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5 The connection with gauge theory and the results of Gold-man and Je�rey-Weitsman 246 Transitivity of bending deformations 336.1 Bending of quadrilaterals . . . . . . . . . . . . . . . . . . . . . 336.2 Deformations of n-gons . . . . . . . . . . . . . . . . . . . . . . 351 IntroductionLet Pn be the space of all n-gons with distinguished vertices in Euclideanspace E3 . An n-gon P is determined by its vertices v1; :::; vn. These verticesare joined in cyclic order by edges e1; :::; en where ei is the oriented linesegment from vi to vi+1. Two polygons P = (v1; :::; vn) and Q = (w1; :::; wn)are identi�ed if and only if there exists an orientation preserving isometry gof E3 which sends the vertices of P to the vertices of Q, that isgvi = wi; 1 � i � nLet r = (r1; :::; rn) be an n-tuple of positive real numbers. Then Mr isde�ned to be the space of n-gons with side lengths r1; :::; rn modulo isometriesas above. The group R+ acts on Pn by scaling and we obtain an inducedisomorphism Mr �= M�r for � 2 R+ . Thus we lose nothing by assumingnXi=1 ri = 2We make this normalization to agree with [DM], x2.We observe that the map � : Pn ! Rn+which assigns the vector r of side lengths to an n-gon P has image thepolyhedron Dn of [KM1], x2. The moduli spacesMr then appear as the �bersof � and their topology may be obtained by the wall- crossing arguments of[KM1] and [Wa]. We recall that the moduli space Mr is a smooth manifoldi� Mr doesn't contain a degenerate polygon. We denote by � the collectionof hyperplanes in Dn described in [KM1], then Mr is singular i� r 2 �.2



This paper is concerned with the symplectic geometry of the space Mr.We prove two main results. The space (S2)n is given the symplectic structurenXi=1 rivolwhere vol is the standard symplectic structure on S2. Our �rst result givesa natural isomorphism from Mr to the weighted quotient of (S2)n for theweights r1; :::; rn constructed by Deligne and Mostow in [DM]. The construc-tion goes as follows. The closing conditione1 + ::::+ en = 0for the edges of the polygon P de�nes the zero level set for the momentummap for the diagonal action of SO(3) on (S2)n. ThusMr is the weighted sym-plectic quotient of (S2)n by SO(3). We give Mr the structure of a complex{analytic space with at worst quadratic singularities. This is immediate atsmooth points of Mr since (S2)n is K�ahler. However it requires more e�ortat the singular points.We then extend the Kirwan{Kempf{Ness theorem [KN], [K], [N] to showthat the complex{ analytic quotient constructed by Deligne and Mostow iscomplex analytically isomorphic to the symplectic quotient. We observe thatthe cusp points Qcusp of [DM] correspond to the singular points of Mr whichin turn correspond to degenerate polygons, i.e. polygons that lie in a line.Our second main result is the construction of \bending 
ows". SupposeP has edges e1; :::; en. We let�k = e1 + ::::+ ek+1; 1 � k � n� 3be the k-th diagonal of P and de�ne functionsf1; :::; fn�3on Mr by fk(P ) = 12k�kk2We check that the functions fk Poisson commute and that the correspondingHamiltonian 
ows have periodic orbits. Since dimMr = 2n � 6 we see that3



Mr is completely integrable and is almost a toric variety{ unfortunately wecannot normalize the 
ows to have constant periods if the functions fk havezero's on Mr. The Hamiltonian 
ow for fk has the following geometric de-scription. Construct a polyhedral surface S bounded by P by �lling in thetriangles �1;�2; :::;�n�2where �k has edges �k 6= 0; ek+1; �k+1, 1 � k � n � 1 (we have �n�1 = en).Some of these triangles may be degenerate. The diagonal �k divides S intotwo pieces. Keep the second piece �xed and rotate the �rst piece around thediagonal with angular velocity equal to fk(P ). Thus the surface S is \bent"along the diagonal and we call our 
ows bending 
ows. If �k = 0 then P is�xed by the 
ow. However the bending 
ow does not preserve the complexstructure of Mr.Let M 0r denote the dense open subset of Mr consisting of those polygonsP such that none of the above diagonals have zero length. Thus M 0r containsall the embedded polygons. Then the functions `i = p2fi , 1 � i � n � 3,are smooth onM 0r. The resulting 
ows are similar to those above except theyhave constant periods. We obtain a Hamiltonian action of an n� 3-torus Ton M 0r by bending as above. If we further restrict to the dense open subsetM0r � M 0r consisting of those polygons so that �i and ei+1 are not collinear,1 � i � n, then we can introduce \action{angle" coordinates on M0r . Notethat under the above hypothesis none of the triangles �i is degenerate. Welet �̂i 2 R=2�Z be the oriented dihedral angle between �i and �i+1. In x4we prove that �1 = � � �̂1; :::; � � �̂n�3; `1; :::; `n�3are action{angle variables.In Section 5 we relate our results on bending to the \twist" deformationsof [Go], [JW] and [W]. Our main new contribution here is the discovery ofan invariant, nondegenerate symmetric bilinear form on the Lie algebra ofthe group of Euclidean motions. Also in Proposition 5.8 we give a generalformula for the symplectic structure on the space of relative deformations ofa 
at G-bundle over an n times punctured sphere. Here we assume that theLie algebra G of G admits a non-degenerate, G-invariant symmetric bilinearform.In x6 we show that the subgroup of the symplectic di�eomorphisms ofMr generated by bendings on the diagonals of P acts transitively on Mr. In4



Figure 1 we show how to bend a square into a parallelogram.It is a remarkable fact that most of the results (and arguments) of thispaper generalize to the space of smooth isometric maps from S1 with a �xedRiemannian metric to E3 modulo proper Euclidean motions, i.e. to regular1-gons. These results will appear in [MZ1] and [MZ2].After this paper was submitted for publication we received the paper [Kl]by A. Klyachko . Klyachko also discovered a K�ahler structure onMr and thatit is biholomorphically equivalent to the con�guration space (S2)n=PSL(2; C ),however he didn't use the conformal center of mass construction and didn'tgive a proof of this equivalence. Otherwise, the main emphasis of [Kl] is onconstruction of a cell-decomposition ofMr and calculation of (co)homologicalinvariants of this space; [Kl] doesn't contain geometric interpretation andtransitivity of bending 
ows, action-angle coordinates and connections withgauge theory.Acknowledgements. We would like to thank Mark Green for showingus how to prove Lemma 6.3 before [GN] came to our attention. We wouldalso like to thank Janos Kollar, Yi Hu, Valentino Zocca and David Rohrlichfor helpful conversations.2 Moduli of polygons and weighted quotientsof con�guration spaces of points on the sphereOur goal in this section is to give Mr the structure of a complex analyticspace and to construct a natural complex analytic equivalence from Mr toQsst, the weighted quotient of the con�guration space of n points on S2 byPSL(2; C ) constructed in [DM], x4. We de�ne a subspace ~Mr � (S2)n by~Mr = fu 2 (S2)n : nXj=1 rjuj = 0gEach polygon P in the moduli space Mr corresponds (up to translation) tothe collection of vectors (e1; :::; en) 2 (R3 � f0g)n5



The normalized vectors uj = ej=rj belong to the sphere S2. The polygon Pis de�ned up to a Euclidean isometry, therefore the vector�!u = (u1; :::; un)is de�ned up to rotation around zero. Since the polygon P is closed weconclude that nXj=1 rjuj = 0Thus there is a natural homeomorphism� : Mr !Mr = ~Mr=SO(3)We will call � the Gauss map.We now review the de�nition of the weighted quotient Qsst of the con�g-uration space of n points on S2 following [DM, x4]. Let M � (S2)n be theset of n-tuples of distinct points. Then Q = M=PSL(2; C ) is a Hausdor�complex manifold.De�nition 2.1 A point �!u 2 (S2)n is called r-stable (resp. semi-stable) ifXuj=v rj < 1 ( resp. � 1)for all �!v 2 S2. The sets of stable and semi-stable points will be denoted byMst and Msst respectively. A semi-stable point �!u 2 (S2)n is said to be a nicesemi-stable point if it is either stable or the orbit PSL(2; C )�!u is closed inMsst.We denote the space of nice semi-stable points by Mnsst. We have theinclusions Mst � Mnsst �MsstLet Mcusp = Msst � Mst. We obtain the points in Mcusp in the followingway. Partition S = f1; :::; ng into two disjoint sets S = S1 [ S2 with S1 =fi1; :::; ikg; S2 = f�1; ::; �n�kg in such a way that ri1 + ::: + rik = 1 (whencerj1 + ::: + rjn�k = 1). Then �!u is in Mcusp if either ui1 = ::: = uik oruj1 = ::: = ujn�k . The reader will verify that �!u 2Mcusp is a nice semi-stablepoint if and only if both sets of equations above hold. All points inMcusp are6



