Lecture 8 : The Geometric Distribution

The geometric distribution is a special case of negative binomial X_{r} which we will learn about next. It is the case $r=1$. It is so important we give it special treatment.

Motivating example

Suppose a couple decides to have children until they have a girl. Suppose the probability of having a girl is p. Define the geometric random variable X_{r} by

$$
X_{r}=\text { the number of boys that precede the } r^{\text {th }} \text { girl }
$$

There is another random variable Y that we will call the waiting time random variable. Imagine that there is one child born every year. Then define by
$Y_{r}=$ the number of year is takes including the year in which the girl was born to have t
So

$$
\begin{equation*}
Y_{r}=X_{r}+r \tag{1}
\end{equation*}
$$

Find the probability distribution of X. First X could have any possible whole number value (although $X=1,000,000$ is very unlikely)

$$
\begin{aligned}
P(X=k) & =P(\underbrace{\underline{B} \underline{B} \underline{B}-\frac{B}{4}}_{k} \frac{G}{4} p \\
& =q^{k} p \quad(\text { where } q=1-p)
\end{aligned}
$$

We have supposed births are independent.
We have motivated.
Definition
Suppose a discrete random variable X has the following pmf

$$
P(X=k)=q^{k} p, \quad 0 \leq k<\infty
$$

Then X is said to have geometric distribution with parameter p.

There is another random variable Y_{r} that we will call the waiting time random variable. Imagine that there is one child born every year. Then define by
$Y=$ the number of year is takes including the year in which the girl was born to have th

$$
\begin{equation*}
Y=X+1 \tag{2}
\end{equation*}
$$

Remark

For the general case the random variables X and Y are defined by replacing "having a child" by a Bernoulli experiment and having a girl by a "success".

Proposition

Suppose X has geometric distribution with parameter p.
Then
(i) $E(X)=\frac{q}{p}$
(ii) $V(X)=\frac{q}{p^{2}}$

Proof of (i) (you are not responsible for this).

$$
\begin{aligned}
E(X) & =(0)(p)+(1)(q p)+(2)\left(q^{2} p\right)+\cdots+(k)\left(q^{k} p\right)+\cdots \\
& =p\left(q+2 q+\cdots+k q^{k}+\cdots\right.
\end{aligned}
$$

Now

$$
\begin{gathered}
\frac{x}{(1-x)^{2}}=x+2 x^{2}+3 x^{3}+\cdots+k x^{k}+\cdots \\
\text { why? }
\end{gathered}
$$

So

$$
E X()=p\left(\frac{q}{(1-q)^{2}}\right)=p\left(\frac{q}{p^{2}}\right)=\frac{q}{p}
$$

The Negative Binomial Distribution
Now suppose the couple decides they want more girls - say r girls, so they keep having children until the r-th girl appears. Let $X_{r}=$ the number of boys that precede the r-th girl.
Let's compute $P\left(X_{r}=k\right)$ What do we have preceding the r-th girl. Of course we must have $r-1$ girls and since we are assuming $X_{r}=k$ we have k boys so $k+r-1$ children.

$$
\underbrace{\frac{G}{4}}_{\substack{r \text {-th } \\ \text { girl }}}
$$

All orderings of boys and girls have the some probability so

$$
P(X=k)=(?) P(\underbrace{B \ldots B}_{k-1} \underbrace{G \ldots G}_{r-1} G)
$$

or

$$
P(X=k)=(?) q^{k} \cdot p^{r-1} \cdot q=(?) q^{k} p^{r}
$$

(?) is the number of words of length $k+r-1$ in B and G using $k B$'s (where $r-1$ G's).
Such a word is determined by choosing the k slots occupied by the boys from a total of $k+r-1$ slots so there are $\binom{k+r-1}{k}$ words so

$$
P(X=k)=\binom{k+r-1}{k} p^{r} q^{k}
$$

So we have motivated the following.

Definition

A discrete random variable X is said to have negative binomial distribution with parameters r and p if

$$
P(X=k)=\binom{k+r-1}{k} p^{r} q^{k}, 0 \leq k<\infty
$$

The text denotes this probability mass function by $n b(x ; r, p)$ so

$$
n b(x ; r, p)=\binom{x+r-1}{k} p^{r} q^{x}, 0 \leq x \leq \infty .
$$

Proposition
Suppose X has negative binomial distribution with parameters r and p. Then
(i) $E(X)=r \frac{q}{p}$
(ii) $V(X)=\frac{r q}{p^{2}}$

Waiting Times

The binomial, geometric and negative binomial distributions are all tied to repeating a given Bernoulli experiment (flipping a coin, having a child) infinitely many times.
Think of discrete time $0,1,2,3, \ldots$ and we repeat the experiment at each of these discrete times. - Eg., flip a coin every minute.

Now you can do the following things
1 Fix a time say n and let $X=\sharp$ of successes in that time period. Then $X \sim \operatorname{Bin}(n, p)$. We should write X_{n} and think of the family of random variable parametrized by the discrete time n as the "binomial process". (see page. 18 - the Poisson process).
2 ((discrete) waiting time for the first success)
Let Y be the amount of time up to the time the first success occurs.

This is the geometric random variable. Why?
Suppose we have in out boy/girl example

$$
\underbrace{\frac{B}{0} \frac{B}{1} \frac{B}{2} \overline{3}-\frac{B}{G}}_{k} \frac{G}{k}
$$

So in this case
$X=\#$ of boys $=k$
$Y=$ waiting time $=k$
so $Y=X$.

