
ON THE MODULI SPACE OFPOLYGONS IN THE EUCLIDEAN PLANEMichael KapovichandJohn MillsonJune 9, 1994Abstract. We study the topology of moduli spaces of polygons with �xed sidelengths in the Euclidean plane. We establish a duality between the spaces of markedEuclidean polygons with �xed side lengths and marked convex Euclidean polygonswith prescribed angles.1. We consider the space Pn of all polygons with n distinguished vertices inthe Euclidean plane E 2 whose sides have nonnegative length allowing all possibledegenerations of the polygons except of the degeneration of the polygon to a point.Two polygons are identi�ed if there exists an orientation preserving similarity of thecomplex plane C = E 2 which sends vertices of one polygon to vertices of anotherone. We shall denote the edges of the n-gon P by: e1; :::; en and vertices by v1; :::; vnso that �!e j = vj+1 � vj+1. The space Pn is canonically isomorphic to the complexprojective space P (H) where H � C n is the hyperplane given byH = f(e1; :::; en) 2 C n : e1 + ::::+ en = 0gTherefore, the space Pn can be identi�ed with C Pn�2 . The length of the edge ejwill be denoted by rj . We shall assume that all polygons are normalized so thatthe perimeter is equal to 1.Let � be the conjugation z 7! �z, z 2 C . This transformation induces theinvolution �� : Pn ! Pn. The set of �xed points of �� consists of all \degeneratepolygons" P which are contained in a straight line.The map Area : Pn ! R assigns to every normalized polygon its signed area.De�ne the projection � : Pn ! Rn which assigns to each normalized polygonP 2 Pn the n-tuple of its side lengths :�(P ) = r = (r1; :::; rn)Our ultimate goal is to understand the topology of the moduli space of polygonswith prescribed sides Mr = ��1(r) , r 2 Rn . We will �nd necessary and su�cientThis research was partially supported by NSF grant DMS-9306140 at University of Utah(Kapovich) and NSF grant DMS-9205154, the University of Maryland (Millson).Typeset by AMS-TEX1



2 M. KAPOVICH, J. MILLSONconditions forMr to be connected and we shall describe the topology of the modulispaces Mr for n = 4; 5; 6.Theorem 1. The space Mr is not connected if and only if there are 3 di�erentsides ei; ej; ek in the normalized polygon so thatri + rj > 1=2; ri + rk > 1=2; rk + rj > 1=2If ei; ej ; ek exist as stated then Mr is di�eomorphic to the disjoint union of two(n� 3)-dimensional tori.Remark 1. Roughly speaking Theorem 1 states that the moduli space of apolygon is disconnected if and only if it has \three long sides". To see exampleswith disconnected moduli spaces (and to motivate our result) start with a triangle{so that the moduli space consists of two points. Then cut o� a small neighborhood ofone of the vertices to create a quadrilateral which is (Hausdor�) close to the triangle.It is clear that the deformation space of such a quadrilateral has two components(for example use the function Area). Continue the process. Thus we obtain an n-gon with three long sides and disconnected moduli space. The fact that the modulispace consists of two n� 3{dimensional tori is clear from Corollary 15: degeneratea short side and use induction.Theorem 2. If the moduli space of pentagons Mr is nonsingular, then Mr isthe compact oriented surface of the Euler characteristic 2(l(r)�3). Here l(r) is the\level of the chamber" which contains the point r 2 R5 (see Section 4, de�nition2).For example, the deformation space of the regular pentagon is the compactorientable surface of genus 4.Theorem 3. If the moduli space of hexagons Mr is nonsingular and connected,then it is either di�eomorphic to a connected sum of k copies of S2 � S1 and ofthe product �g � S1, or it is di�eomorphic to a connected sum of T 3#T 3 and of tcopies of S2� S1. Here k � 4, the genus g of the surface �g is not greater than 4and t � 2. If Mr is nonsingular but is not connected then it is di�eomorphic to thedisjoint union of two copies of T 3 = S1� S1� S1.We will also show that for n � 5 the function sign(Area) on Mr fails to distin-guish di�erent connected components of Mr (see Section 10).In Sections 16{ 19 we establish a duality � between the spaces of Euclideanpolygons with prescribed side lengths and marked convex polygons with prescribedangles. Unlike the classical duality in the spherical geometry, the correspondence� is transcendental{ it is given by hypergeometric integrals. Another di�erenceis that the duality of polygons in S2 is local: it is enough to know two adjacentvertices of P to �nd the corresponding vertex of the dual polygon P �. It is not soin the case of Euclidean polygons: one has to know the whole polygon P � C tocalculate a single vertex of the dual polygon �(P ). As a consequence of this dualitywe construct a piecewise{geodesic embedding DM of the moduli space �Mr =Mr=�into the complex-hyperbolic space H n�3C for generic values of r. Points of Mr=�



MODULI SPACE OF POLYGONS 3where the image of DM fails to be totally{geodesic correspond to polygons in Mrwhich have parallel edges.In our forthcoming work we shall discuss the relation of the moduli spaces ofpolygons with toric varieties, Hodge theory for representations of re
ection groupsand bending deformations of representations of polygons of groups. Results ofSections 2{ 15 of our paper admit straightforward generalization to the case ofpolygons on the hyperbolic plane and unit sphere. In the last case it would benecessary to restrict consideration to polygons with perimeter not greater than 2�.Previous results.After we had �nished our paper we learned that many of our results were alreadyknown. Theorem 1 is proved in [J] and [Wi], is implicit in [Wa] and was known toConnelly. Theorem 2 is implicit in [J] and [Wa]. The result that the deformationspace of a regular pentagon is a genus 4 surface was obtained independently in [Hav],[J], [K] and [Wa]. Our results concerning the Morse theory of lengths of diagonals(see Lemma 11) are to be found in [Hau] and [J]. In [Wa], Walker gives an intrinsicdescription of the homology classes added after \crossing a wall" in terms of modulispaces of the original polygon. He also makes an interesting conjecture: supposethat r and r0 lie in chambers which are not related by a permutation, then Mrand Mr0 have di�erent homology rings. In [B], Bancho� treates the Morse theoryof the algebraic area function (the case of regular pentagons was considered in[Hav]). Some other aspects of moduli spaces of Euclidean and spherical polygonsare discussed in [BGi], [GM1], [GM2].Acknowledgements. We are grateful to Robert Bryant, Richard Hain andDavid Hamilton for fruitful discussions. We would like also to thank Tomas Ban-cho� and Robert Connelly for providing us with many of the above references.2. First of all we have to understand the image of the projection � : Pn ! Rn .The image of this map is contained in the standard simplex S in Rn which is equalto the intersection of the hyperplane � = fr1 + :::+ rn = 1g with the �rst octant:r1 � 0; :::; rn � 0 (1)Any point in the image of the map � must satisfy the "triangle inequalities" :rj � 1=2; j = 1; :::; n (2)Lemma 1. The inequalities (1) and (2) completely describe the domain Dn =�(Pn) in �.Proof. Let us prove this lemma by induction. For n = 3 the assertion of Lemmais obviously correct. Now, assume that the assertion is correct for n� 1. Supposethat a vector r = (r1; :::; rn) satis�es the inequalities (1), (2). If the sum of lengthsof each pair of adjacent edges ri + ri+1 is greater than 1=2, then r1 + :::+ rn > 1which contradicts to our assumptions. Hence, up to renumeration of vertices wehave: rn�1 + rn � 1=2. Therefore, according to the induction hypothesis, there



