant momentum map ' : M ! K�.Assume 1 is a regular value of '. Then '�1(1)=K is a symplectic orbifold with thesymplectic structure given by taking restriction and quotient of the symplectic structureon M . If we assume further that the isotropy subgroups of all x 2 '�1(1) are trivial then'�1(1)=K is a manifold.Proof: Let ! be the symplectic form on M and m 2 '�1(1) � M . Let Vm be acomplement to Tm'�1(1) in TmM . Let k �m � TmM be the tangent space to the orbitK �m. Hence km = fx̂(m) : x 2 kg. We �rst prove the identity!mx̂(m) = �'��xjmHere we use !m to denote the induced map TmM ! T �mM as well as the symplecticform evaluated at m. Indeed we have the identity��#'��x = x̂Applying ! we get !x̂ = �'��xWe claim that if m 2 '�1(1) the k � m is orthogonal (under !m) to Tm('�1(1)), inparticular it is totally-isotropic. Let x̂(m) 2 k �m and u 2 Tm('�1(1)). Then!m(x̂(m); u) = �'��xjm(u) = ��xjm(d'mu)But d'mu = 0 and the claim is proved. Hence, the restriction of !m to Tm('�1(1))descends to Tm('�1(1))=k �m = TK�m('�1(1)=K). We now prove that the induced formis nondegenerate.



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 21To this end we claim that k � m and Vm are dually paired by !m. We draw twoconclusions from the hypothesis that 1 is a regular value for '. First by [FR, Lemma4.2] the map k! k �m given by x 7! x̂(m) is an isomorphism. Second, d'm : Vm ! k� isan isomorphism. Let fx1; :::; xNg be a basis for k, whence fx̂1(m); :::; x̂N (m)g is a basisfor k �m. We want to �nd a basis fv1; :::; vNg for Vm so that !m(x̂i(m); vj) = �ij . Choosea basis fv1; :::; vNg for Vm such that fd'mv1; :::; d'mvNg � k� is dual to fx1; :::; xNg.Then !m(x̂i(m); vj) = �'��xi jm(vj) = ��xi jm(d'vj) = �d'vj(xi) = ��ijAs a consequence of the previous claim, the restriction of !m to k �m�Vm is nondegener-ate. We then have the orthogonal complement (k �m�Vm)? is a complement to k �m�Vmand !mj(k �m� Vm)? is nondegenerate. But then (k �m� Vm)? maps isomorphically toTK�m('�1(1)=K).We will also needLemma 4.23. '(m) is a regular value for ' if and only if km = fx 2 k : x̂(m) = 0g = 0.Proof: Let x 2 k. Then x 2 (Imd'jm)? , '��x = 0, 0 = ��'��x = x̂(m).We now begin the proof that ' is a momentum map for the dressing action of K onBn. We will need some notation. Let x 2 k = b�. Recall that �x is the extension of x toa right-invariant 1-form on B. Thus if � 2 Tb(B) we have�xjb(�) = hdRbx; �i:Lemma 4.24. ��#�xjb = dLb�bAdb�1x.Proof: Let y 2 k. It su�ces to prove that�jb(�x(b); �y(b)) = ��yjb(dLb�bAdb�1x)Now �jb(�x(b); �y(b)) = �jb(dRbx; dRby) = �rjb(x; y) = h�k(Adb�1x); �b(Adb�1y)iaccording to Lemma 4.5. Also��yjb(dLb�bAdb�1x) = �hdRby; dLb�bAdb�1xi= �hAdb�1y; �bAdb�1xi = �h�kAdb�1y; �bAdb�1xi = h�kAdb�1x; �bAdb�1yiLemma 4.25. '��xjb = (�x1 jb1 ; � � � ; �xn jbn), where x1 = x and xi = �k(Ad(b1���bi�1)�1x),2 � i � n.Proof: We will use the following formula (the product rule). Let b = (b1; :::; bn) and� = (�1; :::; �n) 2 Tb(Bn). Thend'b(�) = (dRb2���bn�1 + dLb1dRb3���bn�2 + � � �+ dLb1���bn�1�n)



22 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARHence('��x)jb(�) = �xjb1���bn(dRb2���bn�1 + dLb1dRb3���bn�2 + � � �+ dLb1���bn�1�n)= hdRb1���bnx; dRb2���bn�1i+ hdRb1���bnx; dLb1dRb3���bn�2i+ � � �+hdRb1���bnx; dLb1���bn�1�ni= hdRb1x; �1i+ hdRb2Adb�11 x; �2i+ � � � + hdRbnAd(b1���bn�1)�1x; �ni= nXi=1 �xi(�i)Proposition 4.26. ' is an equivariant momentum map for the dressing action of K onBn.Proof: To show that ' is a momentum map we have to check that��#'��xjb = x � (b1; :::; bn)But ��#'��x = (��#�x1 ; � � � ;��#�xn) and the result follows from the previous twolemmas. To show that ' is equivariant we have to check that '(k �(b1; :::; bn)) = k �b1:::bn.This is obvious from the point of view of polygons.As a consequence of the above proposition we obtainTheorem 4.27. The map � carries the symplectic quotient ('jBnr )�1(1)=K di�eomor-phically to the moduli space of n-gon linkages Mr.Remark 4.28. We obtain a symplectic structure on Mr by transport of structure.4.4. The bending Hamiltonians. In this section we will compute the Hamiltonianvector �elds Xfj of the functionsfj(b) = tr((b1 � � � bj)(b1 � � � bj)�); 1 � j � n:Throughout the rest of the paper, we will assume G = SL2(C ). Then G = BK, whereB = f( a z0 a�1 ) 2 SL2(C )ja 2 R+ ; z 2 C g and K = SU(2).We will use the following notation. If A 2 Mm(C ) then A0 = A � 1m tr(A)I will beits projection to the traceless matrices.Theorem 4.29. De�ne Fj : Bn ! k for b = (b1; b2; :::; bn) byFj(b) = p�1[(b1 � � � bj)(b1 � � � bj)�]0Then Xfj (b) = (Fj(b) � (b1; :::; bj); 0; :::; 0) where � is the in�nitesimal dressing action of kon Bj, see x4.2.Proof: It will be convenient to work on Gn and then restrict to Bn. By the formula forX' of Lemma 4.8 it su�ces to compute Difj and D0ifj. We recall thatD0i'(g) = Adg�1i Di'(g)hence it su�ces to compute Difj(g). We �rst reduce to computing D1fj by