obtained in this way. Clearly the nice semi-stable points correspond under��1 to the degenerate polygons with S1 determined by the forward-tracks andS2 by the back-tracks. On Msst we de�ne a relation R via:�!u � �!w (mod R) if either(a) �!u ;�!w 2Mst and �!w 2 PSL(2; C )�!u ,or(b) �!u ;�!w 2Mcusp and the partitions of S corresponding to �!u ;�!w coincide.The reader will verify that if �!u ;�!w 2Mnsst then �!u � �!w (mod R) if andonly if �!w 2 PSL(2; C )�!u .It is clear that R is an equivalence relation. SetQsst = Msst=R; Qnsst =Mnsst=R; Qst =Mst=R; Qcusp = Mcusp=Reach with the quotient topology. The elements of Qcusp are uniquely deter-mined by their partitions. Thus Qcusp is a �nite set. It is clear that eachequivalence class in Qcusp contains a unique PSL(2; C )-orbit of nice semi-stable points whence the inclusionMnsst �Msstinduces an isomorphismQnsst = Mnsst=PSL(2; C ) ! QsstIn case r1; :::; rn are rational then the quotient space Qsst can be given a struc-ture of an algebraic variety by the techniques of geometric invariant theoryapplied to certain equivariant projective embedding of (S2)n, see [DM], x4.6.This concludes our review of [DM], x4. We now establish the connection withthe moduli space Mr.We recall several basic de�nitions from symplectic geometry. Supposethat N is a simply-connected K�ahler manifold with symplectic form ! andGc is a complex reductive Lie group acting holomorphically on N . Let G bea maximal compact subgroup in Gc. We may assume that G acts symplecti-cally. Then the Lie algebra G of G maps naturally into the space of vector{�elds on N . Each element X 2 G de�nes a Hamiltonian fX : N ! R so thatdfX(Y ) = !(X; Y ) for every Y 2 T (N). There exists a map � : N ! G�such that h�(z); Xi = fX(z). The map � is called the momentum map for7



the action of G. The space ��1(0)=G is called the symplectic quotient of Nby G to be denoted by N==G.Let vol be the SO(3)-invariant volume form on S2 normalized byZS2 vol = 4�Fix a vector r = (r1; :::; rn) with positive entries. We give (S2)n the symplec-tic form ! = nXj=1 rjp�j(vol)where p�j : (S2)n ! S2 is the projection on the j-th factor. The maximalcompact subgroup SO(3) � PSL(2; C ) acts symplectically on((S2)n; !). We let � : (S2)n ! R3be the associated momentum map.Here we have identi�ed the Lie algebra so(3) of SO(3) with the space(R3 ;�) where � is the usual cross-product and R3 �= (R3)� via the Euclideanstructure on R3 . The identi�cation (R3 ;�) ! so(3) is given by u 7! aduwhere adu(v) = u� v, u; v 2 R3 .Lemma 2.2 �(�!u ) = r1u1 + ::: + rnun(compare Lemma 3.1)Proof: First note that in case n = 1 the momentum map � : S2 ! R3 for thesymplectic structure � � vol is given by�(u) = � � uBut the momentum map of a diagonal action on a product is the sum of theindividual momentum maps. 2Thus the space Mr is the symplectic quotient of (S2)n (equipped withthe symplectic structure ! de�ned above) by SO(3); which is the subquotient��1(0)=SO(3).We obtain the following 8



Theorem 2.3 The Gauss map � is a homeomorphism from the moduli spaceMr of n-gons in R3 with �xed side lengths to the weighted symplectic quotientof (S2)n by SO(3) acting diagonally.We now prove that Mr is a complex analytic space. Let � � Mr be thesubset of degenerate polygons (� is a �nite collection of points). ThenMr��is the symplectic quotient of a K�ahler manifold and is consequently a K�ahlermanifold [MFW], Ch. 8, x3. It remains to give Mr a complex structure inthe neighborhood of a degenerate polygon.To this end let P be a degenerate n-gon which has p+1 \forward-tracks"and q + 1 \back-tracks". The following lemma is a special case of [AGJ],Corollary 4.2, except for the connection with the number of back-tracks andforward-tracks. To establish this connection and for the sake of clarity weprove the followingLemma 2.4 There is a neighborhood of P in Mr homeomorphic to the sym-plectic quotient U==SO(2) where U is a neighborhood of 0 in C n�2 , SO(2)acts by symplectic isometries of the parallel symplectic form of C n�2 and isthe Hamiltonian 
ow for the Hamiltonian h : C n�2 ! R given by the formulah(z1; :::; zp; w1; :::; wq) = pXi=1 jzij2 � qXi=1 jwij2Proof: Let f�1; �2; �3g be the standard basis of R3 . We may assume that P iscontained in the x-axis and that the last edge en of P is given by en = rn�1.We lift �(P ) 2 Mr to �!u 2 (S2)n with�!u = (�1�1; �2�1; :::; �n�1�1; �n�1Here �k 2 f�1g; �n = 1, there are p + 1 plus ones and q + 1 of minus onesand n�1Xk=1 �krk = �rnOur goal is to investigate the symplectic quotient of (S2)n by SO(3) near�!u . We let H �= SO(2) be the subgroup of SO(3) �xing �1. Thus H is theisotropy subgroup of P . We will often write SO(2) instead H in what follows.9



We begin by constructing a slice S through �!u for the action of SO(3) on(S2)n. De�ne S = f�!s = (s1; :::; sn) 2 (S2)n : sn = �1g. Then S is a smoothsubmanifold of (S2)n of dimension 2n � 2. It is immediate that S satis�esthe slice axioms:� hS � S; h 2 H;� If gS \ S 6= ;; g 2 SO(3) then g 2 H;� The natural map � : SO(3)�H S ! (S2)n given by �([g;�!s ]) = g�!s isa di�eomorphism.We transfer the symplectic form ! from (S2)n to X = SO(3)�H S. It isthen immediate that the induced momentum map � : X ! R3 is given by�([g;�!s ]) = g nXi=1 siWe de�ne S0 � S1 � S byS1 = f�!s = (s1; :::; sn) 2 (S2)n : nXi=1 risi 2 R � �1gS0 = f�!s = (s1; :::; sn) 2 (S2)n : nXi=1 risi = 0gWe note that ��1(0) = SO(3)�SO(2)S0 and consequently the map � induces ahomomorphism � : S0=SO(2)! (S2)n==SO(3). We are done if we can provethat there is a neighborhood V of �!u in S0 such that V=SO(2) is isomorphicto a neighborhood of 0 in the symplectic quotient C n�2==SO(2) describedabove.We let f : S ! R3 be the map given by f(�!s ) = Pni=1 risi. We wantto investigate f�1(0) near �!u . Let f1; f2; f3 be the components of f . Letg = (f2; f3) whence g : S ! R2 and g�1(0) = S1. Since dgu : Tu(S2)! T0(R2)is onto there is a neighborhood V of �!u (which we may assume is SO(2)-invariant) such that V \ S1 is a smooth manifold of dimension 2n� 4. ThenV \ S0 = f�!s 2 V \ S1 : f1(�!s ) = 0gWe observe that f1 = � � �1 is the Hamiltonian function for the SO(2) actionon S. Clearly SO(2) carries S1 into itself.10