4 M. KAPOVICH, J. MILLSONexists an n� 1-gon P (with the perimeter 1 ) which has sides (r1; r2; :::; rn�1+ rn).Now, if we consider P as an element of Pn with one extra vertex on en�1, then�(P ) = r. �We can think about truncation of S by the inequalities (2) as follows. For eachvertex �!Ej of S (which is a vector of the standard orthonormal basis of Rn) we choosethe middle points (�!Ej +�!Ei)=2 on the edges emanating from �!Ej . Now, consider thehyperplane �j = frj = 1=2g in � spanned by these middle points. The intersectionof this plane with S is a simplex.Now, the polyhedron Dn = �(Pn) has faces of two types:(a) \Tetrahedral" faces which appear as intersections of �j and S. These facesare combinatorially equivalent to n� 2-simplices.(b) \Octahedral" faces Oj which are contained in the faces rj = 0 of the simplexS. Thus all octahedral faces of Dn are congruent to the polyhedron Dn�1.De�nition 1. A polygon P in E 2 is called degenerate if it is contained in astraight line.The set of \boundary points" �(Pn) = ��1(@Dn) � Pn consists of:(a) degenerate polygons which belong to the preimage (under �) of the tetrahe-dral faces of Dn;(b) polygons which have one edge of the length zero , they belong to the preimage(under �) of the octahedral faces of Dn.Remark 2. The space Pn is compact, connected and has the Fubini-Studymetric. Thus, each polygon P 2 Pn can be continuously deformed to any polygonQ 2 Pn so that:the curve 
 = P (t) in Pn between P and Q is a geodesic segment in Pn of thelength not greater than a certain number wn 2 R, where wn doesn't depend onP;Q.3. Now we are interested in points r ofDn such that ��1(r) contains a degeneratepolygon P . The set � of such points is called the \critical locus" of Dn. The factthat the polygon P is degenerate is equivalent to:f(r) =Xj (�1)ujrj = 0 (3)where rj are lengths of the sides of P and uj 2 f0; 1g. We shall always normalize thefunctionals f so that the number of odd exponents uj is not less than the numberof even exponents. Therefore, the \critical locus" of Dn is the intersection of Dnwith the union of the hyperplanes (3). Intersection of any plane (3) with int(Dn)is called a wall. The \index" ind(W ) of the wall W = ff = 0g is the number ofeven exponents uj in the formula (3) for the functional f .Lemma 2. If [P ] 2 Pn is nondegenerate then the map � is a submersion at [P ].



MODULI SPACE OF POLYGONS 5Proof. Let P = [v1; :::; vn] , then the kernel of the derivative d�[P ] is isomorphicto the spaceZ = f� = (�2; ::::; �n) 2 (R2)n�1 : �j � �!ej = 0 (j = 2; :::; n); nXj=2 �j = 0g (5)Since P is nondegenerate, the vectors f�!ej ; j = 2; :::; ng span R2 . Direct calculationshows that dimension of the space Z is n� 3. The real dimension of Pn near [P ] is2n� 4. However, 2n� 4 = (n� 3) + n� 1, i.e.dim Ker(d�[P ]) + dim Dn = dim Pn (6)and therefore, � is a submersion near [P ].�This lemma can be also proven using the results of [W] and connection betweenthe space ��1[r] and a representation variety of a hyperbolic re
ection group (rel-ative to its parabolic subgroups).4. Components of the space Dn � � are called the chambers of Dn.Lemma 2 implies that the moduli spaces ��1(r) are di�eomorphic for all r inone and the same chamber. In treating the problem of connected components of��1(r) the essential role is played by the great walls Wij which are given bythe equations (3) where uj = ui = 0 and all other exponents um are equal to 1.Equivalently, ri+rj = 1=2 on such a wall. The components of the decomposition ofDn by great walls are called great chambers. We start with the negative greatchamber where all the functionalsfij = ri + rj � 1=2 (7)are negative.If it exists, this chamber is called the chamber of the level 0. For each greatchamber we introduce the multiindex �.De�nition 2. The great chamber C has multiindex � = fi1; j1g&:::&fil; jlg ifit is given by the system of inequalities:fi1;j1 > 0; :::::; fil;jl > 0 and ; fk;s < 0 if fk; sg =2 � (8)The signs & in the multiindex mean that we identify multiindexes which are ob-tained by permutation of the pairs fik; jkg. The number l = l(C) here is called thelevel of the chamber C. In this case the chamber C will be denoted byCn� (9)where the index n means that C is a chamber in Dn. Sometimes we shall omit theupper index. If C 0 � C is a subchamber of a great chamber C, then the level l(C 0)is by de�nition equal to the level l(C).



6 M. KAPOVICH, J. MILLSON5. To begin with we notice that if two couples fi; jg and fk;mg are presented inthe multiindex of the chamber C� then either i = k or i = m or j = k or j = m.Otherwise we would have:ri + rj > rk + rm and ri + rj < rk + rm (10)in this chamber, which is impossible. Therefore, all possible multiindexes are:(1) level 1- fi; jg;(2) level 2 - fi; jg&fi; kg.(3) The set of multiindexes of the level 3 consists of 2 classes:fi; jg&fj; kg&fk; ig (class A) (11)fi; jg&fi; kg&fi;mg (class B) (12)(4) All multiindexes of level l > 3 look like:fj; i1g&fj; i2g:::&fj; ilg (13)The multiindexes above are called admissible .Proposition 1. The great chambers C of level 3 and the class (A) are actuallychambers of Dn.Proof. Let C = C�, � = fi; jg&fj; kg&fk; ig. Suppose that some wallW (givenby the equation (3)) intersects C. Then ui + uj ; uj + uk; uk + ui are odd numbers,otherwise inside C we would have say ri+ rj < 1=2, which is impossible. Then thesum of these 3 odd numbers is again odd. On the other hand, the sum is equal to2(ui + uj + uk) which is even. This contradiction shows that C can't intersect anywall. �Lemma 3. If n = 4 then D4 has only chambers of level 3 and all admissiblemultiindexes of level 3 are realized by great chambers in D4.Proof. We prove the existence of chambers applying a procedure that we shallrefer to as regeneration. First consider any multiindex of a class (A). Take anondegenerate triangle � with sides ri; rj; rk, where i; j; k are di�erent and consider� as a degenerate quadrilateral where the side rm has zero length (m 6= i; j; k).Then the inequalities (A) are satis�ed for � and �(�) belongs to the face of D4given by equation rm = 0. Now, take the chamber of D4 adjacent to this face. Wecan �nd an element of this chamber in the following way.Take any positive value for rm, which is less thanminf1=2� rs ; s = i; j; kg (14)Then there exists a quadrilateral Q with the sides equal to ri; rj; rk; rm ordered insome way. The perimeter p(Q) of Q is 1 + rm > 1 but we can renormalize theperimeter applying the similarity Q 7! Q=p(Q).All inequalities (A) are satis�ed for Q=p(Q) and no other inequalities of the typef > 0 can occur. Therefore, we have an element of the chamber with the multiindex� = fi; jg&fj; kg&fk; ig.