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 23Lemma 4.30. Difj(g) = Ad(g1���gi�1)�1D1fj(g).Proof: By de�nition hDifj(g); �i = ddt jt=0fj(g1; :::; et�gi; :::; gn)But it is elementary thatfj(g1; :::; et�gi; :::; gn) = fj((Adg1���gi�1et�)g1; :::; gn)Di�erentiating at t = 0 we obtainhDifj(g); �i = hD1fj(g); Adg1 ���gi�1�i = hAd(g1���gi�1)�1D1fj(g); �iWe next haveLemma 4.31. D1fj(g) = Fj(g).Proof: By de�nitionhD1fj(g); �i = ddt jt=0tr[(et�g1 � � � gj)(et�g1 � � � gj)�]= tr[(�g1 � � � gj)(g1 � � � gj)� + (g1 � � � gj)(�g1 � � � gj)�]= tr[(�g1 � � � gj)(g1 � � � gj)�] + tr[(�g1 � � � gj)(g1 � � � gj)�]�= tr[(�g1 � � � gj)(g1 � � � gj)�] + tr[(�g1 � � � gj)(g1 � � � gj)�]= 2Retr[(�g1 � � � gj)(g1 � � � gj)�]= 2Imp�1tr[�(g1 � � � gj)(g1 � � � gj)�]Since � 2 sl2(C ) we may replace (g1 � � � gj)(g1 � � � gj)�by its traceless projection [(g1 � � � gj)(g1 � � � gj)�]0 :Since tr is complex bilinear we obtainhD1fj(g); �i = 2Imtr(�p�1[(g1 � � � gj)(g1 � � � gj)�]0)= hp�1[(g1 � � � gj)(g1 � � � gj)�]0; �i:Now we restrict to Bn and substitute into our formula for Xfj (b) in Lemma 4.8. WeobtainLemma 4.32. (Xfj )i = (D1fj(b) � (b1; :::; bn))i= the i-th component of the in�nitesimaldressing action of D1fj(b) 2 k.



24 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARProof: By Lemma 4.8 we have(Xfj )i = 12[dRbiRDifj(b)� dLbiRD0ifj(b)]= 12[dRbiRAd(b1���bi�1)�1D1fj(b)� dLbiRAdb�1i Ad(b1���bi�1)�1D1fj(b)]We write Ad(b1���bi�1)�1D1fj(b) = X1 + �1with X1 2 k and � 2 b. HenceX1 = �k(Ad(b1���bi�1)�1D1fj(b))�1 = �b(Ad(b1 ���bi�1)�1D1fj(b))Then RAd(b1���bi�1)�1D1fj(b) = X1 � �1We write Adb�1i X1 = X2 + �2;X2 2 k; �2 2 bThen X2 = �k(Adb�1i X1); �2 = �b(Adb�1i X1) andAdb�1i (X1 + �1) = X2 + �2 +Adb�1i �1Hence RAdb�1i Ad(b1���bi�1)�1D1fj(b) = X2 � �2 �Adb�1i �1= X2 + �2 � 2�2 �Adb�1i �1= Adb�1i X1 � 2�2 �Adb�1i �1Hence (Xfj )i = 12[dRbiX1 � dRbi�1 � dLbiAdb�1i X1 + 2dLbi�2 + dLbiAdb�1i �1]But dLbiAdb�1i = dRbi and we obtain(Xfj )i = dLbi�2Since �2 = �b(Adb�1i �k(Ad(b1 ���bi�1)�1D1fj(b))) the lemma follows.With this Theorem 4.29 is proved.



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 254.5. Commuting Hamiltonians. In this section we will show the functionsfj(b) = tr((b1 � � � bj)(b1 � � � bj)�); 1 � j � nPoisson commute. The proof is due to Hermann Flaschka.Proposition 4.33. ffj; fkg = 0 for all j; k.Proof: Again we will work on Gn and then restrict to Bn. Without loss of generality welet j � k.Recall from Lemma 4.30 Difj(g) = Ad(g1���gi�1)�1D1fj(g):It is easily seen that Difj(g) = D0i�1fj(g); for 1 � i � j:We now have,ffj ; fkg(g) = 12 nXi=1 [hRD0ifj(g);D0ifk(g)i � hRDifj(g);Difk(g)i]= 12 jXi=1 [hRD0ifj(g);D0ifk(g)i � hRDifj(g);Difk(g)i]= 12[hRD0jfj(g);D0ifk(g)i � hRD1fj(g);D1fk(g)i]= 12[hRAd(g1���gj)�1D1fj(g); Ad(g1���gj)�1D1fk(g)i � hRD1fj(g);D1fk(g)i]= 12hRAd(g1���gj)�1D1fj(g); Ad(g1 ���gj)�1D1fk(g)isince D1fi(g) 2 k for all i. The proposition follows if we can showhRAd(g1���gj)�1D1fj(g); Ad(g1 ���gj)�1D1fk(g)i = 0:It follows from the proof of Theorem 4.29 thatAd(g1���gj)�1D1fj(g) = p�1Ad(g1 ���gj)�1 [(g1 � � � gj)(g1 � � � gj)�]0= p�1[(g1 � � � gj)�(g1 � � � gj)]0 2 k:Hence, ffj; fkg(g) = hRAd(g1���gj)�1D1fj(g); Ad(g1 ���gj)�1D1fk(g)i= hAd(g1 ���gj)�1D1fj(g); Ad(g1 ���gj)�1D1fk(g)i= hD1fj(g);D1fk(g)i= 0since h; i is Ad-invariant. This proves the proposition on Gn. The result then holds whenwe restrict to Bn.