Let � denote the isotropy representation of SO(2) on Tu(V \ S1). Wenote that � preserves the almost complex structure J on Tu(V \ S1) givenby J(�) = �!u � �!� and � preserves the parallel symplectic form !�!u onT�!u (S1). After shrinking V and applying Darboux's Theorem we may assumethat the Riemannian exponential map exp�!u : T�!u (S1) ! S1 induces aSO(2)-equivariant symplectic isomorphism from a neighborhood U of 0 inT�!u (S1) to V \ S1. Thus exp�!u induces an isomorphism from U==SO(2)onto V \S1==SO(2). We have accordingly reduced the problem to the linearcase.We have SO(2)-equivariant inclusions of symplectic vector spacesT�!u (S1) � T�!u (S) � T�!u ((S2)n)where T�!u (S) = f�!� : �i � �1 = 0; �n = 0gT�!u (S1) = f�!� : �i � �1 = 0; �n = 0; nXi=1 risi 2 R � �1gBut since �i is orthogonal to the x-axis for all i, for �!� 2 T�!u (S1) we havePni=1 ri�i = 0 andT�!u (S1) = f�!� : �i � �1 = 0; �n = 0; nXi=1 ri�i = 0gThe in�nitesimal linear isotropy representation d� is given by the linear vec-tor �eld F (�) = d�( @@� )(�) = (�1 � �1; :::; �1 � �n)We �rst compute the Hamiltonian h for F on the larger space Tu(S). Weclaim that h(�) = 12 n�1Xi=1 �irik�ik2Indeed, dh(�)(�) = n�1Xi=1 �iri(�i � �i)11



for � = (�1; :::; �n) 2 Tu(S) and�F (�)!(�) = n�1Xi=1 �iri�1 � [(�1 � �i)� �i] =n�1Xi=1 �iri�1 � (�i � �i)�1)and the claim is established. We note that h is a quadratic form of signature(2p; 2q+2) (recall that �n > 0 since en is a forward-track). Also, since SO(2)preserves the complex structure J , the quadratic form h satis�es h(J�; J�0) =h(�; �0), i.e. h is a Hermitian form. Now since SO(2) carries Tu(S1) into itself,F jTu(S1) is tangent to Tu(S1). Hence the restriction of h to Tu(S1), againdenoted by h, is the Hamiltonian for F jTu(S1). Thus we have only to computethe signature of this restriction. Let W be the orthogonal complement ofTu(S1) in Tu(S) for the quadratic form h. It is immediate that W is spannedby the two vectors w2 = (�1�2; �2�2; :::; �n�1�2; 0)and w3 = (�1�3; �2�3; :::; �n�1�3; 0)Indeed, for k = 2; 3h(wk; �) = n�1Xi=1 �iri�i�k � �i = n�1Xi=1 ri�k � �i = �k � ( nXi=1 ri�i)Thus Tu(S) = Tu(S1)+W is a direct sum decomposition which is orthogonalfor h. But h(w2; w3) = 0 and h(wk; wk) = Pn�1i=1 �iri = �rn < 0, k = 2; 3.Hence hjW is negative de�nite and hence hjTu(S1) is a Hermitian form ofsignature (p; q). 2We now give a complex structure to the symplectic quotient U==SO(2).Let C � act on C p � C q by�(z; w) = (�z; ��1w); � 2 C � ; z 2 C p ; w 2 C qLet (C p � C q )st denote the stable points and (C p � C q )nsst denote the nicesemi-stable points. Then(C p � C q )st = f(z; w) 2 C p � C q : z 6= 0 and w 6= 0g12



(C p � C q )nsst = f(0; 0)g [ (C p � C q )stThe Mumford quotient V of C p � C q by C � is by de�nition the a�ne varietycorresponding to the ring of invariantsC [z1 ; :::; zp; w1; :::; wq]C�It is immediate that this ring is generated by the polynomials fij = ziwj withrelations generated by fijfji = fiifjj. Thus V is a homogeneous quadraticcone in C pq . We observe that the topological space V (C ) underlying V is thequotient space is the quotient (C p � C q )nsst=C �Note that we have an inclusion� : C n�2==SO(2)! V (C )The following lemma gives the simplest example relating symplectic quotientswith Mumford quotients.Lemma 2.5 The induced map � is a di�eomorphism.Proof: We will construct an inverse of �. Let (z; w) 2 (C p � C q )st. Thenkzk � kwk 6= 0. Let � = (kzk=kwk)1=2. Then (�z; ��1w) 2 h�1(0) sincek�zk = k��1wk. 2By transport of structure we obtain a complex analytic structure onU==SO(2). This structure clearly agrees with the complex structure alreadyconstructed on U==SO(2)� fPg.We have proved the followingTheorem 2.6 Mr is a complex analytic space. It has isolated singularitiescorresponding to the degenerate n-gons in Mr. These singularities are equiv-alent to homogeneous quadratic cones.We will now relate the symplectic quotient Mr to the space Qsst. Incase the side-lengths r1; :::; rn are rational our theorem is a special case ofa fundamental theorem of Kirwan, Kempf and Ness [K], [KN], [N], relating13



symplectic quotients with quotients (in the sense of Mumford) of complexprojective varieties by complex reductive groups. We note thatr1u1 + :::+ rnun = 0implies the semi-stability condition. Therefore we have an inclusion ��1(0) �Mnsst and whence an induced map of quotients� :Mr = ��1(0)=SO(3)! Qsst = Mnsst=PSL(2; C )Theorem 2.7 The map � � � is a complex-analytic equivalence.Proof: In order to prove the theorem we will need some preliminary resultson the action of PSL(2; C ) on measures on S2.De�nition 2.8 A probability measure on S2 is called stable if the mass ofany atom is less than 1=2. It is called semi-stable if the mass of any atomis not greater than 1=2 and nice semi-stable if it has exactly two atoms eachof the mass 1=2.The following is the basic example of semi-stable measure. Take a vector�!e 2 Mr, it de�nes a measure � = �(�!u ; r) on S2 by the formula:� = nXj=1 rj�ujThis measure has the total mass 2 and is semi-stable .Let i : S2 ! R3 be the inclusion. Then the center of mass B(�) of ameasure � on S2 is de�ned by the vector-integralB(�) = ZS2 i(u)d�(u)We note that PSL(2; C ) acts on measures by push-forward, to be denotedby 
�� for 
 2 PSL(2; C ) and � a measure on S2.Lemma 2.9 For each stable measure � on S2 there exists 
 2 PSL(2; C )such that B(
��) = 0. The element 
 is unique up to the postcompositiong � 
 where g 2 SO(3). 14



Proof: Denote by B3 the unit ball bounded by S3. Douady and Earle in [DE]de�ne the conformal center of mass C(�) 2 B3 for any stable probabilitymeasure � on S2. The assignment C(�) has the following properties:(a) For any 
 2 PSL(2; C )C(
��) = 
(C(�))(b) B(�) = 0 if and only if C(�) = 0.Note that in (a) the group PSL(2; C ) acts on B3 as isometries of thehyperbolic 3-space. The lemma follows from the transitivity of this action.2 We can now prove that � is an isomorphism of complex- analytic spaces.By the previous lemma ��� carries the non-singular points ofMr continuouslyto Qst. Also � � � carries degenerate n-gons to nice semi-stable points. Thus� � � is a continuous bijection and consequently is a homeomorphism. It iseasy to check that the complex-linear derivative d(� � �) is invertible at allnon- singular points. Moreover it follows from the analysis of [DM], x4.5,that � � � is a complex- analytic equivalence near the singular points of Mr.The theorem follows. 2We obtain the followingCorollary 2.10 Mr has a natural complex hyperbolic cone structure (see[Th] for de�nitions).Proof: It is proven in [Th] that Mnsst=PSL(2; C ) has a complex hyperboliccone structure. 23 Bending 
ows and polygons.In this section we will show that Mr admits actions of Rn�3 by bending alongn� 3 \non-intersecting" diagonals (note that n� 3 = 12dimMr). The orbitsare periodic and there is a dense open subset M 0r (including the embedded n-gons) such that the action can be renormalized to give a Hamiltonian actionof the (n� 3)-torus (S1)n�3 on M 0r. Thus Mr is \almost" a toric variety.In this paragraph it will be more natural to work with the product~Mr = f�!e 2 nYj=1S2(rj) : nXj=1 ej = 0g15



whence Mr = ~Mr=SO(3). We need to determine the normalizations of thesymplectic forms on factors of ~Mr in order that the zero level set of theassociated momentum map � : ~Mr ! R3 is the set of closed n-gons. In whatfollows we will use Sr to be the product Qnj=1 S2(rj).Let � be the 2-form on S2(r) given by�x(u; v) = x � (u� v) = rvolx(u; v); x 2 S2(r); u; v 2 Tx(S2(r))Here vol denotes the Riemannian volume form on S2(r). We de�ne thesymplectic form ! on ~Mr by! = nXj=1 1r2j p�j� = nXj=1 1rj p�j(vol)Lemma 3.1 The momentum map � : Sr ! R3 for the diagonal action ofSO(3) on (Sr; !) is given by�(�!e ) = e1 + ::: + enProof: It su�ces to treat the case n = 1. We replace r1 by r. Let w 2 R3 =so(3). Then the induced vector �eld ŵ on S2(r) is given byŵ(x) = w � xLet hw be the associated Hamiltonian. It su�ces to prove that hw(x) = w �x.To this end let v 2 Tx(S2(r)). Then dhw(v) = w � v and�ŵ(x)!x(v) = 1r2x � [(w � x)� v] = 1r2x � [(w � v)x] = w � v2Remark 3.2 The equation �(e) = 0 is the \closing condition" for the n-gonsin R3 with edges (e1; :::; en). Thus the above normalization for ! is the correctone. However the map w 7! ŵ from (R3 ;�) to the Lie algebra of vector �ledson R3 is an antihomomorphism of Lie algebras.We observe that ~Mr has an SO(3)-invariant K�ahler structure. The fol-lowing are the formulas for the Riemannian metric ( �; � ), symplectic form! and almost complex structure J for �!u ;�!v 2 T�!e ~Mr:(a) (�!u ;�!v ) = Pnj=1 1rj uj � vj;(b) !(�!u ;�!v ) = Pnj=1 ejr2j � (uj � vj);(c) J�!u = ( e1r1 � u1; :::; enrn � un). 16