MODULI SPACE OF POLYGONS 7Now, consider the case of multiindex of the class (B). Let � be a degeneratequadrilateral with nonzero sides ri; rj; rk; rm such that ri = 1=2. Now again �nd theadjacent chamber of D4 by decreasing the length of ri and rescaling. Thus, we haveproved the \existence" part of the Lemma. Suppose that we have a quadrilateralQ with the sides r1; :::; r4. The set of sides breaks into pairs in 3 di�erent ways.Suppose that fi; jg; fk;mg is one of these decompositions. Then we have eitherri + rj � rm + rk or ri + rj � rm + rk. In the �rst case we have either fi;j � 0 orfk;m � 0. Therefore, �(Q) is either singular or belong to a chamber of level 3. �Remark 3. The polyhedron D4 has the combinatorial type of the regular 3-dimensional octahedron which is split by the walls into 8 chambers. The walls aresquares whose vertices are the vertices of the octahedron. The group Z4 (cyclicpermutations of vertices of a quadrilateral) acts on D4 preserving the chamberstructure, the action is transitive on the set of chambers of a given class.Lemma 4. Suppose that n � 5. Then all kinds (1)-(4) of admissible multiin-dexes are realized by great chambers in Dn. If n � 6 then all great chambers areadjacent to the boundary of Dn.Proof. We start the induction with the case of pentagons. The negative chamberC0 is represented by a regular pentagon P0. Now, for any pair (i; j) consider thepentagon Pij where ri = rj = 1=4 and other 3 sides have the same length 1=6.Then each �(Pij) belongs to the face of C0 contained in the hyperplane fij = 0.Therefore, the chamber which is adjacent to C0 along this face has the multiindex� = fi; jg. Next, for any multiindex fi; jg&fi; kg we consider a pentagon Pfijg&fikgwith the sides: ri = rj = rk = 1=4 and rs = rq = 1=8 (17)It's clear that only two of the functionals (3) are nonpositive on �(Pfijg&fikg).Therefore, �(Pfijg&fikg) belongs to the boundary of a chamber with the multiindex� = fi; jg&fi; kg. The chambers of the level 3 with multiindex � are adjacent tothe chambers of octahedral faces of D5 which have the same multiindex �. Thus,we established the existence for all chambers on levels 3, 2 and 1. Finally, let� = f1; 2g&f1; 3g&f1; 4g&f1; 5g. Take the open tetrahedral face T1 of @D5 givenby the equation r1 = 1=2. Then all inequalities r1 + rj > 1=2 are satis�ed near T1,thus the multiindex of the chamber adjacent to T1 is equal to �. Thus, we provedthe Lemma in the case n = 5.Suppose now that the assertion of the lemma is proven for n � 1 � 5 and wewant to prove it for n. Let � be any admissible multiindex which doesn't containone number , say n (this is equivalent to the assumption that the level of � is lessthan n�1). Now, consider the polyhedron Dn�1 and use the induction assumption�nd a chamber Cn�1� with the multiindex �. Then take the chamber C = Cn� ofDn which is adjacent to Cn�1� . All inequalities (8) corresponding to the multiindex� are satis�ed in C and no inequality involving n like fi;n < 0 can be satis�ed inC since otherwise we would have : ri = 1=2 on Cn�1� which is not the case. Thus,C has the multiindex � and is adjacent to the boundary of Dn.The last case to consider is when the multiindex has the level n� 1:� = f1; 2g&f1; 3g:::&f1; ng (16)



8 M. KAPOVICH, J. MILLSONTake the tetrahedral face F1 of Dn given by the equation r1 = 1=2 and apply thesame arguments as in the case of pentagons. We conclude that the chamber Cadjacent to F1 has the multiindex �. �Lemma 5. Suppose that we have two chambers C�; C� in D5 where the multi-index � is obtained from � by adding the pair fi; jg. Then C�; C� have a commonface at the wall fij = 0.Proof. Consider a generic segment I � D5 which connects the interiors of these2 chambers. Suppose that I intersects some wall fkm, where fk;mg 6= fi; jg. Thenthe inequality fkm < 0 is satis�ed in one chamber and fkm > 0 is satis�ed inanother. According to the hypothesis of lemma this implies that fk;mg = fi; jg.� Corollary 5. Each chamber of level 2 in D5 is adjacent to three chambers oflevel 3, one of them has class (A).6. De�nition 3. A chamber C of Dn is said to have type I if for some (any)point r 2 C the moduli space Mr = ��1(r) is connected. The chamber C is saidto be of type II if the moduli space is not connected.Lemma 6. A chamber C in Dn has type I i� for some (any) r 2 C a polygonP 2 Mr can be deformed to the symmetric polygon �(P ) = �P . For any r themoduli space Mr has at most two connected components. These two componentsare di�eomorphic via the map ��.Proof. We will prove the statement by induction over the number of vertices inthe polygon. If n = 3 the assertion is evident. Now, suppose that we proved thelemma for all k < n. Let P; P 0; P 00 be n-gons such that �(P ) = �(P 0) = �(P 00) =r 2 C. There are two numbers ri; ri+1 in r (say i = 1) such that ri + ri+1 < 1=2.Therefore, we can deform P; P 0; P 00 to polygons where 1-st and 2-nd edges belongto a straight line and their intersection is one point. Thus, we have n � 1-gonsQ;Q0; Q00 with the sides : r1 + r2; r3; :::; rn. However, the moduli space of n � 1-gons consists of not more than 2 components. Thus, two of the n � 1-gons , sayQ;Q0 can be deformed one to another. This means that ��1(r) consists of not morethan 2 connected components.Consider the diagonal d between 1-st and 3-nd vertices of P . This diagonalsplits P into union of a triangle � and an n � 1-gon Q so that 1=2 � r1 + r2.Applying the symmetry � in d to the polygon P we obtain another polygon �P sothat Area(P ) = �Area( �P ). We can also apply symmetry only to � to obtainanother polygon N ; put �(N) = �N .Claim. The pairs of polygons P;N and �P ; �N belong to the same connectedcomponents of the moduli space. Each polygon in the moduli space Mr can bedeformed either to P or �P .Proof. First we apply the induction hypothesis to deform Q to a triangle withthe vertices v3; v4; v1 keeping the length of d �xed. Thus, we obtain a quadrilateralQ with the vertices v1; v2; v3; v4. Now, since r1 + r2 � 1=2, we can deform Q toa triangle �0 where e1; e2 belong to the straight line. We can assume that for all



MODULI SPACE OF POLYGONS 9deformations the diagonal d belongs to one and the same line ` = fz 2 C : Im(z) =0g. Let Pt = gt(�0) denote the deformation of �0 to P where gt : �0 ! P is acontinuous family of combinatorial maps.However, we can construct in the same way a deformation ht of the triangle�0 to the polygon N as follows. If vj is the vertex of �0 with 1 � j � 3 thenht(vj) = �gt(�); if j > 3 then ht(vj) = gt(vj). Then we obtain a deformation ofP to N . Application of symmetry implies that �P ; �N belong to the same connectedcomponent.However, the triangle �0 up to symmetry is determined only by r. So eachpolygon P 2Mr can be deformed either to �0 or �0.�Therefore, if Mr has 2 connected components, no polygon P can be deformedto �P . In this case the involution � : P 7! �P permutes the two components. Thelemma is proved. �7. The following is the basic property of the types of chambers.Lemma 7. (a) Suppose that the chamber C = Cn is adjacent to a chamberc = Cn�1 � Dn�1 which has the type X, then C has the same type X. (b) If achamber C is adjacent to a tetrahedral face of Dn then C has type I.Proof. Consider (a). Let �(Q) 2 c � Dn�1 andQ = limt!0Pt (17)where Pt is a continuous family of n-gons. Suppose that C has type I, then for eacht there exists a geodesic curve Pt(s) between Pt and its mirror image �Pt so that thefamily of maps [0; 1] 3 s 7! Pt(s) (18)is uniformly continuous (see Remark 2). Therefore, there exists a limitlimk!1P1=k(s) = Q(s) (19)so that the continuous curve Q(s) connects Q with its mirror image �Q. Therefore,the chamber c has type I.Now, suppose c is a chamber of type I. Let P 2 Pn�1 be a polygon which belongsto ��1c. Then we construct a sequence of n-gons Qk 2 Pn approximating P sothat limk!1 rn(Qk) = 0 (20)and the sides en; en�1 of Qk belong to one and the same line. Then we can considerthe union en [ en�1 as a single edge of Qk, thus Qk become elements Pk of Pn�1.However, the chambers of Dn�1 are open , therefore Pk 2 c for large k. Therefore,each Pk can be deformed to its mirror image �Pk and Qk belongs to the chamber oftype I.So, we proved the assertion (a) of the Lemma.First we prove the assertion (b) for n = 4. Let P be a degenerate trapezoidwhere r1 = r3, r4 = 1=2. Consider a trapezoid Q su�ciently close P so that for Qwe have: r4 > r2; r4 > r1 + r2; r1 = r3 (21)