26 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOAR4.6. The Hamiltonian 
ow. In this section we compute the Hamiltonian 
ow, 'tk,associated to fk.Recall from Theorem 4.29 the Hamiltonian �eld for fk is given by Xfj (b) = (Fj(b) �(b1; :::; bj); 0; :::; 0) where � is the in�nitesimal dressing action of K on Bn. We now needto solve the system of ordinary di�erential equations(�)( dbidt = (Fj(b) � (b1; :::; bj))i; 1 � i � jdbidt = 0; j + 1 � i � nLemma 4.34. D1fj(b) = Fj(b) is invariant along solution curves of (*).Proof: It su�ces to show 'j(b) = b1 � � � bj is constant along solution curves.Let b(t) = (b1(t); :::; bn(t)) be a solution of Xfj . Thenddt'j(b(t)) = db1dt (t)b2(t) � � � bj(t) + b1(t)db2dt (t) � � � bj(t) + � � �+ b1(t)b2(t) � � � dbjdt (t)= 12 [(RD1fj(b(t)))b1(t)� b1(t)RD01fj(b(t))]b2(t) � � � bj(t)+b1(t)12 [(RD2fj(b(t)))b2(t)� b2(t)RD02fj(b(t))]b3(t) � � � bj(t) + � � �++b1(t)b2(t) � � � bj�1(t)12 [(RDjfj(b(t)))bj(t)� bj(t)RD0jfj(b(t))]= 12 [R(D1fj(b(t)))b1(t) � � � bj(t)� b1(t) � � � bj(t)R(D0jfj(b(t)))]= 12 [(D1fj(b(t)))b1(t) � � � bj(t)� b1(t) � � � bj(t)(D0jfj(b(t)))]= 12 [(D1fj(b(t)))b1(t) � � � bj(t)� b1(t) � � � bj(t)(Ad(b1 ���bj)�1D1fj(b(t)))]= 12 [(D1fj(b(t)))b1(t) � � � bj(t)� (D1fj(b(t)))b1(t) � � � bj(t)] = 0Thus '(b) is constant along solution curves of Xfj , proving the lemma.Remark 4.35. It also follows from the previous proof that fj(b) is constant along solu-tion curves of (*).Let b = ( a z0 a�1 ) with a 2 R+ and z 2 C , then it follows from a simple calculationthat det(F1(b)) = 14(a4 + a�4 + jzj4 � 2 + 2a2jzj2 + 2a�2jzj2):Since a > 0 we see that a4 + a�4 � 2 with equality if a = 1. Therefore, det(F1(b)) � 0with equality i� b = 1. From the above argument it follows that det(Fj(b)) � 0 withequality i� b1 � � � bj = 1.It is also an easy calculation to showdet(Fj(b)) = 14fj(b)2 � 1; 8b 2 Bn



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 27Lemma 4.36. The curve exp(tFj(b))is periodic with period 2�=q 14fj(b)2 � 1Proof: To simplify notation, let X = Fj(b) 2 k. ThenX�1 = � 1det(X)Xgiving us X2 = �(det(X))X�1X = �det(X)ISo, exp tX = 1Xn=0 tnXnn!= 1Xn=1 (�1)n(tdet(X))n(2n)! I + 1Xn=1 (�1)n(tdet(X))n(2n+ 1)! Xpdet(X)= cos�tpdet(X)� I + sin�tpdet(X)�pdet(X) X= cos�tq14fj(b)2 � 1� I + sin�tq14fj(b)2 � 1�q14fj(b)2 � 1 Fj(b)Therefore the curve is periodic with period 2�=q 14fj(b)2 � 1.We can now �nd a solution to the system (*)Proposition 4.37. Suppose P 2Mr has vertices given by b1; :::; bn. Then P (t) = 'tk(P )has vertices given by b1(t); :::bn(t) wherebi(t) = (exp(tFj(b)) � (b1; :::; bj))i; 1 � i � kbi(t) = bi; k + 1 � i � n:Here � is the dressing action of K on Bj.Proof: This follows from Fj(b) being constant on solution curves of (*). We can seeimmediately that the bi's are solutions curves of our system of ordinary di�erentialequations.Corollary 4.38. The 
ow 'tk(P ) is periodic with period 2�=q14fj(b)2 � 1.Remark 4.39. If the k-th diagonal is degenerate (b1 � � � bk = 1) then P is a �xed pointof 'tk. In this case the 
ow has in�nite period.Let `k(b) = 2 cosh�1(12fk(b)), thend`k = 1q14fk(b)2 � 1dfk



28 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARand consequently X`k = Xfk=q14f2k � 1where X`k is the Hamiltonian vector �eld associated to `k. Since fj is a constant ofmotion, X`k is constant along solutions of (*) as well. Let 	tk be the 
ow of X`k . Wehave the followingProposition 4.40. Suppose P 2 M 0r has vertices b1; :::; bn. Then P (t) = 	tk(P ) hasvertices b1(t); :::; bn(t) given bybi(t) = exp�(tFj(b))=q 14fk(b)2 � 1� � (b1; :::; bj))i; 1 � i � kbi(t) = bi; k + 1 � i � nwhere � is the dressing action of K on Bn.Thus 	tk is periodic with period 2� and rotates a part of P around the k-th diagonalwith constant angular velocity 1 and leaves the other part �xed.4.7. Angle variables, the momentum polyhedron and a new proof of invo-lutivity. We continue to assume that our n-gons are triangulated by the diagonalsfd1i; 3 � i � n�1g. We assume P 2Mor so none of the n�2 triangles,41;42; :::;4n�2,created by the above diagonals are degenerate. We construct a polyhedral surfaceS bounded by P by �lling in the triangles 41;42; :::;4n�2. Hence, 41 has edgese1; e2; and d13, 42 has edges d13; e3; and d14, ..., and4n�2 has edges d1;n�1; en�1; and en.We de�ne �̂i to be the oriented dihedral angle measured from 4i to 4i+1; 1 � i �n� 3. We de�ne the i-th angle variable �i by�i = � � �̂i; 1 � i � n� 3:Theorem 4.41. f�1; :::; �n�3g are angle variables, that is we have(i) f`i; �jg = �ij(ii) f�i; �jg = 0.Proof: The proof is identical to that of [KM2, x4].We next describe the momentum polyhedron Br for the action of the above (n-3)-torus by bendings. Hence,Br = f`(Mr) � (R�0)n�3 : ` = (`1; :::; `n�3)g:Let (`1; :::; `n�3) 2 (R�0 )n�3 be given. We �rst consider the problem of constructingthe triangles, 41;42; :::;4n�2 above. We note that there are three triangle inequalitiesEi(`; r); 1 � i � n � 2, among the ri's and `j's that give necessary and su�cientconditions for the existence of4i. Once we have obtained the triangles41;42; :::;4n�2,we can glue them along the diagonals d1i; 3 � i � n�1, and obtain a polyhedron surfaceS and a n-gon P . We obtain