Remark 3.3 The normalization for ! is chosen in order that �(�!e ) = 0 willbe the \closing condition" for n- gons. The normalization for J is determinedby J2 = �I. Consequently the normalization for ( �; � ) is determined aswell.Now let [P ] 2Mr and choose �!e 2 ~Mr corresponding to a closed n-gon Pin the congruence class [P ]. We may identify T[P ](Mr) with the orthogonalcomplement T hor�!e ( ~Mr)of the tangent space to the orbit of SO(3) passing through �!e . The sub-space T hor�!e ( ~Mr) consists of vectors �!� = (�1; :::; �n) 2 (R3)n which satisfy thefollowing equations:(i) �j � ej = 0;(ii) Pnj=1 �j = 0;(iii) Pnj=1 r�1j (ej � �j) = 0.The �rst equation corresponds to the �xed side lengths of our polygon;the second is the in�nitesimal \closing condition" for the polygon P . Thelast equation is the \horizontality" condition due to the followingRemark 3.4 The equation (iii) is equivalent to the condition(iv) Pnj=1 r�1j (v � ej) � �j = 0 for all v 2 R3 .We note that the vectors (v � e1; :::; v � en); v 2 R3 are the tangents to theSO(3) orbit through �!e in ~Mr.We obtain formulas for the pull-back Riemannian metric (�; �), symplecticform ! and almost complex structure J on T hor�!e ( ~Mr) by restricting formulas(a), (b), (c) above. Note that formula (iv) above may be rewritten as(v) Pnj=1(J�)j = 0indicating that T hor�!e ( ~Mr) is J-invariant.We now study certain Hamiltonian 
ows on Mr. We will identify anSO(3)-invariant function on (S2)n or Qni=1 S2(ri) with the function it induceson Mr without further comment. We de�ne functions f1; :::; fn�3 on Sr byfk(e1; :::; en) = 12ke1 + ::: + ek+1k2; k = 2; :::; n� 2Thus fk corresponds to the length squared of the k-th diagonal of P (drawnfrom v1 to vk+2). Our goal is to �nd an interpretation of the Hamiltonian
ow corresponding to fk in terms of the geometry of P .17



Lemma 3.5 The Hamiltonian �eld Hfk associated to fk is given byHfk(e1; :::; en) = (�k � e1; :::; �k � ek+1; 0; :::; 0)where �k = e1 + :::+ ek+1 is the k-th diagonal of P .Proof: Let �!e = (e1; :::; en). Since fk does not depend on the last n � k � 1components it su�ces to prove the lemma for the mapfn�1 : �ni=1S2(ri)! Rgiven by fn�1(�!e ) = 12ke1 + ::: + enk2 = 12k�k2where � is the momentum map for the diagonal action of SO(3) onQni=1 S2(ri). By the equivariance of � (see the proof of Lemma 3.1 in [K])the Hamiltonian �eld Hfn�1 at e satis�esHfn�1(�!e ) = �̂(�!e )where v̂ is the vector �eld on Qni=1 S2(ri) corresponding to v 2 so(3). Butv̂(�!e ) = v ��!e and the lemma follows. 2Proposition 3.6 ffk; flg = 0for all k; l.Proof: We may assume k < l. Thenffk; flg = !(Hfk; Hfl) = k+1Xi=1 eir2i ((�k � ei)� (�l � ei)) == k+1Xi=1[ei � (�k � �l)] = �k � (�k � �l) = 02 18



We now study the Hamiltonian 
ow 'tk associated to fk. Thus we mustsolve the system (*) of ordinary di�erential equations( deidt = �k � ei; 1 � i � k + 1deidt = 0; k + 2 � i � n (�)We will use the following notation. Recall that we have identi�ed (R3 ;�)with the Lie algebra of SO(3) and if u; v 2 R3 then we haveadu(v) = u� vAccordingly we de�ne an element exp(adu) 2 SO(3) as the sum of the powerseries exp(adu) = 1Xn=0 (adu)nn!The following lemma is elementary and is left to the reader.Lemma 3.7 Let � be the oriented plane in R3 which is orthogonal to u.Then exp(adu) is the rotation in � through an angle of kuk radians. Inparticular the curve exp(tadu) has period 2�=kuk and angular velocity kuk.We can now solve the system (*).Proposition 3.8 Suppose P 2 Mr has edges e1; :::; en. Then P (t) = 'tk(P )has edges e1(t); ::; en(t) given byei(t) = exp(tad�k)ei; 1 � i � k + 1ei(t) = ei; k + 2 � i � nProof: We will ignore the last n � k � 1 edges since they are constants ofmotion. We make the change of unknown functions�e1 = e1 + :::+ ek+1 = �k; �ei = ei; 2 � i � k + 1It is immediate that �e1; :::; �ek+1 satisfy the new system of equations:d�e1dt = 019



d�eidt = �e1 � �ei; 2 � i � k + 1Since �e1 = �k we �nd that �k is invariant under the 
ow and by Lemma 3.7ei(t) = exp(tad�k)ei; 2 � i � nIt remains to �nd e1(t). Note that exp(tad�k)�k = �k, thuse1(t) = �k(t)� k+1Xi=2 ei(t) = exp(tad�k)�k � k+1Xi=2 exp(tad�k)ei =exp(tad�k)e12Corollary 3.9 The curve 'tk(P ) is periodic with period 2�=`k where`k = ke1 + :::+ ek+1kis the length of the k-th diagonal �k of P .Remark 3.10 If the k-th diagonal has zero length (thus v1 = vk+1) then Pis a �xed point of 'tk. In this case the 
ow has in�nite period.We see that 'tk(P ) is the bending 
ow described in the introduction. Itrotates one part of P around the k-th diagonal with angular velocity equalto the length of the k-th diagonal and leaves the other part �xed.We next let M 0r �Mr be the subset of Mr consisting of those P for whichno diagonal �i has zero length. ThenM 0r is Zariski open inMr. The functions`1; :::; `n�3 are smooth on M 0r and they Poisson commute. Since fk = `2k=2we have d`k = dfk`kand consequently H`k = Hfk=`kSince `k is an invariant of motion the solution procedure in Proposition 3.8works for H`k as well. Let 	tk be the 
ow of H`k . We obtain the following20



Proposition 3.11 Suppose P 2M 0r has edges e1; :::; en. Then P (t) = 	tk(P )has edges e1(t); :::; en(t) given byei(t) = exp(tad�k=`k)ei; 1 � i � kei(t) = ei; k + 1 � i � nThus 	tk rotates a part of P around the k-th diagonal with constantangular velocity 1. Hence 	tk(P ) has period 2� and we have proved thefollowingTheorem 3.12 The space M 0r of n-gons such that no diagonal drawn fromthe 1-st vertex has zero length, admits a free Hamiltonian action by a torusT of dimension n� 3 = 12dimM 0r.Remark 3.13 If n = 4; 5; 6 then Mr is a toric variety for generic r by [Del].For n = 4; 5 it su�ces to use the above choice of diagonals. For n = 6 wehave to make di�erent choice of diagonals: [v1; v3]; [v3; v5]; [v5; v1]. Then ifrj 6= ri for all i 6= j we conclude that M 0r =Mr. Unfortunately, for heptagonsany choice of \nonintersecting" diagonals leads to M 0r 6= Mr even for genericvalues of r.Remark 3.14 In what follows we will also denote by 	td the normalizedbending in the diagonal d of the polygon P .4 Action{angle coordinatesIn this section we use the geometry of P to introduce global action{anglecoordinates on the space M0r (which was de�ned in the Introduction).In x4, 5 we will use the embedding inMr of the moduli space Nr of planarpolygons with �xed side lengths modulo the full group of isometries of E2 .This embedding is constructed as follows. Let � be a �xed Euclidean planein E3 and � be the involution of E3 with � as �xed-point set. Then � acts onMr. We claim that the �xed-point set of � on Mr consists of the polygonsthat lie in � (up to isometry). Indeed, let P be a n-gon in E3 which is �xedby � up to a proper isometry. Hence there exists a proper Euclidean motiong such that �P = gP . But if the vertices of P span E3 we have � = g,21