10 M. KAPOVICH, J. MILLSONIn this case we �rst can deform Q to a triangle T where e1 and e2 form a single side(Figure 1). Then we deform T to the "butter
y" B where the point of intersectione4\e2 is the center of symmetry (Figure 1). Finally, we deform B to the triangle �Swhich can be deformed to the trapezoid Q (Figure 1). This proves that the chamberC has type I.Suppose now that n � 5 and P is a degenerate polygon such that r1 = 1=2;then we can organize the edges e3; :::; en to a single edge. As the result we havea degenerate quadrilateral Q and for any Q0 su�ciently close to Q, there is adeformation of Q0 to Q0. But Q0 can be considered also as an element P 0 of Pn.Therefore, �(P 0) belongs to the chamber C of the type I. This proves the assertion.�Corollary 7. The chambers of type I in D4 are the chambers of level 3 andclass (B); the chambers of type II in D4 are the chambers of level 3 and class (A).Proof. The chambers of class (B) are adjacent to the \tetrahedral" faces Tj ofD4 given by the equations rj = 1=2. Thus, they have the type I. The chambers ofclass (A) are adjacent to the \octahedral" faces of D4 which are the polyhedronsD3. However, the moduli space for each nondegenerate triangle consists of 2 points.Therefore, chambers of class (A) have type II. �Corollary 8. Suppose that two chambers of D4 are adjacent along a wall Wgiven by the equation f = 0. Then the chamber contained in the subspace f < 0has type I.Proof. This follows from the description of the types of chambers in Corollary7. �8. Lemma 8. Let n � 5. Suppose that two chambers are adjacent along awall W given by the equation f = 0. If W is a great wall ( i.e. f = fij) then thechamber contained in the half-space f < 0 has type I.Proof. We prove all assertions of the Lemma by induction. If n = 4 then wehave already proved all assertions (Corollary 8). Suppose that we have proved theassertion for n�1. Let P be a degenerate polygon such that �(P ) 2W . Then thereare at least two adjacent edges es; es+1 of P such that their indices are di�erent fromi; j. De�ne the new polygon Q with n � 1 edges obtained from P by consideringes; es+1 as a single edge. Now, the assertion follows from the induction hypothesisapplied to Q. �Lemma 9. Suppose that two chambers are adjacent along a wall W given bythe equation f = 0. If W isn't a great wall, then both chambers have the type I.Proof. We prove the assertion of the lemma by induction. If n � 5 then thelemma is trivially correct. Now suppose that the assertion holds for all k < n.Suppose that r = �(P ) 2 W doesn't belong to any other wall; P � R = `, theimage of P is a closed interval with the end-points V1; Vj which are vertices of P .Split P along the diagonal d between V1; Vj into L1 [ L2.Remark 4. It can't happen that d is a side of P since that would mean thatthe wall W is a boundary face of Dn.We suppose that V1 < Vj on R and the edge [V1; V2] with the length r1 is directedin the positive direction on R. We also assume that r1 enters the equation (3) of



MODULI SPACE OF POLYGONS 11W with the positive sign. We call �1 the number of backtracks on L1 if this is thenumber of segments of L1 which enter the equation of W with a negative sign; �2, the number of backtracks on L2 , is the number of edges of L2 which enter theequation of W with a positive sign.Now, ifmax(�1; �2) � 2 (say �1 > 1) then we can apply the induction hypothesisto L1 [ d and thus prove that the whole neighborhood of �(P ) has type I.Suppose that �1 = �2 = 1. Then either we can apply induction or both L1 andL2 contain exactly 3 segments. Thus, we have:d > r � 1; d > r3; r2 < r3; r2 < r1; d+ r2 = r1 + r3 (22)Therefore, d+ r2 = r1 + r3; d+ r � 1 > r2 + r3; d+ r3 > r2 + r1 (23)This means that if we deform P so that length of d increases and r1; r2; r3 are �xed,then this deformation of the quadrilateral L1 [ d has type I and we are done. Now,we can increase the length of d by increasing negative as well as positive segmentsof L2 (there are both). This means that for both deformations of P where f < 0as well as f > 0 we end up at a chamber of type I.Now, assume that L2 has no backtracks. Then L2 consists of 2 segments andL1 consists of 4 segments. Consider the pentagon P 0 = L1 [ d. Direct calculationshows that �(P 0) belongs to a common face of the negative chamber and a chamberof the level 1. Therefore, any small deformation of P 0 (and hence of P ) leads to apolygon of the type I.Finally, we are left with the case when �1 = �2 = 0. Consider the chamberadjacent to W where f > 0. Then we can organize the chain L2 into a singlesegment ; denote the new polygon by P+. Our deformation of P+ leads to achamber of the type I in D4 (see Lemma 8). Therefore, this deformation of P hasthe type I. In the case of the chamber where f < 0 we repeat the argument aboveby organizing L1 into a single segment. �Corollary 9. In Dn the chambers of level 3 and class (A) have type II, allchambers of the class (B) have type I.Proof. If n > 4, then each chamber of level 3 with the multiindex � is adjacentto the boundary face Dn�1 along a chamber of the same multiindex (Lemma 4).Now the assertion follows by combining Lemma 8 and Corollary 7. �Lemma 10. In Dn a chamber has type II if and only if it has level 3 and class(A).Proof. Suppose that C = C� is a great chamber in Dn with multiindex � whichisn't a multiindex of the maximal level n and isn't of the class (A), level 3. Then,we can always add to this multiindex a pair (i; j) such that the new multiindex � isstill admissible (see the description of the multiindexes in the section 5). Therefore,according to Lemma 8 and Lemma 5 the chamber C has type I. If C has maximallevel n then it is adjacent to a tetrahedral face of Dn and according to Lemma 7we conclude that C again has the type I. �



12 M. KAPOVICH, J. MILLSON9. So we have provedTheorem 1. In the polyhedron Dn the chamber C has type II if and only if Cis a great chamber of the level 3 and class (A). All other chambers correspond toconnected moduli spaces Mr.This theorem has the following geometric interpretation. We know that for eachnondegenerate triangle T with the sides r = (r1; r2; r3) the moduli space Mr hasexactly two components. If we \regenerate" this triangle to a n-gon P which issu�ciently close to T in Pn then the moduli space M� of P again has exactly twoconnected components (here � = �(P )). According to Theorem 1 this is essentiallythe only way that any n-gon Q can have nonconnected moduli space. Namely, if Qhas a nonconnected moduli space and �(Q) belongs to a chamber C, then Q canbe deformed inside ��1(C) to a polygon P as above.10. Example. There is a point r 2 D5 which belongs to a chamber of type IIsuch that:on each component of Mr the function Area has negative as well as positivevalues.This means (contrary to our original expectations) that for all n > 4 the functionSign �Area fails to distinguish connected components of Mr for some values of r.Nevertheless, one can prove that for n = 4 the Area does distinguish connectedcomponents of Mr for any r. We don't know any numerical invariant of polygonsthat can distinguish components for n > 4.Construction. We start with a convex polygon P 0 = ABCD such that:(a) the angle at the vertex C is �=2;(b) the side BC has length jBCj = 1 and jABj = 1� �;(c) the angle between the diagonal BD and the side AB is �=2 and the lengthof BD is equal to d.The numbers d; 1 > � > 0 will be speci�ed below. See Figure 2.Then, fold the triangle ABD along the diagonal BD. As the result we have the4-gon Q0. Let Q00 be the mirror image of Q0 with respect to CD. Then the unionof two 4-gons Q0; Q00 is a pentagon P (we do not consider C as a vertex of P ). Wedenote the vertices of P as: A;B;B0; A0; D (see Figure 2). We assume that thearea of the triangle BB0D is negative, then the triangles ABD;B0A0D have equalpositive area.The conditions on d; � are: d2(1� �)2 > d2 � 1 (24)(1� �) + 1 <pd2 + (1� �)2 (25)The �rst condition (24) means that the area of BDB0 is less than 2 �Area(ABD),so Area(P ) > 0. The second condition (25) means that jADj + jDA0j > jABj +jBB0j+ jB0A0j. The inequalities (25), (24) also imply thatd+ jBB0j > jADj+ jABj (26)The inequalities (25, 26) are equivalent to:3� d22 < � < d�pd2 � 1d (27)