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 29Theorem 4.42. The momentum polyhedron Br � (R�0 )n�3 is de�ned by the 3(n � 2)triangle inequalities jr1 � r2j � `1 � r1 + r2j`1 � r3j � `2 � `1 + r3...j`n�4 � rn�2j � `n�3 � `n�4 + rn�2jrn�1 � rnj � `n�3 � rn�1 + rnHere r = (r1; :::; rn) is �xed, the `i's, 1 � i � n� 3, are the variables.As a consequence we haveTheorem 4.43. The functions `1; `2; :::; `n�3 on Mr are functionally independent.The theorem follows from Corollary 4.45. We will apply the next lemma with M =`�1(Bor ), the inverse image of the interior of the momentum polyhedron under ` =(`1; `2; :::; `n�3). Then M ' Bor � (S1)n�3.Lemma 4.44. Suppose M = Mor is a connected real-analytic manifold and F =(f1; :::; fk) : Mn ! Rk ; n � k; is a real-analytic map such that F (M) contains a k-ball.Then the 1-forms df1; :::; dfk are linearly independent over C1(M).Proof: Since the 1-forms df1; df2; :::; dfk are real-analytic, the set of points x 2 M suchthat df1jx; :::; dfkjx are not independent over R is an analytic subset W of M . LetM0 =M�W . Hence eitherMo is empty or it is open and dense. But by Sard's Theorem,F (W ) has measure zero. Since F (M) does not have measure zero, M 6= W and Mo isnonempty, hence open and dense. Therefore, if there exists '1; :::; 'k 2 C1(M) suchthat Pki=1 'idfi = 0 then 'ijMo � 0; 1 � i � k, and by density 'i � 0; 1 � i � k:Corollary 4.45. The restrictions of d`1; d`2; :::; d`n�3 to M �Mr are independent overC1(M).Remark 4.46. Since ` is onto, if there exists � 2 C1(Br) such that �(`1(x); :::; `k(x)) �0, then � � 0.We conclude this chapter by giving a second proof that the bending 
ows on disjointdiagonals commute. Since Mor is dense in Mr, it su�ces to proveLemma 4.47. 	si (	tj(P )) = 	tj(	si (P )), for P 2Mor .Proof: We assume i > j. We observe that the diagonals d1i and d1j divide the surface Sinto three polyhedral \
aps", I; II; III (the boundary of I contains e1, the boundaryof II contains ei, and the boundary of III contains ej). Let Rsi and Rtj be the oneparameter groups of rotations around d1i and d1j , respectively. We �rst record what



30 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOAR	si �	tj does to the 
aps. 	si �	tj(I) = RsiRtj(I)	si �	tj(II) = Rsi (II)	si �	tj(III) = IIINow we compute what 	tj � 	si does to the 
aps. The point is, after the bendingon d1i, the diagonal d1j moves Rsid1j . Hence, the next bending rotates I around Rsid1j .Hence, the next bending curve is Rsi � Rtj �R�si . We obtain	tj �	si (I) = (RsiRtjR�si )Rsi (I)	tj �	si (II) = Rsi (II)	tj �	si (III) = III:5. Symplectomorphism of Mr(E 3) and Mr(H 3)Recall r is not on a wall of Dn. Then by Theorem 3.2 of this paper, the hyperbolicGauss map 
 = 
h : Mr(H 3) ! Qsst(r) is a di�eomorphism. Moreover by Theorem 2.3of [KM2], the Euclidean Gauss map 
e :Mr(E 3)! Qsst(r) is also a di�eomorphism. WeobtainTheorem 5.1. Suppose r is not on a wall of Dr, then the composition 
�1h � 
e :Mr(E 3 )!Mr(H 3) is a di�eomorphism.Remark 5.2. The result that Mr(E 3 ) and Mr(H 3) are (noncanonically) di�eomorphicwas obtained by [Sa].It does not appear to be true that 
�1h � 
e is a symplectomorphism.5.1. A Formula of Lu. In the next several sections we will prove that Mr(H 3) issymplectomorphic to Mr(E 3).We �rst de�ne a family of nondegenerate Poisson structures ��, � 2 [0; 1], on the2-sphere, S2 ' K=T . Letting !� be the corresponding family of symplectic forms weshow the cohomology classes [!�] of !� in H2(S2) are constant.Fix � 2 R+ and � = X ^ Y 2 ^2k, where X = 12 � 0 1�1 0 � and Y = 12 � 0 ii 0 �. Thefollowing family of Poisson structures �� on K=T ' S2 for � 2 (0; 1] are due to J.-H. Lu[Lu2]. �� = �[�1 � �(�)�0]where �1 = p��K = p�(dLk�� dRk�), �(�) = 11�e4�� , and �0 = 2 dLk �. Here p : K !K=T is the projection map. Then��(k) = �(dLk�� dRk�)� 2�1� e4�� dLk�:



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 31Lemma 5.3. lim�!0�� = 14��0Proof: The proof of the lemma is a simple application of L'Hôpital's rule.Lemma 5.4. �� is nondegenerate for � 2 [0; 1].We will prove Lemma 5.4 in Proposition 5.23, where we show (K=T; ��) is symplec-tomorphic to a symplectic leaf of the Poisson Lie group (B�; b�B�)We leave it to the reader to verify the Poisson structures on S2 can be written�1 = 12(1 + �2 + �2) @@� ^ @@� :and �0 = 12(1 + �2 + �2)2 @@� ^ @@�where (�; �) are coordinates obtained by stereographic projection with respect to thenorth pole (see [LW]). �1 is the Bruhat-Poisson structure on K=T . We now let !� bethe symplectic form obtained by inverting �� (this is possible since �� is nondegenerate).!� = �d� ^ d��(12(1 + �2 + �2)� 12�(�)(1 + �2 + �2)2) ; � 2 (0; 1]Let !0 be the limiting symplectic structure!0 = �8� d� ^ d�(1 + �2 + �2)2Lemma 5.5. ZR2 !0 = �8��Proof: ZR2 !0 = ZR2 �8� d� ^ d�(1 + �2 + �2)2= �8�Z �=2��=0 Z r=1r=0 r dr ^ d�(1 + r2)2= �16��Z u=1u=1 (1=2)duu2= �8��Lemma 5.6. ZR2 !� = �8��; � 2 (0; 1]