a contradiction. Hence P lies in a plane and can be moved into � by anisometry. The claim follows. Let P be a n-gon in Mr and P 0 be a convexn-gon in R2 . The diagonals d = [vi; vj]; d0 = [vk; vs] of P are called \disjoint"(or \nonintersecting") if the corresponding diagonals of P 0 do not intersectin the interior of P 0.Fix a maximal collection of \disjoint diagonals" d1; ::; dn�3 of P .Lemma 4.1 There exists a bending b of P in diagonals d1; ::; dn�3 such thatbP is a planar polygon.Proof: The assertion is obvious for quadrilaterals. The general case followsby induction. 2Corollary 4.2 The space Mr is connected.Proof: The space Nr is connected by [KM1]. 2Pick a polygon P 2 M0r . The diagonals �k; 1 � k � n � 3 divide Pinto n � 2 nondegerate triangles �1; :::;�n�2 such that �k+1 is a commonside of �k and �k+1. We orient �k in the direction vk � v1. Let �̂k be theelement of R=2�Z given by the dihedral angle measured from �k to �k+1,1 � k � n� 3 (see Introduction). So exp(i�̂k) rotates the plane of �k in thepositive direction around �k into the plane of �k+1. Recall that �k = �� �̂k.Lemma 4.3 f�i; `jg = �ijProof: From our description of the bending 
ows we have�i(	tj(P )) � �i(P ) + t�ij( mod 2�Z)We obtain the lemma by di�erentiating. 2Corollary 4.4 [H�i; H`j ] = 022



In order to prove that f�1; :::; �n�3; `1; :::; `n�3gare action{angle coordinates it su�ces to prove the followingLemma 4.5 f�i; �jg = 0Proof: Recall that Nr is the subspace of planar polygons with �xed sidelengths modulo the full group of planar Euclidean motions. We have seenthat Nr is the �xed submanifold of Mr under the involution �. We note that���i = ��i; 1 � i � n� 3Hence ��d�i = �d�i and since ��! = �! we have��H�i = H�i ; 1 � i � n� 3Hence if P is a planar polygon we haveH�i(P ) 2 TP (Nr); 1 � i � n� 3Since Nr is Lagrangian we have for P 2 Nr!P (H�i(P ); H�j(P )) = 0; 1 � i; j � n� 3Now let P be a general element ofM0r . There exists b 2 T such that bP 2 Nr(see Lemma 4.1). Since the Hbi and H�j commute by Corollary 4.4, theHamiltonian �elds H�i; 1 � i � n � 3 are invariant under bending andconsequently H�i(bP ) = dbH�i(P ); 1 � i � n� 3Since ! is invarant under b we have!P (H�i(P ); H�j(P )) = !bP (db(H�i(P )); db(H�j(P )) = 0The lemma follows. 2We have proved the followingTheorem 4.6 f�1; :::; �n�3; `1; :::; `n�3gare action{angle coordinates on M0r . 23



5 The connection with gauge theory and theresults of Goldman and Je�rey-WeitsmanIn this section we �rst review the description of Mr given in [KM2] in termsof (relative) deformations of 
at principal E(3)-bundles over the n timespunctured 2- sphere � (here E(3) denotes the group of orientation- preservingisometries of R3). We then show that the Lie algebra e(3) of E(3) admits aninvariant, non- degenerate symmetric bilinear form b (not the Killing form ofcourse). This form is closely related to the scalar triple product in R3 . We usethe form b together with wedge product to give a gauge-theoretic descriptionof the symplectic structure on Mr. This description is the analogue of theusual one in the semisimple case{ the form b replaces the Killing form. It isthen clear how our results on bending are analogues for E(3) (and relativedeformations) of those of [Go], [JW] and [W].We begin by brie
y reviewing our paper [KM2] on relative deformationtheory. It is more convenient to use relative deformations of representationshere { for the details of the correspondence with 
at connections see [KM2].Let � be a �nitely-generated group, R = f�1; :::;�rg a collection of sub-groups of �, G be the set of real points of an algebraic group de�ned overR and �0 : � ! G a representation. In [KM2] we introduce the relativerepresentation variety Hom(�; R;G). Real points of this variety consist ofrepresentations � : � ! G such that �j�j is a representation in the closureof the conjugacy class of �0j�j . For any linkage � with n vertices in the Eu-clidean space Em we constructed an isomorphism of a�ne algebraic varieties� : C(�)! Hom(�n; R; Ê(m))Here C(�) is the con�guration space of the linkage � (we do not divide outby the action of E(m)). The group �n is the free product of n copies ofZ=2, R is a collection of \dihedral" subgroups Z=2 � Z=2 of �n determinedby the edges of the linkage and Ê(m). is the full group of isometries of theEuclidean space.We assume henceforth that the linkage � is an n-gon in E3 with side-length r = (r1; :::; rn) and (as above) Mr denotes the moduli space M(�) =C(�)=E(3). We have an induced isomorphism	 : Hom(�n; R; Ê(m))=E(m)!M(�)24



for any linkage �.Let � = S2�fp1; :::; png denote the 2-sphere punctured at fp1; :::; png, letU1; :::; Un denote disjoint disc neighborhoods of p1; :::; pn and U = U1[:::[Un.The subgroup �n � �n consisting of words of even length in generators�1; :::; �n is isomorphic to �1(�) (see [KM2], Lemma 4.1). Indeed, put 
i =�i�i+1, 1 � i � n. Then 
1 � ::: � 
n = 1. Let � 2 Hom(�n; R; Ê(m)). Then �induces a representation � : �n ! E(3) and a 
at principal E(3)-bundle Pover �. We let adP be the associated 
at Lie algebra bundle. In our casewe can use the restriction map to replace the above relative representationvariety with one that makes the connection with Mr transparent. Let T bethe set of conjugacy classes in �n given byT = fC(
1); :::; C(
n)gHere C(
) denotes the conjugacy class of 
. Then it is immediate that wehave an induced isomorphism� : Hom(�n; T ;E(3))=E(3)!MrIndeed, each n-gon corresponds to the n translations in the direction ofits edges e1; :::; en. The relation 
1 � ::: � 
n = 1 corresponds to the closingcondition e1 + ::: + en = 0Note that ri is the translational length of �0(
i). We will henceforth abbre-viate Hom(�n; T ;E(3))=E(3) to Xn;r.Remark 5.1 If � is an automorphism of �n that preserves each classC(
1); :::; C(
n)then � acts trivially on Hom(�n; T ;E(3)). Indeed, since �(�n) is containedin the translation subgroup of E(3), �xing the conjugacy class of �(
) amountsto �xing �(
). Thus quantizing Mr will produce only trivial representationsof the pure braid group.Let � 2 Xn;r. We de�ne the parabolic cohomologyH1par(�; adP )25



to be the subspace of the de Rham cohomology classes in H1(�; adP ) whoserestrictions to each Ui are trivial. By [KM2], we may calculate the relativedeformations of � and consequently H1par(�; adP ) by using the di�erentialgraded Lie algebra B�(�; U ; adP ). This algebra is the subalgebra of the deRham algebra consisting of sections of adP which are constant on U in degreezero and adP - valued forms which vanish on U in degrees 1 and 2.We now give our gauge-theoretic description of the symplectic form onMr. Since the Lie algebra e(3) of E(3) is not semi-simple, the Killing formof e(3) is degenerate and we can not give the usual (i.e. for G semi- simple)description of the symplectic form. However it is a remarkable fact that thereis another E(3)-invariant symmetric form b on e(3) which we now describe.We recall that we may identify �2R3 with so(3) by associating to u ^ v theelement of End(R3) (also denoted by u ^ v) given by(u ^ v)(w) = (u; w)v � (v; w)uWe de�ne a bilinear form a : so(3)� R3 ! Rby a(u ^ v; w) = (u� v) � wWe split e(3) according to e(3) = so(3) + R3 and de�ne the (split) formb : e(3)� e(3)! R byb((u1 ^ v1; w1); (u2 ^ v2; w2)) = a(u1 ^ v1; w2) + a(u2 ^ v2; w1)The following proposition is immediateProposition 5.2 The form b is symmetric, nondegenerate and invariantunder E(3).We combine the form b on e(3) with the wedge-product to obtain a skew-symmetric bilinear formB : H1par(�; adP )�H1par(�; adP )! H2(�; U ; R)we then evaluate on the relative fundamental class of M to obtain a skewsymmetric form A : H1par(�; adP )�H1par(�; adP )! R26