MODULI SPACE OF POLYGONS 13However, the left side is negative if d > 2. The right side is always positive and lessthan 1. Therefore, we can �nd � and d which satisfy the conditions (25, 24).The condition (26) implies that we can deform P keeping the length of B0D�xed so that the quadrilateral ADB0B becomes an embedded triangle with nega-tive area (the triangle BDB0 doesn't degenerate under this deformation, but thetriangle ABD degenerates and changes the sign of area). We continue this deforma-tion so that the triangle DABB0 doesn't change the area, but the triangle DA0B0degenerates and changes the sign of area). As the result we have an embeddedpentagon Q where all vertices except D belong to a straight line. The area of thispentagon is negative.Finally, we can normalize the perimeter of the polygon P by applying a similarity.Then if the image �(P ) is the vector r, direct calculation shows that the point rbelongs to the chamber of class (A), level 3. Therefore, the moduli space Mr isn'tconnected, but the function Area has both negative and positive values in onecomponent of Mr. �11. Now, we consider the global topology of the moduli spacesMr for nonsingularr. Since the projection � is a trivial �bration near Mr, if the �ber Mr isn't ori-entable, then for some small neighborhood U of r the priemage ��1(U) = Rn�1�Mris nonorientable as well. Therefore, the space Pn isn't orientable which contradictsthe fact that Pn = C Pn�2 . This contradiction shows that all regular �bers Mrare orientable. For r 2 � the moduli space Mr is always singular (the singulari-ties are isolated and correspond to degenerate polygons). These singularities arealways quadratic. Each singular point P is an isolated �xed point of the involution�� : Mr ! Mr. If a point P separates its neighborhood U in Mr then �� inter-changes the two connected components of U �P and �(P ) belongs to a great wall.We shall discuss the singularities in details in our forthcoming paper.12. Our next problem is to understand how topology of the moduli space Mrchanges when the parameter r \crosses a wall" in Dn. We recall that the space Pnis a hyperplane section in the space of \free linkages" ~Pn = C Pn�1 . We will thinkabout the space ~Pn as the con�guration space of ordered n+1-tuples (v0; :::; vn) inC n+1 modulo the diagonal action of the group of similarities Aff(C ). The edgesof the free linkage z = (v0; :::; vn) are the vectors ej = vj � vj�1. We denote by ~�the projection ~� : z = (e1; :::; en) 7! (r1 = je1j; :::; rn = jenj) (28)for any point z 2 ~Pn with the normalized perimeter:je1j+ :::+ jenj = 1 (29)Then Fr = ~��1(r) is the space of free linkages with the �xed side lengths modulothe action of the group of similarities Aff(C ). We consider the smooth functionh : Fr ! R given by h(e1; :::; en) = je1 + :::+ enj2 = d2(v0; vn) (30)



14 M. KAPOVICH, J. MILLSONWe let Er be the complement Fr n h�1(0). In what follows we will use S1(ri) todenote the circle in C with the center at 0 and radius ri. Let Nr = S1(r1)� :::�S1(rn). Then Fr is the quotient of Nr by SO(2) acting diagonally. We next letXr � Nr be the smooth submanifold de�ned byXr = f(e1; :::; en) 2 Nr : vn 2 R+ , i.e. Im(vn) = 0; Re(vn) > 0g (31)Then Xr is a slice for the projection Nr ! Fr over Er. Suppose that � 2 Er is adegenerate con�guration, i.e. all points of � belong to a straight line L.De�ne f = f(�) to be the number of edges ei that point in the direction ��!v0vn =�!d (f is the number of \forwardtracks") and b = b(�) the number of edges ej thatpoint toward the direction ��!d (the number of \backtracks"). We shall assumethat the line L which contains � is R = fz : Im(z) = 0g � C , v0 = 0 and vn 2 R+ .Lemma 11. (i) The function h is a Morse function on Er. (ii) The Hessian of hat any degenerate con�guration � has b(�) positive eigenvalues and f � 1 negativeeigenvalues.Proof. We shall identify the slice X = Xr with Er. We de�ne two functionsg; k on Nr by k(e1; :::; en) = nXj=1Re(ej) (32)g(e1; :::; en) = nXj=1 Im(ej) (33)We observe that Xr = g�1(0) \ k�1(R+). If � 2 Xr then g is a smooth functionnear �. We note that hjX = k2 and since k > 0 on X (by de�nition) we mayreplace h by k. We �rst study the critical point behavior of k on Nr. Let (r; �) bethe polar coordinates in C , hencek((r1; �1); :::; (rn; �n)) = nXj=1 rj cos �j (34)It is immediate that �� 2 Nr is a critical point of k if and only if �� is degenerate(i.e. contained in the real line R). We shall use the vector-�elds @@�1 ; :::; @@�n tode�ne coordinates on the tangent bundle of X. Then the matrix representation ofthe Hessian D2kj�� of the function k is2664��1r1 0 : : : 00 ��2r2 : : : 0... ... . . . ...0 0 : : : ��nrn 3775 (35)where �j = 1 if ej is a forward track and �j = �1 otherwise. Hence the HessianD2kj�� has signature (b; f).We claim that critical points of kjX coincide with the critical points of k whichlie on X. Indeed, kjX has a critical point at � if and only if there exists � 2 R



MODULI SPACE OF POLYGONS 15such that dkj� = �dgj�. Hence if (�1; :::; �n) are coordinates of �, then we have� = tan �j for all j = 1; :::; n. Therefore either �j = �i or �j = ��+ �i. This meansthat � is contained in R and � = 0. The claim follows.We now investigate the Hessian of kjX at a critical point ��. We put B =(D2k)j��. Since the submanifold X � Nr is de�ned by the equationnXj=1 Im(ej) = nXj=1 rj sin �j = 0 (36)we conclude that T��(X) � T��(Nr) is de�ned by the equationnXj=1 �jrjd�j = 0 (37)Hence using the basis @@�1 ; :::; @@�n we �nd thatT��(X) = f(c1; :::; cn) 2 Rn : nXj=1 �jrjcj = 0g (38)Therefore, T��(X) is the orthogonal complement of the vector � = (1; :::; 1) for thequadratic form B. However,B(�;�) = � nXj=1 �jrj = �d(v0; vn) (39)Since B(�;�) < 0 we �nd that the signature of the restriction of B on T��(X) is(b; f � 1).�12. We restrict ourselves now to the cases n = 4; n = 5; n = 6.Suppose that n = 4 and r 2 C� which is a chamber of class (A). Then the modulispace Mr is a union of two disjoint smooth circles. If C� has class (B) then Mris a smooth circle. For each r 2 �(Dn) the con�guration space Mr is connectedand has singularities. If r is a point of a wall W in int(D4) which doesn't belongto any other wall, then Mr contains a unique degenerate polygon, therefore Mris a bouquet of two circles, the only singular point is the point of intersection oftwo circles. Suppose now that r belongs to the intersection of exactly 2 walls.Then Mr has two singular points. In this case (up to renumeration) we have eitherr1 = r3; r2 = r4 or r1 = r2; r3 = r4.Neither of these two points can separate Mr. Therefore, the moduli space is theunion of 2 circles identi�ed at two di�erent points. Finally, we have the case of thetriple intersection point (rhombus). In this case we have 3 singular points on Mr,neither of them separatesMr; and thusMr is a cycle of 3 circles , any pair of circleshas a common point. See Figure 3 below.13. Now, assume that n = 5.