32 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARProof: Note that �(�) < 0. ThenZR2 !� = �2� ZR2 d� ^ d�(1 + �2 + �2)� �(�)(1 + �2 + �2)2= �2� Z �=2��=0 Z r=1r=0 r dr ^ d�(1 + r2)� �(�)(1 + r2)2= �4�� Z u=1u=1 (1=2)duu� �(�)u2)= �2�� log �����(�)� 1�(�) ����= �2�� log(e4��)= �8��We have proved the followingLemma 5.7. The cohomology classes [!�] of !� in H2(S2) are constant.Remark 5.8. The previous lemma is a special case of Lemma 5.1 of [GW].5.2. Symplectomorphism of (��(�); �B�) and (K=T; ��;�). In this section we obtainthe Poisson structure �� from a deformed Manin triple (g�; k; b�).For � > 0, we de�ne the isomorphism f� : g� ! g by f� = �k+��b, so that f�(X+�) =X + �� for X 2 k and � 2 b. We will de�ne a Lie bracket on g� by the pullback of theLie bracket on g, [u; v]� = f1=�[f�u; f�v]. We also de�ne h; i� as the pullback of h; i. Here[; ] and h; i are the usual structures on g. We de�ne B� : g ! g� as the map induced byh; i�. To simplify notation, the subscripts will be dropped when � = 1.The following lemma gives us a formula for the Lie bracket on g�.Lemma 5.9. [X+�; Y +�]� = [X;Y ]+��k[X;�]+��k[�; Y ]+�b[X;�]+�b[�; Y ]+�[�; �],where X;Y 2 k and �; � 2 b.Proof:[X + �; Y + �]� = f1=�[f�(X + �); f�(Y + �)]= f1=�[X + ��; Y + ��]= f1=�f[X;Y ] + �[X;�] + �[�; Y ] + �2[�; �]g= f1=�f[X;Y ]+��k[X;�]+��b[X;�]+��k[�; Y ]+��b[�; Y ]+�2[�; �]g= [X;Y ] + ��k[X;�] + ��k[�; Y ] + �b[X;�] + �b[�; Y ] + �[�; �]We leave it to the reader to checkLemma 5.10. h; i� = �h; i



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 33Let G� be the simply-connected Lie group with Lie algebra g�. Let F� : G� ! G bethe isomorphism induced by f�. We have a commutative diagram of isomorphisms.g� f����! gexp�??y ??yexpG� F����! GLet x 2 g�. We use the identity map to identify g and g� as vector spaces. In whatfollows, we will make frequent use ofLemma 5.11. cAd(exp� x) = Ad(exp �x) as elements in GL(b) for all x 2 b� = b. HerecAd denotes the adjoint action of G� on g�.Proof: By [Wa, pg. 114], cAd(exp� x) = ecadx= e�adx= ead(�x)= Ad(exp �x)Given our deformed Manin triple on G�, (g�; k; b�), we will construct a Poisson struc-ture b�B� on B�, the simply-connected Lie group with Lie algebra, b�. We will denote allquantities associated to the deformed Manin triple with a hat b .We de�ne the Poisson Lie structure on B� by the Lu-Weinstein Poisson tensor [LW]b�B�(b)(cdR�b�1�X ; cdR�b�1�Y ) = h�k(cAdb�1B�1� (�X)); �b(cAdb�1B�1� (�Y ))i�where �X ; �Y 2 b�� , �X = hX; �i1 and �Y = hY; �i1.Remark 5.12. Since lim�!0h; i� = 0, it appears as if the limiting Poisson structurelim�!0 b�B� will vanish. However, we will see in Proposition 5.14 that the limiting Poissonstructure is associated to the Manin triple (g0; k; b0) and h; i0 = dd� ���=0h; i�.We denote by �B� the Poisson structure on B� using the scaled bilinear form 1� h; i� =h; i. Then�B�(b)(cdR�b�1�X ; cdR�b�1�Y ) = h�k(cAdb�1B�11 (�X)); �b(cAdb�1B�11 (�Y ))iwhere �X ; �Y 2 b�� . For the following we will let X� = B�1� (�X) 2 k, again dropping thesubscript when � = 1, so that X� = 1�X.Lemma 5.13. b�B� = 1��B�



34 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARProof: b�B�(b)(cdR�b�1�X ; cdR�b�1�Y ) = h�k(cAdb�1X�); �b(cAdb�1Y�)i�= h�k(cAdb�1 1�X); �b(cAdb�1 1� Y )i�= 1� h�k(cAdb�1X); �b(cAdb�1Y )iProposition 5.14. lim�!0 b�B�(b)(cdR�b�1�X ; cdR�b�1�Y ) = �hlog b; [X;Y ]i.Proof:lim�!0 b�B�(b)(cdR�b�1�X ; cdR�b�1�Y ) = lim�!0 1� h�k(cAdb�1X); �b(cAdb�1Y )i= lim�!0 1� 2Im tr(�k(Ade�� log bX)�b(Ade�� log bY ))= lim�!0 2Im tr(�k(Ade�� log bX)�b(� log b Y + Y log b))= �2Im tr(X�b[log b; Y ])= �2Im tr(X[log b; Y ])= �2Im tr(log b[X;Y ])= �hlog b; [X;Y ]iRemark 5.15. Before stating the next corollary, note that the limit Lie algebra b0 isabelian whence the limit Lie group B0 is abelian. Hence, exp0 : b0 = To(B0) ! B0 isthe canonical identi�cation of the vector space B0 with its tangent space at the origin.Hence, exp0 is an isomorphism of Lie groups and exp�0 carries invariant 1-forms on B0to invariant 1-forms on b0.Corollary 5.16. lim�!0 b�B� is the negative of the Lie Poisson structure on k� ' b0transferred to B0 using the exponential map on the vector space B0.Proof: The proof is left to the reader.Remark 5.17. (K; ��K) is the dual Poisson Lie group of (B�; b�B�).We will denote the dressing action of K on B� by bD�̀ and the in�nitesimal dressingaction of k on B� by bd�̀. By de�nition bd�̀(b)(X) = b�B�(�; �X). We then have the following.Lemma 5.18. bd�̀(b)(X) = 1�d`(b)(X)Proof: Follows immediately from Lemma 5.13 and the de�nition of dressing action.Remark 5.19. lim�!0 bd�̀(b)(X) = ad�(X)(log b)