It follows from Poincare duality that A is nondegenerate and we obtain asymplectic structure on Xn;r. In order to relate A to the symplectic form !of Section 3 we need to make explicit the induced isomorphismd	p : T�(Xn;r)! T�(Mr)To do this we need to pass through the group cohomology description ofH1par(�; adP ). In the following discusssion we let G be any Lie group. Wedenote by G the Lie algebra of G. Recall that we may identify the universalcover ~� of � with the hyperbolic plane H 2 - we will make this explicit later.Let p : ~�! � be the covering projection. We will identifyA�(~�; p�adP ) withthe G-valued di�erential forms on ~� (via parallel translation from a point v1).Given [�] 2 H1(�; adP ) choose a representing closed 1-form � 2 A�(�; adP ).Let ~� = p�� and f : ~�! G be the unique function satisfying:� f(v1) = 0;� df = ~�.We de�ne a 1-cochain h(�) 2 Z1(�;G) with coe�cients in G byh(�)(
) = f(x)� Ad�(
)f(
�1x)We note that the right-hand side doesn't depend on x. We de�ne �([�]) to bethe class of h(�) in H1(�;G). It is easily checked (see [GM], x4) that � is anisomorphism. We note that [�] 2 H1par(M; adP ) if and only if the restrictionof h(�) to the cyclic groups generated by 
i are exact for all i. We denotethe set of all 1-cocycles in Z1(�;G) satisfying this property by Z1par(�;G).We now return to the case G = E(3). Let � 2 Hom(�n; T ;E(3)). Since�0(
) is a translation for all 
 2 �n it follows that ifc 2 T�(Hom(�n; T ;E(3))then c(
) is an in�nitesimal translation for all 
 2 � and consequently wemay identify c with an element of Hom(�n; R3). The condition that c is aparabolic cocycle is equivalent to c(
i) � ei = 0 where �(
i) is a translation byei. We leave the proof of the next lemma to the reader.Lemma 5.3 d	�(c) = �!� = (�1; :::; �n) 2 T�!e (Mr)where �i = c(
i); 1 � i � n. 27



Remark 5.4 Here we think of T�!e (Mr) as the quotient of T�!e ( ~Mr) by SO(3),see x3 for the de�nitions.We can now state the main result of the next section. Recall that thesymplectic structure ! on Mr was described in x3.Theorem 5.5 With the above identi�cation we have A = !.Proof: We will work in the more general framework where E(3) is replacedby a Lie group G admitting an invariant symmetric bilinear form on its Liealgebra G. We have in mind an eventual application to n-gon linkages in S3.We construct a fundamental domain D for �n operating in H 2 as follows.Choose a point x0 on � and make cuts along geodesics from x0 to the cusps.The resulting fundamental domain D is a geodesic 2n-gon with n interiorvertices v1; :::; vn and n cusps v11 ; :::; v1n . These occur alternately so thatproceeding counterclockwise around @D we see v1; v11 ; v2; v12 ; :::; vn; v1n . Thegenerator 
i �xes v1i and satis�es 
i(vi) = vi+1. We take v1 as our base pointx0 in H 2 .Remark 5.6 We have changed our original generators of �n to their in-verses.Now let � 2 Hom(�n; T ;G)=G and c; c0 2 H1par(�n;G) be tangent vectorsat �. Let � and �0 be the corresponding elements of the de Rham cohomologygroupH1par(�; adP ). By assumption there exist vectors wi; w0i 2 G, 1 � i � n,such that wi � Ad�(
i)wi = c(
i)w0i � Ad�(
i)w0i = c0(
i)We let B�(�) be the bar resolution of �, [MacL]. Thus Bk(�) is the freeZ[�]-module on the symbols [
1j
2j:::j
k] with@[
1j
2j:::j
k] = 
1[
2j:::j
k]+k�1Xi=1[
1j:::j
i
i+1j:::j
k] + (�1)k[
1j
2j:::j
k�1]28



We let Ck(�) = Bk(�) 
Z[�] Z, where Z[�] acts on Z via the homomorphism� de�ned by �( mXi=1 ai
i) = mXi=1 aiThus Ck(�) is the free abelian group on the symbols(
1j:::j
k) = [
1j
2j:::j
k]
 1 and@(
1j:::j
k) = (
2j:::j
k)+k�1Xi=1(
1j:::j
i
i+1j:::j
k) + (�1)k(
1j
2j:::j
k�1)We de�ne a relative fundamental class F 2 C2(�) by the property:@F = nXi=1(
i)Let [�; @�] 2 C2(�) be the chain[�; @�] = nXi=2(
ij
i�1
i�2:::
1)The reader will easily verify the following lemma which was pointed out tous by Valentino Zocca.Lemma 5.7 [�; @�] is a relative fundamental class.We abuse notations and use B(�; �) to denote the above wedge product ofthe de Rham cohomology classes and the cup-product of Eilenberg-MacLanecochains using the form b on the coe�cients.Proposition 5.8Z�B(�; �0) = hB(c; c0); [�; @�]i � nXi=1hB(c; w0i); (
i)i
29



Proof: The reader will verify that the right-hand side of this formula doesn'tdepend on the choices of w0i, 1 � i � n and of a relative fundamental class[�; @�]. In the following we let ei be the oriented edge of @D joining vi to v1iand �ei be the oriented edge joining v1i to vi+1. Then 
iei = ��ei. We remindthe reader that the 1-forms � and �0 vanish in neighborhoods of the cuspsv1i , 1 � i � n. Proposition 5.8 will be a consequence of the following threelemmas.Lemma 5.9Zei B(f; �0) + Z�ei B(f; �0) = b(c(
i); f 0(vi+1))� b(c(
i); v1i )Proof: Zei B(f; �0) + Z�ei B(f; �0) = Z�ei B(f; �0)� Z
�1i �ei B(f; �0)= Z�ei [B(f; �0)� (
�1i )�B(f; �0)]= Z�ei [B(f; �0)� B((
�1i )�f; (
�1i )��0)]= Z�ei[B(f; �0)� B(Ad�(
i)(
�1i )�f; Ad�(
i)(
�1i )��0)]= Z�ei B(f � Ad�(
i)(
�1i )�f; �0)= Z�ei B(c(
i); �0) = B(c(
i); f 0(vi+1))� B(c(
i); f 0(v1i ))2 We obtainZ�B(�; �0) = nXi=1 b(c(
i); f 0(vi+1)� nXi=1 b(c(
i); f 0(v1i ))To evaluate the second sum we needLemma 5.10 �f 0(v1i )(
i) = c0(
i); 1 � i � nwere � is the Eilenberg{MacLane coboundary.30



Proof: By de�nition for any x 2 H 2 we have:c0(
i) = f 0(x)� Ad(�(
i)f 0(
�1i x)Since f 0 is a covariant constant near the cusps we may allow x to tend to v1iin the above formula. Since 
�1i v1i = v1i we obtainc0(
i) = f 0(v1i )� Ad(�(
i)f 0(v1i )2 We now evaluate that sum over the interior vertices.Lemma 5.11 nXi=1 b(c(
i); f 0(vi+1)) = hB(c; c0); [�; @�]i++ nXi=1 b(c(
i); f 0(v1i ))� nXi=1hB(c; w0i); (
i)iProof: By de�nition, for any x 2 H 2 ; 
 2 �; we havec0(
) = f 0(x)� Ad�(
)f 0(
�1x)Substituting x = vi+1; 
 = 
i and using 
�1i vi+1 = vi we obtainc0(
i) = f 0(vi+1)� Ad�(
i)f 0(vi)Using f 0(v1) = 0 we conclude thatf 0(vi) = c(
i�1
i�2:::
1)Hence nXi=1 b(c(
i); f 0(vi+1)) = nXi=1 b(c(
i); c0(
i
i�1:::
1)) =nXi=1 b(c(
i); c0(
i) + nXi=1 b(c(
i); Ad�(
i)c0(
i�1:::
1))= nXi=1 b(c(
i); c0(
i)) + hB(c; c0); [�; @�]i31