Remark

To get $X=Y$ we must assume we start time when the first boy is born, so the first boy is born at time $t=0$.

Waiting time for r-th success
Now let $Y_{n}=$ the waiting time up to the r-th success then there is a difference between X_{r} and Y_{r}.
Suppose $X_{r}=k$ so there are k boys before the r-th girl arrives.

$$
\underbrace{\overline{0} \frac{B}{1} \overline{2} \quad \frac{G}{k+r-2}} \frac{G}{k+r-1}
$$

k B's $r-1$ G's so $k+r-1$ slots.
But we start at 0 so the last slot is $k+r-(2)$ so

$$
Y_{r}=X_{r}+r-1
$$

The Poisson Distribution

For a change we won't start with a motivating example but will start with the definition.

Definition

A discrete random variable X is said to have Poisson distribution with parameter λ.

$$
P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, 0 \leq k<\infty
$$

We will abbreviate this to $X \sim P(\lambda)$.
I will now try to motivate the formula which looks complicated.

Why is the factor of $e^{-\lambda}$ there? It is there to make to total probability equal to 1 . Total Probability $=\sum_{k=0}^{\infty} P(X=k)$

$$
=\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}
$$

But from calculus

$$
e^{x}=\sum_{k=0}^{\infty} \frac{X^{k}}{k!}
$$

Total probability $=e^{-\alpha} \cdot e^{\alpha}=1$ as it has to be.

Proposition

Suppose $X \sim P(\lambda)$. Then
(i) $E(X)=\lambda$
(ii) $V(X)=\lambda$

Remark

It is remarkable that $E(X)=V(X)$.

Example (3.39)

Let X denote the number of creatures of a particular type captured during a given time period. Suppose $X \sim P(4.5)$. Find $P(X=5)$ and $P(X \leq 5)$.

Solution

$$
P(X=5)=e^{-4.5} \frac{(4.5)^{5}}{5!}
$$

(just plug into the formula using $\lambda=4.5$)

$$
\begin{aligned}
P(X \leq 5)= & P(X=0)+P(X=1)+P(X=2) \\
& +P(X=3)+P(X-4)+P(X=5) \\
= & e^{-\lambda}+e^{-\lambda} \lambda+e^{-\lambda} \frac{\lambda^{2}}{2} \\
& \underbrace{e^{-\lambda} \frac{\lambda^{3}}{3!}+e^{-\lambda} \frac{\lambda^{4}}{4!}+e^{-\lambda^{2}} \frac{\lambda^{5}}{5!}}_{\text {don't try to evaluate this }}
\end{aligned}
$$

The Poisson Process

A very important application of the Poisson distribution arises in counting the number of occurrences of a certain event in time t
1 Animals in a trap.
2 Calls coming into a telephone switch board.
Now we could let t vary so we get a one-parameter family of Poisson random variable $X_{t}, 0 \leq t<\infty$.
Now a Poisson process is completely determined once we know its mean λ.

So far each t, X_{t} is a Poisson random variable. So $X_{t} \sim P(\lambda(t))$. So the Poisson parameter λ is a function of t.
In the Poisson process one assume that $\lambda(t)$ is the simplest possible function of t (aside from a constant function) namely a linear function

$$
\lambda(t)=\alpha t .
$$

Necessarily

$$
\alpha=\lambda(1)=\text { the average number of observations in unit time. }
$$

Remark

In the text, page 124, the author proposes 3 axioms on a one parameter family of random variables X_{t}. So that X_{t} is a Poisson process i.e.,

$$
X_{t} \sim P(\alpha t)
$$

Example

(from an earlier version of the text)
The number of tickets issued by a meter reader can be modelled by a Poisson process with a rate of 10 ticket every two pairs.
(a) What is the probability that exactly 10 tickets are given out during a particular 12 hour period.

Solution

We want $P\left(X_{12}=10\right)$.
First find $\alpha=$ average $\#$ of tickets by unit time.
So $\alpha=\frac{10}{2}=5$
So $X_{t} \sim P(5 t)$

Solution (Cont.)
So $X_{12} \sim P((5)(12))=P(60)$

$$
\begin{aligned}
P\left(X_{12}=10\right) & =e^{-\lambda} \frac{\lambda^{10}}{(10)!} \\
& =e^{-60} \frac{(60)^{10}}{(10)!}
\end{aligned}
$$

(b) What is the probability that at least 10 tickets are given out during a 12 hour time period.

We wait

$$
\begin{aligned}
& P\left(X_{12} \geq 10\right)=1-P(X \leq 9) \\
& =1-\sum_{k=0}^{9} e^{-\lambda} \frac{\lambda^{k}}{k!} \\
& \quad=1-\underbrace{\sum_{k=0}^{9} e^{-60} \frac{(60)^{k}}{k!}}_{\begin{array}{c}
\text { not something you } \\
\text { want t try }
\end{array}}
\end{aligned}
$$

Waiting Times

Again there are waiting time random variables associated to the Poisson process.
Let $Y=$ waiting time until the first animal is caught in the trap.
and $Y_{r}=$ waiting time until the r-th animal is caught in the trap.
Now Y and Y_{r} are continuous random variables which we are about to study. Y is exponential and Y_{r} has a special kind gomma distribution.