16 M. KAPOVICH, J. MILLSONSuppose that we have either (a) two adjacent chambers C = C�; C 0 = C� sothat the level of C� is l, the level of C� is l + 1, or (b) a chamber C adjacent to atetrahedral boundary face of D5. Without loss of generality we can assume that inthe case (a) fi; 5g is in � but not in �, in the case (b) the chamber C is adjacentto the face W given by the equation r5 = 1=2 and we put C 0 = W in this case.Denote by W = ffi;5 = 0g the common wall of C;C 0. Consider a smooth path 
(t)so that 
(a) 2 C, 
(b) 2 C 0 and along this path the lengths rj (j = 1; :::; 4) areconstant and for r = 
(t) we have: r5 = t. We can assume that 0 < a < b < 1.Let s = 
�1(W ), then q = 
(s). We consider q to be generic if it doesn't belong toany wall di�erent from W .Remark 5. In case (a) we may choose a degenerate polygon P = [v1; :::; v5] 2��1(q) such that v0 = 0; v5 2 R+ . Consider free degenerate linkage � = (v1; :::; v5).Then for every generic q the linkage � has 1 backtrack. (Otherwise either we havecase (b) and b(�) = 0, or b(�) = 2 and rl + rk + r5 = 1=2, for some l; k such that1 � l < k < 5.)Lemma 12. For a generic choice of q = 
(s) there exists an open neighbor-hood U of q on 
 so that:(1) MU = ��1(U) is a smooth 3-manifold and(2) the function r5 is a Morse function on MU with a nondegenerate criticalvalue q of signature (1; 2).Proof. Put � = (r1; :::; r4). Then MU is an open subset of the moduli spaceof free linkages F�. Thus, by Lemma 11, the manifold MU is smooth and r5 is aMorse function. If � is a degenerate linkage in F� then, by Remark 5, b(�) = 1,f(�) = 3. The lemma now follows from Lemma 11. �Now, we �x a path 
 with a generic choice of q.The space Mq = M
(s) is a singular surface with unique singular point [P ]corresponding to a degenerate pentagon P . Then the fact that r5 is a Morsefunction near [P ] means that there is a small neighborhood V of [P ] in M
 so thatin the case (a) after some change of coordinates in V the function h = r5 � s canbe written as: h(x; y; z) = �x2 � y2 + z2 (40)In the coordinates (40) we have:Mr � fh < 0g;Mr0 � fh > 0g (41)since r5 increases as we go from C to C 0.In the case (b) the function h = r5 � s can be written as:h(x; y; z) = �x2 � y2 � z2 (42)where h > 0 on Mr for each r =2 W . Therefore, in the case (a) the Morse surgeryfrom Mr to Mr0 is equivalent to removing a handle : �rst we pinch a simple loop` on Mr to obtain Mq , then we remove the point of intersection to obtain Mr0 . If` is homologically trivial then Mr0 isn't connected (analogously to Lemma 8). Itcan happen only if C 0 is the chamber of the level 3, Class (A). In such case two



MODULI SPACE OF POLYGONS 17components of Mr0 are di�eomorphic, the di�eomorphism is given by the mirrorre
ection map P 7! �P . In other cases the loop ` is homotopically nontrivial. Inthe case (b) the Morse surgery is attaching a 0-handle to the connected surfaceMr,therefore, in such case Mr is a sphere for all r 2 C.Essentially the same is true for any n-gon. Suppose that W is a wall of indexind(W ) in Dn given by the equation fij = 0 where fij = ri + r + j � 1=2 (as informula (7)). Let C;C 0 be chambers adjacent to W along an open subset V whichdoesn't intersect any other walls, so that fij is negative on C. Let r 2 C, p 2 C 0.Then Mr is obtained from Mp by a Morse surgery of the index ind(W ) � 2. Inparticular, if W is a great wall and ind(W ) = 2, then Mr is obtained from Mpeither by connected sum of two connected components of Mp or \self-connectedsum" of a single component of Mp (attaching of a zero handle).14. Now we can prove the statement about the topology of Mr for all chambersin D5.Theorem 2. If r 2 C where the chamber C has the level l then�(Mr) = 2(l� 3) (43)Proof. We recall that all con�guration spaces Mr are orientable and begin alevel by level consideration.Level 4. Suppose that C has level 4. Apply Lemma 12 to a generic path 
 sothat 
(b) 2 W = fr5 = 1=2g. The preimage r�15 (1=2) � MU consists of a singlepoint which is a degenerate pentagon. Therefore, Lemma 11 implies that Mr is asphere for all r 2 �(
). Thus, Mr is a sphere for each r 2 C.Level 3, Class (B). Each chamber C of level 3 class (B) is adjacent to somechamber C 0 of level 4. Then for each r 2 C the connected surface Mr is obtainedfrom the sphere by attaching a handle, thus Mr is a torus.Level 2. Each chamber C of level two is adjacent to some chamber C 0 of level3, class (B). Thus, for each r 2 C the connected surface Mr is obtained from thetorus by attaching a handle, thus Mr is a surface of genus 2.Level 3, Class (A). On the other hand, each chamber C 0 of level 3, class (A) isadjacent to some chamber C of the level 2. Thus, for each r0 2 C 0 the surface Mr0is obtained from the surface of genus 2 by a surgery along a homologically trivialloop `. The loop ` can't be homotopically trivial, otherwise Mr0 would be theunion of two nonhomeomorphic surfaces (sphere and a surface of genus 2), whichis impossible by Lemma 6. The only possible case is that Mr0 is the union of twotori.We repeat the same arguments as above to prove that if the level of C is 1 thenMr is a surface of genus 3, if C has level 0 the Mr is a surface of genus 4. Thisconcludes the proof of Theorem 2. �15. Our next problem is to describe the topology of the moduli spaces ofhexagons. Let r 2 Dn, denote by M 0r the space of n-gons in C with the sidelengths r = (r1; :::; rn) modulo translations. We recall that Nr is the torusfe = (e1; :::; en) 2 C n : jej j = rj ; j = 1; :::; ng (44)



18 M. KAPOVICH, J. MILLSONWe de�ne the momentum map � : Nr ! C by�(e1; :::; en) = e1 + :::+ en (45)Then M 0r is canonically isomorphic to ��1(0) by sending (v1; :::; vn) to(v2� v1; :::; v1� vn). It is easily seen that 0 is a regular value of � provided r is noton a wall of Dn. As in Lemma 11 we de�ne two functions k; g on Nr byk(e1; :::; en) = nXj=1Re(ej) (46)g(e1; :::; en) = nXj=1 Im(ej) (47)We let Y � Nr be the zero level set of g. Then Y is smooth. We wish to describethe level sets of h = kjY near zero. Let r̂ = (r1; :::; rn; �) 2 Dn+1.Lemma 13. (i) h�1(0) =M 0r;(ii) for � > 0, h�1(�) = Mr̂ is the space of n + 1-gons with the side lengths(r1; :::; rn; �) modulo the action of Aff(C ).Proof. We observe that jhj = rn+1jY where rn+1 = pk2 + g2, since g � 0 onY . If (e1; :::; en) 2 h�1(�) then we put en+1 = �(e1 + :::+ en) so that jen+1j = �.So, we obtain an n+1-gon with the side lengths (r1; :::; rn; �) so that vn+1 = � 2 C .The set of these n+1-gons is a cross-section to the action of Isom+(C ) on M 0̂r andthe lemma follows. �Lemma 14. Zero is not a critical value of the function h.Proof. It su�ces to show that dkjQ and dgjQ are linearly independent (overR) functionals on TQ(Nr) for Q 2 k�1(0). Since � = k +p�1g the lemma followsfrom the preceding observation that 0 is a regular value for q. �As a consequence of the previous two lemmas we obtain the followingCorollary 15. Suppose that r = (r1; :::; rn) 2 int(Dn) doesn't lie on anywall, let r̂ = (r1; :::; rn; �). Then for su�ciently small positive � the space Mr̂ isdi�eomorphic to Mr � S1.Proof. Clearly we have M 0r �=Mr � S1. On the other hand, Lemma 14 impliesthat the �bers h�1(�) are di�eomorphic to h�1(0) for small positive �. Therefore,by Lemma 13 we conclude that Mr̂ is di�eomorphic to Mr � S1. �Consider now the cell structure of D6. The walls in D6 are either great walls orwalls of index 3. All hyperplanes de�ning the walls of index 3 contain the center ofD6 which is the point O = (1=6; 1=6; 1=6; 1=6; 1=6; 1=6) represented by the regularhexagon. Therefore, each component of the decomposition of D6 by walls of index3 is a cone with center at O over a tetrahedral face of @D6 or over a chamber of anoctahedral face. We know that crossing a great wall (which decreases the level of agreat chamber) results in the index zero surgery on the moduli space Mr. So, it'senough to consider the topology of the spaceMr for r su�ciently close to chambersof the octahedral faces of D6.