We substitute c0(
i) = f 0(v1i )� Ad�(
i)f 0(v1i ) and use the formulahB(c; w0i); (
i)i = b(c(
i); Ad�(
i)w0i)to obtain the lemma. 2We have proved Proposition 5.8 and now specialize to the case at hand,namely G = E(3). In this case c and c0 take values in the Lie subalgebra ofin�nitesimal translations. Since this is a totally-isotropic subspace for b weobtain hB(c; c0); [�; @�]i = 0It remains to evaluate the sum over the cusps.Lemma 5.12 hB(c; w0i); (
i)i = �i � ( eir2i � �0i)where c(
i) = �i, c0(
i) = �0i, 1 � i � n.Proof: We �rst note thathB(c; w0i); (
i)i = b(c(
i); Ad�(
i)w0i) = b(Ad�(
�1i )c(
i); w0i) = b(c(
i); w0i)The last equality holds because �(
i) is a translation and c(
i) is an in�nites-imal translation. A direct computation in the Lie algebra e(3) shows thateir2i ^ �0i � Ad�(
i) eir2i ^ �0i = �0iHence we may choose w0i = eir2i ^ �0i, 1 � i � n, and the lemma follows fromthe de�nition of b. 2We have accordinglyA(�; �0) = Z�B(�; �0) = � nXi=1 �i � ( eir2i � �0i)Comparing with our formula for the symplectic structure in x3 we obtainTheorem 5.5. 2We can now relate our results on the bending of n-gon linkages with thework of Goldman, Je�rey-Weitsman and Weitsman. There are two inde-pendent class functions on E(3): translation length ` and the trace of the32



rotation part t. We replace ` by f = `2=2 to get a polynomial invariant.Given 
 2 �n we de�nef
 : Hom(�n; T ;E(3))=E(3)! Rby f
 = f(�(
)). In the case 
 = �i = 
1
2:::
i, 1 � i � n�2 it is easily seenthat the Hamiltonian 
ow of f
 corresponds to the (unnormalized) bending
ow in the i-th diagonal. The decomposition of the polygon P by diagonalsdrawn from a common vertex corresponds to a decomposition of � into pairsof pants using the curves �2; :::; �n�2. Thus our real polarization of Mr (i.e.singular Lagrangian foliation) obtained by bending in the above diagonalscorresponds to that of [JW] and [W] obtained from \twists" with respect to�2; :::; �n�2.6 Transitivity of bending deformationsDe�nition 6.1 An embedded polygon P 2 Mr is called a \pseudotriangle"if the union of edges of P is a triangle in R3 . The vertices of this triangleare called the \pseudovertices" of the pseudotriangle P .It is easy to see that Mr contains only a �nite number of \pseudo-triangles" T1; :::TN , where N < n3. The main result of this paragraph isthe following:Theorem 6.2 (a) For each nonsingular moduli spaceMr there exists a num-ber ` = `(r) such that each polygon P 2 Mr can be deformed to a pseudotri-angle via not more than ` bendings.(b) The function `(r) is bounded on compacts in Dn � �.(c) The subset of polygons P 2 Mr which can be deformed to a pseudo-triangle T by at most ` bendings is closed in Mr.(d) Each pair of polygons P;Q 2 Mr can be deformed to each other by asequence of not more than n3` bendings.6.1 Bending of quadrilateralsWe �rst consider a special case of bending assuming that:(a) P is a planar quadrilateral with a nonsingular moduli space Mr;33



(b) we allow sequences of bendings in both diagonals of P ;(c) bending angles are always � (so the bending of a planar polygon isagain a planar polygon). Such a bending will be called a �-bending.We have an action of the group Z2 � Z2 on the moduli space Nr of planarquadrilaterals given by �-bendings along the diagonals.Denote the �-bending in the diagonal [v1; v3] by � and the �-bending inthe diagonal [v2; v4] by �. We assume that � �xes the vertex v2 and � �xesthe vertex v1. We shall normalize 4-gons P so that e1 = r1u1, u1 = 1 2 C .Then� : (u1; u2; u3; u4) 7! (u1; u2; u�13 r1 + r2u2r1 + r2u�12 ; u�14 r1 + r2u2r1 + r2u�12 )� : (u1; u2; u3; u4) 7! (u1; u�12 r1 + r2u2r1 + r2u�12 ; u�13 r1 + r2u2r1 + r2u�12 ; u4)Both maps are birational transformations of C 4 . The moduli space Nr �=S1 is the quotient of the curveE = f(u1; u2; u3; u4) 2 C 4 : u1 = 1; jujj = 1; j = 2; 3; 4; 4Xj=1 rjuj = 0gby action of the involution � : (u1; u2; u3; u4) 7! (�u1; �u2; �u3; �u4).Lemma 6.3 The complexi�cation Ec of the curve E is a nonsingular con-nected elliptic curve. The composition � �� = � extends to an automorphism�c of Ec which is �xed-point free.Proof: The �rst statement of Lemma was proven in [G], [GN]. The biholo-morphic extension �c exists since E is Zariski dense in Ec. The transfor-mation � : E ! E has no �xed points. It follows from the classi�cation ofautomorphisms of elliptic curves that �c is also �xed-point free. 2In particular the self-map � of E preserves the metric on E given by therestriction of a 
at metric on Ec. Therefore if we identify E=h�i with theunit circle then � : S1 ! S1 is a rotation. Denote by as; bt the 1{parameterfamilies of bendings in the diagonals [v1; v3]; [v2; v4] so that a� = �; b� = �.Lemma 6.4 An arc [x; � � �(x)] between x; �(x) on S1 is contained in theorbit bt(s) � as(x); where s; t 2 R=2�Z.34



Proof: For each point as(x) we take bt(s) to be one of two bendings whichmakes as(x) planar. We choose bt(s) so that it depends continuously on sand bt(0) = b0 = id, bt(�) = b� = �. It is clear that for s = � the polygonbt(s) � as(x) is equal to �(x). This proves the Lemma. 2Corollary 6.5 Suppose that r doesn't belong to a face of the polyhedron D4��. Let 
 be the rotation angle of the element � = � � �, m = [2�=
] + 1.Then for each two points x; y in the space of quadrilaterals Mr there exists acomposition of at most 2m+ 2 bendings which transforms x to y.Proof: Our assumptions imply that the moduli spaceMr is not a single point.Thus the angle 
 is di�erent from zero. We �rst apply a single bending to eachx; y to make them planar polygons x0; y0. There exists a composition of atmost 2m�2 �-bendings which sends x0 to a point x00 on the arc [y0; ���(y0)].Then we apply Lemma 6.4 to transform x00 to y0. 2See Figure 1 for the deformation of a square to a parallelogramm via twobendings.Remark 6.6 The rotation angle 
 depends continuously on the parameterr. The angle 
 can be arbitrary close to zero as r approaches the walls� orthe boundary of the polyhedron D4. This corresponds to a degeneration of theelliptic curve. In the limit the birational transformation � will have isolated�xed points: singular points of the curve E.6.2 Deformations of n-gonsLemma 6.7 Suppose that Q 2 Mr is a nondegenerate n-gon. Then thereexists a diagonal d of Q such that the bending in d changes the distancebetween at least two vertices A;B.Proof: Suppose that Q 2 Mr is a n-gon and Mr is a nonsingular modulispace. Our problem is to deform Q via bending so that the distance betweentwo distinct vertices A = v1; B = vs of the polygon Q is changing (assumingthat js� 1j 6= 0; 1). If the distance jABj doesn't change under bending in adiagonal [vk; vs+i] then either A or B belong to the line (vk; vs+i).Suppose that the distance jABj doesn't change for any choice of s; kabove. Then either A or B belong to the line (vk; vs+i) for all 1 < k < s; 0 <35



Figure 1:i � n� s. This means that either all the vertices of Q except A belong to asingle line (v2; B) through B or all the vertices of Q except of B belong toa single line (v2; A). (The polygon Q must be a pseudo-triangle.) Supposethat the former case takes place. Then instead of vertices A;B we choosesay v2; vn and applying bending along the diagonal [AB] we can change thedistance jv2vnj. 2Suppose that f : S1 ! R is a continuous function. Then we de�nevart2S1(f) = jmaxt(f)�mint(f)jto be the variation of the function f on the circle S1.We recall that 	td denotes the normalized bending in the diagonal d of apolygon P 2Mr; jdj denotes the length of this diagonal.36