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 35For the remainder of the section, �x � 2 R+ and a = exp� �H 2 B�, where H =diag(1;�1) 2 a�. Let '� : K ! ��� � B� be the map de�ned by '�(k) = bD�̀(k)(a) =�B�(k�a), where ��� is the symplectic leaf through the point a 2 B�. The map '� inducesa di�eomorphism from K=T onto ��� which we will also denote by '�. Recall the familyof Poisson tensors on K=T given in x5.1��;� = �(�1 � �(��)�0):Lemma 5.20. The map '� : K=T ! B� is K-equivariant, where (K; ��K) acts on(K=T; ��;�) by left multiplication and B� by the dressing action.Proof: '�(g � k) = bD�̀(gk)(a) = bD�̀(g)( bD�̀(k)(a)) = g � '�(k).Remark 5.21. The action of (K; ��K) on (K=T; ��;�) by left multiplication is a Poissonaction.Since K=T is a symplectic manifold, there is a momentum map for the action of Kon K=T , see [Lu1, Theorem 3.16]. We will see as a consequence of Proposition 5.23Lemma 5.22. The momentum map for the action of (K; ��K) on (K=T; ��;�) is '�.Proposition 5.23. The map '� induces a symplectomorphism from (K=T; ��;�) to(���; b�B�).Proof: Since the K-actions on K=T and ��� are Poisson and the map '� : K=T !��� is a K-equivariant di�eomorphism, if (d'�)e(��;�(e)) = b�B�(a) then it follows that(d'�)k(��;�(k)) = b�B�('(k)) for all k 2 K=T .We will need the following lemmas to prove the proposition. We let E = ( 0 10 0 ) 2 band � = E ^ iE 2 b^b. If we set b��(b) = 1� (cdLb �� cdRb �), we then have the following.Lemma 5.24. b�B� ja = 12b��ja for a = exp� �H.Proof: Let X = � si u��u �si �, Y = � ti v��v �ti � 2 kb�B�(a)(cdR�a�1�X ; cdR�a�1�Y ) = 1� h�k(cAda�1X); �b(cAda�1Y )i= 1� hX; cAda�b(cAda�1Y )iWe can see, cAda�b(cAda�1Y ) = cAda�b �cAda�1 � ti v��v �ti ��= cAda�b � ti e�2��v�e2���v �ti �= cAda � 0 (e�2���e2��)v0 0 �= (1� e4��) ( 0 v0 0 )



36 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARso that 1� hX; cAda�b(cAda�1Y )i = 2� Imtr h� si u��u �si � � 0 (1�e4��)v0 0 �i= �2� (1� e4��)Im(�uv)= 2� (e4�� � 1)Im(�uv):If we evaluate the right-hand side of the above formula we see12b��(a)(cdR�a�1�X ; cdR�a�1�Y ) = 12� [�X ^ �Y (cAdaE; cAdaiE)� �X ^ �Y (E; iE)= 2� [e4��Im(�uv)� Im(�uv)]= 2� (e4�� � 1)Im(�uv)= b�B�(a)(cdR�a�1�X ; cdR�a�1�Y )We then have the following.Corollary 5.25. b�B�(a) = 12�(1� e�4��)cdLa (E ^ iE)Proof: b�B�(a) = 12� [cdLa(E ^ iE) � cdRa(E ^ iE)]= 12�cdLa[E ^ iE � cAda�1 (E ^ iE)]= 12�cdLa[E ^ iE � e�4��(E ^ iE)]= 12� (1� e�4��)cdLa (E ^ iE):The di�eomorphism '� : K=T ! ��� gives us (d'�)e : k=t! Ta��� � TaB� de�ned by(d'�)e(�) = 1�cdLa�b(cAda�1�). Now let X = 12 � 0 1�1 0 � and Y = 12 � 0 ii 0 � as in x5.1, then(d'�)e(X) = 12� (e�2�� � e2��)cdLaE and (d'�)e(Y ) = 12� (e�2�� � e2��)cdLa iE:It then follows thatLemma 5.26. (d'�)e(��;�(e)) = b�B�(a)



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 37Proof: (d'�)e(��;�(e)) = (d'�)e(�(�1(e)� �(��)�0(e)))= �(d'�)e(�1(e))� ��(��)(d'�)e(�0(e))= 0� 2��(��)(d'�)e(X ^ Y )= � 12��(��)(e�2�� � e2��)2cdLa(E ^ iE)= � 12�(e�4�� � 1)cdLa(E ^ iE)= b�B�(a):This completes the proof of Proposition 5.23.We can next look at the product (K=T )n. We give (K=T )n the product Poissonstructure ��;� = ��1;� + � � � + ��n;�. De�ne the mape�� : (K=T )n ! ���1 � � � � � ���ngiven by e��(k1; :::; kn) = ('�1(k1); :::; '�n(kn)) = ( bD�̀(k1)(a�1); :::; bD�̀(kn)(a�n))where '�i(ki) = bD�̀(ki)(a�i) and a�i = exp�(�iH) 2 B�. We note the map e�� : (K=T )n !���1 � � � � � ���n is a symplectomorphism.We leave the proof of the following lemma to the reader.Lemma 5.27. The action of K on (K=T )n given byk � (k1; :::; kn) = (kk1; �K(k'�1(k1))k2; :::; �K(k'�1(k1) � � �'�n�1(kn�1))kn)is the pull back under e�� of the �-dressing action on ���1 � � � � � ���n � Bn� .The momentum map for the action of (K; ��K) on ((K=T )n; ��;�) ise	� : (K=T )n ! B�where e	�(k1; ::; kn) = '�1(k1) � � � � � '�n�1(kn�1):5.3. The �-dressing orbits are small spheres in hyperbolic 3-space. Let b be theKilling form on g divided by 8. We have normalized b so that the induced Riemannianmetric (; ) on G=K has constant curvature -1. We let b� = f�� b, hence b� is the Killingform on g�. Then (; )� = F �� (; ) is the induced Riemannian metric on G�=K and G�=Khas constant curvature -1 (since F� is an isometry). We will call (; )� the hyperbolicmetric on G�=K.The map � : B� ! G�=K given by �(b) = b �K is a di�eomorphism that intertwinesthe �-dressing orbits of K on B� with the natural K action on G�=K given by leftmultiplication (using the multiplication in G�). We abbreviate the identity coset K inG�=K to x0 and use the same letter for the corresponding point in G=K. We have