MODULI SPACE OF POLYGONS 19Suppose that C 0 = C 0� is a chamber of an octahedral face of @D6 given by theequation rs = 0; let ConeO(C 0) be the adjacent component of the decompositionof D6 by walls of index 3. All functionals fij (see (7)) are negative at the point O,therefore the wall ffij = 0g intersects ConeO(C 0) if and only if the functional fijis positive on C 0, in particular the index s is not present in the multiindex �. Thismeans that the number of great walls intersecting ConeO(C 0) is equal to the levell(�).(a) First we consider the case when C 0 has type I. Then for r0 2 C 0 the modulispace of pentagons Mr0 is an oriented compact surface �g of genus g � 4. If C isa chamber in ConeO(C 0) adjacent to C 0 then for each r 2 C the moduli space ofhexagons Mr is di�eomorphic to S1 � �g (according to Corollary 15). Therefore,for r 2 Ĉ � ConeO(C 0) the moduli space Mr is a connected sum of of S1��g andk = l(�)� l(Ĉ) � l(C 0) � 4 copies of S2� S1, where l(Ĉ) is the level of Ĉ.(b) Now we consider the case when C 0 has type II. If C is a chamber in ConeO(C 0)adjacent to C 0 then for each r 2 C the moduli space of hexagonsMr is di�eomorphicto the disjoint union of two copies of T 3 = S1�S1�S1. Suppose that Ĉ is a chamberin ConeO(C 0) which is adjacent to C. Then, according to Lemma 8, the chamberĈ must have type I; therefore, for each r 2 Ĉ the moduli space Mr is di�eomorphicto the connected sum T 3#T 3. The chamber C 0 has level 3. Therefore, for all otherchambers ~C in ConeO(C 0) the moduli spaces Mr are di�eomorphic to connectedsums of T 3#T 3 and t copies of S2� S1. Here t is equal to 3� l( ~C) � 2.(c) The last case is when C 0 is a tetrahedral face of @D6. Then 5 great wallsintersect ConeO(C 0). If C is a chamber of D6 adjacent to C 0 then the moduli spaceMr is di�eomorphic to S3 for all r 2 C. If Ĉ is any chamber in ConeO(C 0) andr 2 Ĉ, then Mr is di�eomorphic to the connected sum of 5� l(Ĉ) copies of S2�S1.Thus we provedTheorem 3. If the moduli space of hexagons Mr is nonsingular and connected,then it is either di�eomorphic to a connected sum of k copies of S2 � S1 and ofthe product �g � S1, or it is di�eomorphic to connected sum of T 3#T 3 and t � 2copies of S2� S1. Here r belongs to a chamber C, the genus g of the surface �g isnot greater than 4 and k � 4. If Mr is nonsingular but is not connected then it ishomeomorphic to the disjoint union of two copies of S1� S1� S1.16. Stable measures on the unit circle.Let D be the unit disc in the complex plane centered at zero. Denote by S1 theboundary of D. We identify the group of conformal automorphisms Conf(D) ofthe disc D with the connected component SO(2; 1)0 of SO(2; 1).The following de�nition is motivated by Mumford's notion of stable points foractions of semi-simple Lie groups on algebraic varieties.De�nition 4. A probability measure � on S1 is called stable if the mass of anyatom of � is less than 1=2. A measure is called semi-stable if the mass of any atomof � not greater than 1=2.We recall that the center of mass of a probability measure � on S1 is equal toB(�) = ZS1 zd�(z) (48)



20 M. KAPOVICH, J. MILLSONTheorem 4. For each stable measure � on S1 there exists a conformal trans-formation 
 2 Conf(D) such that B(
��) = 0. The element 
 is unique up to thepostcomposition g � 
 where g belongs to the orthogonal group SO(2) which is thestabilizer of 0 in Conf(D).Proof. Douady and Earle in [DE] de�ne the conformal center of mass C(�) 2 Dfor any stable probability measure � on S1. The point C(�) has the followingproperties:(a) For any 
 2 Conf(D) C(
��) = 
(C(�)) (49)(b) B(�) = 0 if and only if C(�) = 0.Now Theorem 4 follows from transitivity of the action of Conf(D) on D. �17. Consider a stable atomic probability measure � on S1 which is equal tokXj=1 �j�zj (50)where �z is the Dirac measure concentrated at the point z 2 S1. We assume thatall the points zj are distinct. There exist a unique (up to multiplication by � 2 S1)Abelian di�erential �� 2 
1(C � fz1; :::; zkg) such that:(1) the singularity of �� at zj is(z � zj)�2�jdz (51)(2) ZZD j��j2 = 1 (52)Explicitly the di�erential �� is given by the following formula:!� = dzQkj=1(z � zj)2�j (53)�� = !�(ZZD j!�j2)�1=2 (54)Stability of the measure � implies that the integral RRD j!�j is �nite and thereforethe Christo�el-Schwarz map f� : z 2 D 7! Z z0 �� (55)is continuous in D [ S1 and has bounded image. It is well known that the map f�is univalent and its image is a convex polygon P� = f�(D) in C with the interiorangles �j = �(1 � 2�j) at the vertices wj = f�(zj). The di�erential �� de�nes aRiemannian metric ds� = j��j (56)



MODULI SPACE OF POLYGONS 21which has area 1 so that the map f� : (D; ds�) ! C is an isometric embedding.Suppose that 
 2 Conf(D); � = 
�(�). Then �� is proportional to 
���. There-fore the metrics ds� and 
�ds� are isometric. This implies that there exists anorientation-preserving Euclidean isometry �(
) such that�(
) � f� = f� � 
 (57)�(
)(P�) = P� (58)18. Duality between the moduli spaces of Euclidean polygons with�xed angles and Euclidean polygons with �xed side lengths.Fix a vector r 2 Dn � �, i.e. r does not belong to any wall in the polyhedronDn. Each polygon Z in the moduli space Mr corresponds to the collection ofedges (e1; :::; en) 2 (C �)n. The normalized vectors zj = ej=rj belong to the unitcircle S1. The polygon Z is de�ned up to Euclidean isometry, therefore the vector�!z = (z1; :::; zn) is de�ned up to rotation around zero. Since the polygon Z is closedwe conclude that nXj=1 rjzj = 0 (59)This means that we get a di�eomorphism� :Mr !Mr = f�!z 2 (S1)n : nXj=1 rjzj = 0g=SO(2) (60)The vector �!z and collection of numbers r = (r1; :::; rn) de�ne a measure � =�(�!z ; r) by the formula � = nXj=1 rj�zj (61)This measure has total mass 1 and B(�) = 0. The assumption r 2 Dn �� impliesthat � is a stable atomic measure on S1. However the number of points in thesupport of � can be less than n. Denote by fw1; :::; wkg the support of � assumingthat all the points wj are distinct. Let �j be the mass of � in the point wj . Thenwe use the formulas (54), (55) to de�ne the Abelian di�erential �� and univalentholomorphic map f� : D ! C . The vector �!z is de�ned up to the action of thegroup SO(2), therefore the map f� and the k-gon P� = f�(D) are de�ned up torotation in C . The map Z 7! �!z 7! � 7! P� is not injective. To deal with thisproblem we de�ne marked convex k-gons (P; I; b).De�nition 5. The marked convex k-gon (P; I; b) is a triple where P is a convexk-gon of the area 1 in C , I is a partition of the set f1; :::; ng into k nonempty disjointsubsets fI1; :::; Ikg and b is a bijection from I onto the set of vertices of P . Thistriple must satisfy the following condition. Let�j =Xi2Ij ri (62)Then the angle of P at the vertex b(Ij) is equal to �(1� 2�j).