De�nition 6.8 Suppose that P 2 Pn and �(P ) =2 �. We de�ne the followingfunction�(P ) = maxfjdjvart2S1(j	td(A);	td(B)j) : A;B are vertices of P;d is a diagonal of P gA pair of diagonals ([A;B]; d) providing this maximum will be called a max-imal pair.It is clear that the function � is continuous. Thus by Lemma 6.7 for anycompact K � Dn � � there is a number �K > 0 such that �(P ) � �K foreach P 2 ��1(K).Proof of Theorem 6.2.We have already proved Theorem for quadrilaterals, thus we can assumethat the number n of vertices is at least 5. Arguing by induction we canassume that Theorem is valid for all spaces of k-gons, where 4 � k < n.Step 1. Take a n-gon P 2 Mr. The space Mr is nonsingular, thus�(P ) � � > 0 where � depends only on r. Choose a pair of vertices A;B anddiagonal d of P which maximize the function �(P ). The maximal variationvart2S1(j	td(A);	td(B)j) is at least � since the length of the diagonal d is atmost 1. Split P along the diagonal [A;B] in two polygons P 0; P 00 treating[A;B] as a new side with �xed length. There is at most n!=2 of \bad" valuesof jABj such that the moduli spaces Mr0, Mr00 of P 0; P 00 are singular. (Wealso include zero in the list of \bad" values.) Denote the number of verticesof P 0 by n0 and the number of vertices of P 00 be n00.Then we use a bending in the diagonal d to deform P to a polygon P�so that the distance from j	td(A);	td(B)j to each of these \bad" values ismaximal (which is at least �=n!).The proof of the following proposition is obvious and is left to the readerProposition 6.9 Let C � Dn � � be a compact. Then there are two com-pacts C 0 � Dn0 � �; C 00 � Dn00 � � such that for any P 2 ��1(C) we haveP 0� 2 C 0; P 00� 2 C 00
37



Thus the polygons P 0�; P 00� satisfy the property that the function � on theirmoduli spaces Mr0 = ��1(�(P 0)), Mr00 = ��1(�(P 0)) is bounded from belowby some positive number �1.De�ne a relation R in [Pn���1(�)]� (f1; :::; ng2)2� [Pn���1(�)] as theset of tuples (P; (i; j); (k; s); P �) where the diagonals ([A;B] = [vi; vj]; d =[vk; vs]) form a maximal pair and the polygon P� is obtained from P viabending in the diagonal d as above.Proposition 6.10 The relation R is closed.Proof: It is enough to prove that if lims!1 Ps = P in the space Pn� ��1(�)then for any (Ps; [As; Bs]; ds; P �s ) 2 R and su�ciently large s, the pairs([As; Bs]; ds) are maximal for the limiting polygon P as well.Pick a subsequence with constant (Ask ; Bsk ; dsk). By continuity of thefunction � it is enough to check that the jdsk(P )j 6= 0 for the limiting poly-gon P . The nonvanishing of jdsk(P )j follows from the inequalities 0 � � ��(Psk) � jdsk(Psk)j. 2Step 2.Lemma 6.11 Let r 2 Dk��. Then for each i the moduli space Mr containsa pseudo-triangle Ti = (v1; :::; vk) such that vi is a pseudo-vertex of Ti.Proof: Assume that the assertion is valid for all 3 � k0 < k. By renumerationof vertices it is enough to construct the pseudo-triangle Q1. Since the perime-ter of the polygon is normalized to be equal to 2, there is a pair (rj; rj+1)(j 2 Zk) di�erent from (rk; r1) such that rj + rj+1 < 1. Hence we can applythe same induction argument as Lemma 1 in [KM1] to �nd a polygon in Mrwhere ej [ ej+1 forms an edge. As the result of this procedure we constructthe required pseudo-triangle. 2Remark 6.12 The case when T1 = T2 happens exactly when there is a num-ber 2 < s < k such that r1 + ::: + rs � 1 and rs+1 + ::: + rk + r1 > 1.Recall that k < n and by the induction hypothesis we have a function` = `(r).De�ne the relation �� on (Pk � �)2 to be the set of pairs (P; T ) where:(i) the pseudo-triangle T belongs to the moduli space of P and (ii) P can bedeformed to T via at most `(r) bendings.38



Proposition 6.13 The relation �T is closed in (Pk � �)� Pk and its pro-jection to the �rst factor is onto.Proof: Since we consider only parameters r =2 � the equality rj+rj+1 = 1 (inthe proof of Lemma 6.11) is impossible. Thus the relation on (Pk ��)�Pkgiven by the condition (i) is closed. The statement of the Proposition followsfrom the induction hypothesis in Theorem 6.2. 2This lemma together with Lemma 6.11 implies that arguing by inductionwe can deform via bending each of polygons P 0�; P 00� to pseudo-triangles T 0; T 00keeping the length jABj �xed so that A is a pseudo-vertex of T 00, and B is apseudo-vertex of T 0. The number of bendings which we have to use here isbounded from above by a function which depends on r0; r00 only. In the casewhen both A;B are pseudo-vertices of T 0 and T 00 these pseudo-triangles forma quadrilateral and we can go directly to the Step 3 (see Figure 2). Assumethat B is not a pseudo-vertex of T 00 and A is a not a pseudo- vertex of T 0 (seeFigure 2). The triangles T 0; T 00 form a hexagon, split it along the diagonald0 = [X; Y �] into two quadrilaterals S 0; S 00, where d0 is a side of �xed length.Then the triangle inequalities imply that both S 0; S 00 can be deformed topseudo-triangles L0; L00 where X; Y � are pseudo-vertices. This again gives usa quadrilateral. Thus we can go to the Step 3.In the remaining case when A is not a pseudo-vertex of T 0 and B is apseudo-vertex in both T 0; T 00 we split the polygon formed by T 0; T 00 along thediagonal [X;B] (see Figure 2) and deform the quadrilateral [X;B;X�; A] toa pseudo-triangle with the vertices X;B;X� keeping the triangle [X; Y;B]�xed. Then we again can go to the Step 3.Step 3. As the result of Step 2 we deform the polygon P to a polygon Qwhich is the union of two pseudo-triangles �0;�00 minus the diagonal [A;B].Remark 6.14 As before the relation �, which consists of the pairs (P;Q)above, is closed in (Pn � �)� Pn.The moduli space of the quadrilateral Q is nonsingular since r =2 �. Weagain apply the induction to deform Q so that it becomes a pseudo-triangleT . It follows from the induction hypothesis that the relation �, which consistsof pairs (Q; T ) as above, is closed in (P4 � �)� P4.39



Thus we have proved the assertion (a) of Theorem 6.2 for n-gons. Namely,for each polygon P we have constructed a piecewise-smooth bending curve
(P ) � Mr which connects the polygon P with a pseudo-triangle T . Eachsmooth arc of this curve is given by bending in one of diagonals. (Howeverthe curve 
 is not necessarily unique.) The fact that the function `(r) (thenumber of bendings) is bounded on compacts follows from the inductionhypothesis via Proposition 6.9. This implies the assertion (b) of Theorem6.2.For a pseudo-triangle T 2 Mr denote by Y (T ) the subset in Mr consist-ing of those polygons P such that at least one of the bending curves 
(P )terminates at T . Thus the relation f(P; T ) : P 2 Y (T )g is the compositionof closed relations R;�;�. This implies that each Y (T ) is closed and theassertion (c) follows.It remains to prove the assertion (d). The closed subsets Y (T ) can in-tersect. We say that two pseudo- triangles T1; T2 are equivalent if Y (T1) \Y (T2) 6= ;. This generates an equivalence relation on the �nite set of pseudo-triangles inMr. The spaceMr is connected and all Y (T ) are closed sets; thusall pseudo-triangles are mutually equivalent. Hence any polygon P can bedeformed to a pseudo-triangle via at most `(r) bendings (by the assertion(a)) and any two pseudo-triangles can be deformed to each other via at mostn3`(r) bendings. This �nishes the proof. 2References[AGJ] J. Arms, M. Gotay, G. Jennings, Geometric and algebraic reductionfor singular momentum maps, Advances in Math. 79 (1990) 43{ 103.[Del] T. Delzant, Hamiltoniens periodiques et images convexes del'application moment, Bull. Soc. Math. France, 116 (1988) N 3, 315{339.[DE] A. Douady, C. Earle, Conformally natural extension of homeomor-phisms of the circle, Acta Math. 157 (1986) 23{ 48.[DM] P. Deligne, G. Mostow, Monodromy of hypergeometric functions andnon-lattice integral monodromy, Publications of IHES, Vol. 63 (1986)p. 5{ 90. 40
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