38 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARLemma 5.28. The image of the �-dressing orbit ��� under � is the sphere around x0 ofradius ��.Proof: Let d� be the Riemannian distance function on G�=K and d the Riemanniandistance function on G=K. We haved�(x0; exp�x0 �H) = d(x0; F� exp�x0 �H)= d(x0; expx0 f�(�H))= d(x0; expx0 ��H)= ��5.4. The family of symplectic quotients. In this section we will continue to use thenotation of x5.2. Let p : E = (K=T )n � I ! I be a projection. Here we de�ne I = [0; 1].We let T vert(E) � T (E) be the tangent space to the �bers of p. Hence V2 T vert(E) is asubbundle of V2 T (E). We de�ne a Poisson bivector � on E by �(u; �) = ��;�ju. � is asection of V2 T vert(E).Let S � Bn�I be de�ned by S = f(b; �)jb 2 ���g. We let (K; ��K) act on (K=T )n�Iby k � (u; �) = (k � u; �), where � is the action given in Lemma 5.27, and act on S byk � (b; �) = ( bD�̀(k)(b); �). We then de�ne the map � : E ! S by �(u; �) = (e��(u); �)which is a K-equivariant di�eomorphism. We also de�ne 	 : E ! B by 	(u; �) = e	�(u).Remark 5.29. 	jp�1(�) is the momentum map for the Poisson action of (K; ��K) on(K=T )n � f�g.We need some notation. Suppose n � m, F : Rn+1 ! Rm is a smooth map,and 0 2 Rm is a regular value of F . Let M = F�1(0). Write Rn+1 = Rn � R withx 2 Rn ; t 2 R. Let p : Rn+1 ! R be the projection onto the t-line. The next lemma istaken from [Sa].Lemma 5.30. Let (x; t) 2 M . Suppose @F@x ��(x;t) has maximal rank m. Then dpj(x;t) :T(x;t)(M)! Tt(R) is onto.Proof: It su�ces to construct a tangent vector v 2 T(x;t)(Rn+1) satisfying(i) v 2 ker dF j(x;t)(ii) v =Pni=1 ci @@xi + @@tPut c = (c1; :::; cn) and write the Jacobian matrix dF j(x;t) as (A; b) where A is them by n matrix given by A = @F@x j(x;t) and b is the column vector of length m given byb = @F@t j(x;t). We are done if we can solveAc+ b = 0:But since A : Rn ! Rm is onto we can solve this equation.



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 39Remark 5.31. We need to generalize to the case in which Rn+1 is replaced by the closedhalf-space �H = f(x; t) : x 2 Rn ; t � 0g and the t-line by the closed half-line. Given(x; 0) 2 @M we wish to �nd v = Pni=1 ci @@xi + @@t with dF j(x;o)(v) = 0 (so v is in thetangent half-space to M at (x; 0) 2 @M). The argument is analogous to that of thelemma and is left to the reader.Corollary 5.32. Suppose M is compact and for all (x; t) and further that @F@x j(x;t) hasmaximal rank for all (x; t) 2M . Then p :M ! R is a trivial �ber bundle.Proof: p is proper since M is compact. This is the Ehresmann �bration theorem [BJ,8.12].Remark 5.33. We leave to the reader the task of extending the corollary to the casewhere the t-line is replaced by the closed t half-line.We now return to our map 	 : (K=T )n � I ! B. We have	(u; �) = '�1(u1) � � � � � '�n(u1):Let � > 0. We apply Lemma 2.5 to deduce that 1 2 B is a regular value for u! 	(u; �)(recall we have assumed r is not on a wall of Dn). Now let � = 0. It is immediate (see[KM2]) that 0 2 R3 is a regular value of u! 	(u; �) (again because r is not on a wall ofDn). We obtainLemma 5.34. p : 	�1(1)! I is a trivial �ber bundle.Now let M = 	�1(1)=K. We note that p factors through the free action of K on	�1(1) and we obtain a �ber bundle �p : M ! I. This gives the required family ofsymplectic quotients.Proposition 5.35. �p :M! I is a trivial �ber bundle.Remark 5.36. �p�1(0) = Mr(E 3 ) and �p�1(1) = Mr(H 3 ) and we may identify M withthe product Mr(E 3)� I.We now give a description of the symplectic form along the �bers of �p. Recall thatif � : E ! B is a smooth �ber bundle then the relative forms on E are the elements ofthe quotient of A�(E) by the ideal generated by elements of positive degree in ��A�(B).Note the restriction of a relative form to a �ber of � is well-de�ned and the relative formsare a di�erential graded-commutative algebra with product and di�erential induced bythose of A�(E).Lu's one parameter family of forms !� of x5.1 induces a relative 2-form !� on K=T �Iwhich is relatively closed. By taking sums we obtained a relative 2-form e!� on (K=T )n�Iand by restriction and projection a relative 2-form �!� onM. Clearly �!� is relatively closedand induces the symplectic form along the �bers of �p :M! I.We let [�!�] be the class in H2(p�1(�)) determined by �!�.