22 M. KAPOVICH, J. MILLSONRemark 6. Note that in general the cyclic order of vertices on the boundary ofP has nothing to do with the bijection b even if n = k.We divide the space of marked k-gons by the action of Isom+(E2) and denotethe quotient by Ek = Ek(r). The unionE = E(r) = [nk=3Ek(r) (63)is the space of (congruence classes) of marked convex polygons in C which haveprescribed angles. Thus, if [�!z ] 2 Mr then we de�ne the corresponding markedpolygon (P; I; b) =  ([�!z ]) 2 E(r) as follows. The (congruence class) of the polygonP is given by the image of the Christo�el-Schwarz map f� as above. The map from(z1; :::; zn) to the support of the measure � de�nes the partition I of the set f1; :::; nginto preimages of atoms of �. The projection (z1; :::; zn) 7! supp(�) also de�nes abijection b from I to the set of vertices of P . It is easy to see that the composition� =  � � :Mr ! E(r) is injective.To prove that � is surjective take any marked k-gon (P; I; h). All angles of Pare less than �. There exists a Riemann mapping f : D ! P . This map extends toa homeomorphism D [ S1 ! clP . To de�ne the corresponding measure � we takethe preimage of the set of vertices of P to be the support of �. If vj is a vertex ofP with the angle �j then the mass of � at the corresponding atom wj is equal to�j = (� � �j)=2It follows that � is a stable measure. Thus, Theorem 4 implies that there exists aMoebius transformation 
 2 Conf(D) such that the center of mass of � = 
�(�)is zero. The polygon P� is in the same isometry class as P = P� (see Section 17).Therefore P� �= P belongs to the image of the map � . Hence the map� :Mr ! E(r) (64)is a bijection. The space of marked polygons has a natural topology. A sequence[Pj ; Ij; bj] 2 E(r) is convergent to [P; I; b] if the following conditions are satis�ed.(0) The partitions Ij do not change for large j.(1) For some choice of representatives (Pj; Ij; bj) 2 [Pj ; Ij; bj]; (P; I; b) 2 [P; I; b]the polygons Pj are Hausdor� convergent to P .(2) The convergence of Pj to P leads to collision of some of vertices of Pj . Thisde�nes a new partition I1 of f1; :::; ng and a bijection b1 : f1; :::; ng ! I1. Werequire I1 = I and b1 = b.It is easy to see that E(r) is a compact and the map � :Mr ! E(r) is continuous.Therefore � is a homeomorphism. The space En(r) is an open dense subset in E(r).It is the space of (marked) convex n-gons with �xed angles �j. If all the numbersrj are di�erent then the marking of these polygons is given by the map j 7! �j .19. Space of marked polygons with �xed angles and moduli spaces ofDeligne{Mostow, Bavard{Ghys, Kojima{Yamashita and Thurston.Deligne{Mostow in [DM] and Thurston in [T] consider the moduli space M(�)of 
at metrics on the sphere S2 with the �xed angles 2�j < 2� around singular



MODULI SPACE OF POLYGONS 23points w1; :::; wn (see [T]). EquivalentlyM(�) is the moduli space of con�gurationsof marked n-tuples of points on C P (1) (see [DM]). The spaceM(�) is an incompletecomplex-hyperbolic manifold of the complex dimension n� 3. This space containsseveral totally-geodesic real submanifolds Hs of real dimension n � 3. Points inHs are doubles of convex polygons P with the �xed angles �j so that the cyclicordering of vertices of P is the same as the cyclic ordering � of (�1; :::; �n). It wasproven in [KY] and [BG] that Hs are convex real hyperbolic polyhedrons. Thesepapers also describe the geometry of Hs in terms of the collection (�1; :::; �n). Thepolyhedrons Hs are compact if and only if r =2 �, where �j = �(1 � 2rj). Theboundary points of Hs correspond to k-gons (k < n) obtained by collision of someof vertices of P 2 Hs. From the point of view of [DM] the points of Hs correspondto con�gurations of n distinct points on S1 with the �xed cyclic ordering. The mapfrom this space to H n�3C can be described as follows. Let [�!z ] be any element inMr. It corresponds to a con�guration of n points in S1 so that some of these pointscan coincide. De�ne the vector� = (Z z20 �� � Z z10 ��; :::; Z zn�10 �� � Z zn�20 ��) 2 C n�2 (65)The space C n�2 has a hermitian form h of the signature (1; n� 3) whose value at� is equal to 1 = Area(P�)2. The image of � after the projectivization C n�2 � 0!C Pn�3 belongs to a the complex-hyperbolic space H n�3C . This is the Deligne-Mostow map DM :Mr =Mr ! H n�3C (66)It is easy to see that this map is continuous and projects to �Mr = Mr=� to aninjective map DM : �Mr ! H n�3C . The image of DM is an n � 3{dimensionalcompact polyhedral submanifold Sr without boundary. Sr splits in the union of realhyperbolic polyhedra Hs which are adjacent along boundary faces. For example,the component H1 where the cyclic ordering of points z1; :::; zn on S1 is the sameas (1; :::; n) corresponds to the set of convex polygons in Mr which have �xedorientation.Thus we have proved the followingTheorem 4. Let r 2 int(Dn) � �. The manifold Mr has a natural tiling byhyperbolic polyhedra. Each tile Hs is a moduli space of marked convex n-gons with�xed interior angles �(1 � 2r1); :::; �(1� 2rn) occuring in some �xed order. Eachtile is a convex hyperbolic n� 3-dimensional polyhedron which is an orthoscheme(by [BG]). The quotient �Mr = Mr=� admits an embedding DM into H n�3C suchthat each tile is isometrically embedded in a totally real totally geodesic subspace.For example the deformation space of the regular pentagon is tiled by 24 regularright angled hyperbolic pentagons inducing a hyperbolic structure on the genus 4surface.The duality � can be generalized to the case of r 2 �. In this case we have to takeinto account also good semi-stable measures � on S1: those which have exactly twoatoms. Corresponding polygons P in Mr are degenerate. If � is a good semi-stablemeasure then the Abelian di�erential !� (see (53)) has in�nite L2 norm, therefore



24 M. KAPOVICH, J. MILLSONwe can't �nd the normalized di�erential ��. Nevertheless the Deligne-Mostow mapDM still makes sense and the point DM(P ) belongs to the ideal boundary of thecomplex{hyperbolic space. This is an isolated ideal boundary point of DM(Mr) (a\cusp"). For any r 2 � the corresponding polygons in En(r) have parallel sides.The number of pairs of such sides is equal to the number of walls in Dn whichcontain r. This is the number of cusps of the space DM(Mr).The above construction can be generalized to cover the whole moduli spaceM(�). In this case instead of Mr one has to consider the space of polygons in E 3with �xed side lengths.
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