40 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOAR5.5. [�!�] is constant and Moser's Theorem. To complete our proof we need toreview the i-th cohomology bundle associated to a smooth �ber bundle � : E ! B. Thetotal space HiE of the i-th cohomology bundle is given by HiE = f(b; z) : b 2 B; z 2Hi(p�1(b))g. We note that a trivialization of EjU induces an isomorphism between HiEjUand HiU�F . But HiU�F = f(x; z) : x 2 U; z 2 Hi(F )g, whence HiU�F = U�Hi(F ). It isthen clear that HiE is a vector bundle over B with typical �ber Hi(F ). We next observethat the action of the transition functions of E on Hi(F ) induce the transition functionsof HiE . Hence if we trivialize E relative to a covering U = fUi : i 2 Ig such that allpairwise intersections are contractible then the corresponding transition functions of HiEare constant. Hence HiE admits a 
at connection called the Gauss-Manin connection.We observe that a cross-section of HiE is parallel for the Gauss-Manin connection if whenexpressed locally as an element of HiU�F as above it corresponds to a constant map fromU to Hi(F ).Remark 5.37. If � is a relative i-form on E which is relatively closed then it givesrise to a cross-section [� ] of HiE such that [� ](b) is the de Rham cohomology class of�(b)j��1(b).We now consider the relative 2-form �!� on M. The form �!� is obtained from thecorresponding form e!� on (K=T )n � I by �rst pulling e!� back to 	�1(1) then using theinvariance of e!� under K to descend e!� to �!�. We observe that [e!�] (reps. [�!�]) is asmooth section of H2(K=T )n�I (resp. H2M)).We obtain a diagram of second cohomology bundles with connectionH2(K=T )n�I i����! H2	�1(1) �� ��� H2Mwhere i : 	�1(1) ! (K=T )n � I is the inclusion and � : 	�1(1) ! M is the quotientmap. We have ��[�!�] = i�[e!�]:Proposition 5.38. [�!�] is parallel for the Gauss-Manin connection on H2M.Proof: By Lemma 5.7, [e!�] is parallel for the Gauss-Manin connection on (K=T )n� I.Hence i�[e!�] is parallel for the Gauss-Manin connection on H2	�1(1). But an elementaryspectral sequence argument for the bundle K ! 	�1(1) !M shows that �� : H2M !H2	�1(1) is a bundle monomorphism. Hence if ��[�!�] is parallel, so is [�!�].Corollary 5.39. The cohomology class of �!� is constant relative to any trivialization ofp :M! I.We now complete the proof of symplectomorphism by applying a version of Moser'sTheorem [Mo] with M =Mr(E 3 ). For the bene�t of the reader we will state and provethe version of Moser's Theorem we need here.Theorem 5.40. Suppose !� is a smooth one-parameter family of symplectic forms ona compact smooth manifold M . Suppose the cohomology class [!�] of !� in H2(M) is



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 41constant. Then there is a smooth curve �� in Di�(M) with �0 = idM such that!� = ���!0:Proof: Choose a smooth one-parameter family of 1-forms �� such thatd!�d� = �d��:(We may choose �� smoothly by �rst choosing a Riemannian metric then taking �� to bethe coexact primitive of d!�d� - here we use the compactness of M).Let �� be the one parameter family of vector �elds such thati��!� = ��:Now we integrate the time dependent vector �eld �� to a family 	� of di�eomorphisms(again we use that M is compact). We havedd�	��!� = 	��L��!� +	�� d!�d�= 	�� [d���!� � d��]= 	�� [d�� � d��]= 0:Hence 	��!� is constant so 	��!� = !0 and !� = (	�1� )�!0.5.6. The geometric meaning of the familyM of symplectic quotients - shrink-ing the curvature. We recall thatX� denotes the complete simply-connected Riemann-ian manifold of constant curvature �. Let r = (r1; r2; :::; rn) 2 (R+)n with r not on awall of Dn. Let Mr(X�) be the moduli space of n-gon linkages with side-lengths r in thespace X�. The following theorem is the main result of [Sa].Theorem 5.41. There exists � > 0 and an analytically trivial �ber bundle � : E !(�1; �) such that ��1(�) =Mr(X�).Let M be the family of symplectic quotients just constructed (except we will take(�1; 0] as base instead of [1; 0]). We then haveTheorem 5.42. We have an isomorphism of �ber bundlesEj(�1;0] 'M:We will needLemma 5.43. Let � > 0. Then we have a canonical isomorphismMr(X�) 'M�r(X�=�):Proof: Multiply the Riemannian metric on X� by �. Then the Riemannian distancefunction is multiplied by � and the sectional curvature is multiplied by 1� .



42 MICHAEL KAPOVICH, JOHN J. MILLSON, AND THOMAS TRELOARRemark 5.44. There is a good way to visualize the above isomorphism by using theembedding of X�; � < 0, in Minkowski space (as the upper sheet of the hyperboloidx2+ y2+ z2� t2 = �1�2 ) or X�; � > 0 in R4 ( as the sphere x2+ y2+ z2+ t2 = 1�2 ). Thedilation map v 7! �v of the ambient vector space maps X� to X�=� and multiplies theside-lengths by �.Now we can prove the theorem. Let �p :M! (�1; 0] be the family constructed isx5.4. By Lemma 5.28 we see that �p�1(�) ' M�r(X�1). Thus we are shrinking the side-lengths of the n-gons as �! 0. But we have just constructed a canonical isomorphismM�r(X�1) 'Mr(X��):So we may regard the deformation of x5.4 as keeping the side-lengths �xed and shrinkingthe curvature to zero.To give a formal proof we will construct an explicit di�eomorphismM // ##GGGGGGGGG Ej(�1;0]��(�1; 0]To this end, observe that the map B � (�1; 0]! G=K � (�1; 0] given by (b; �) 7!(b �K;�) induces a K-equivariant di�eomorphismBn � (�1; 0] F //p ))SSSSSSSSSSSSSS (G=K)n � (�1; 0]���(�1; 0]given by F ((b1; :::; bn); �) = ((K; b1 �K; :::; b1 � � � � � bn�1 �K); �).We give ��1(�) the Riemannian metric j�j(; )�. Let eE 0 � (G=K)n � (�1; 0] bede�ned by eE 0 = f(y1; :::; yn; �) : y1 = x0; d�(yi; yi+1) = ri; 1 � i � ngHere d� is the distance function on ��1(�) associated to the Riemannian metric j�j(; )�.Let �r� (�1; 0] be the dressing orbit through (er1H ; :::; ernH) for the K-dressing actionof K on p�1(�). We let fM � �r � (�1; 0] be the subset fM = f(b1; :::; bn; �) : b1 � b2 �� � � � bn = 1g. Then F carries fM di�eomorphically onto eE 0 and induces the requireddi�eomorphismM! Ej(�1;0].Remark 5.45. The relative 2-form �!� is a symplectic form along the �bers of �p. Thuswe have made the restriction of the family of [Sa] to (�1; 0] into a family of symplecticmanifolds. Can !� be extended to (�1; �)for some � > 0?
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