The t tests

March 14, 2006

1 Introduction

In this lecture we will derive the formulas for the two-sided t-test and the upper-tailed t-test for the mean in a normal distribution when the variance σ^2 is unknown. Let x_1, x_2, \dots, x_n be a sample from a normal distribution with mean μ and variance σ^2 . Recall that \overline{X} is the sample mean (the point estimator for the populations mean μ).

2 The two-sided t-test

We wish to give a test to decide between:

$$H_0: \mu = \mu_0$$

$$H_a: \mu \neq \mu_0$$

The two-sided t-test is the decision rule:

reject
$$H_0$$
 if either $\bar{x} \leq \mu_0 - t_{\alpha/2, n-1}(\frac{s}{\sqrt{n}})$ or $\bar{x} \geq \mu_0 + t_{\alpha/2, n-1}(\frac{s}{\sqrt{n}})$.

We will now prove that the two-sided t-test has significance level (i.e. Type I error probability) equal to α . We will need the following theorem from Probability Theory.

Theorem 1. $T = (\overline{X} - \mu)/(\frac{S}{\sqrt{n}})$ has standard normal distribution.

We now prove

Theorem 2. The two-sided t-test has significance level α .

Proof.

$$P(\text{Type I error}) = P(\text{Reject } H_0 \text{ when } H_0 \text{ is correct})$$

$$= P(\overline{X} \leq \mu_0 - t_{\alpha/2, n-1}(\frac{S}{\sqrt{n}}) \text{ or } \overline{X} \geq \mu_0 + t_{\alpha/2, n-1}(\frac{S}{\sqrt{n}}) \text{ when } \mu = \mu_0)$$

$$= P(\overline{X} - \mu_0 \leq -t_{\alpha/2, n-1}(\frac{S}{\sqrt{n}}) \text{ or } \overline{X} - \mu_0 \geq t_{\alpha/2, n-1}(\frac{S}{\sqrt{n}}) \text{ when } \mu = \mu_0)$$

$$= P((\overline{X} - \mu_0)/(\frac{S}{\sqrt{n}}) \leq -t_{\alpha/2, n-1} \text{ or } (\overline{X} - \mu_0)/(\frac{S}{\sqrt{n}}) \geq t_{\alpha/2, n-1} \text{ when } \mu = \mu_0).$$

Now we use the assumption that $\mu = \mu_0$ to replace μ_0 by μ in the ratio $(\overline{X} - \mu_0)/(\frac{S}{\sqrt{n}})$. Then we apply Theorem 1 above to deduce that the rewritten ratio $T = (\overline{X} - \mu)/(\frac{S}{\sqrt{n}})$ has t-distribution with n-1 degrees of freedom. Thus we obtain the new equation

$$P(\text{Type I error}) = P((T \le -t_{\alpha/2,n-1} \text{ or } T \ge t_{\alpha/2,n-1}) = P((T \le -t_{\alpha/2,n-1}) + P(T \ge t_{\alpha/2,n-1}).$$

Each of the two probabilities in the last term are equal to $\alpha/2$. To prove this draw a picture, the second is equal to $\alpha/2$ by definition, the second by symmetry.

3 The upper-tailed t-test

We wish to give a test to decide between:

$$H_0: \mu = \mu_0$$

 $H_a: \mu > \mu_0$

The upper-tailed t-test is the decision rule:

reject H_0 if $\bar{x} \geq \mu_0 + t_{\alpha,n-1}(\frac{s}{\sqrt{n}})$.

We will now prove that the two-sided t-test has significance level (i.e. Type I error probability) equal to α . Once again we will need Theorem 1. We now prove

Theorem 3. The upper-tailed t-test has significance level α .

Proof.

$$P(\text{Type I error}) = P(\text{Reject } H_0 \text{ when } H_0 \text{ is correct})$$

$$= P(\bar{x} \ge \mu_0 + t_{\alpha,n-1}(\frac{S}{\sqrt{n}}) \text{ when } \mu = \mu_0)$$

$$P(\bar{X} - \mu_0 \ge t_{\alpha,n-1}(\frac{S}{\sqrt{n}}) \text{ when } \mu = \mu_0)$$

$$= P((\bar{X} - \mu_0)/(\frac{S}{\sqrt{n}}) \ge t_{\alpha,n-1} \text{ when } \mu = \mu_0).$$

Now we use the assumption that $\mu = \mu_0$ to replace μ_0 by μ in the ratio $(\overline{X} - \mu_0)/(\frac{s}{\sqrt{n}})$. Then we apply Theorem 1 above to deduce that the rewritten ratio $T = (\overline{X} - \mu)/(\frac{S}{\sqrt{n}})$ has t-distribution with n-1 degrees of freedom. Thus we obtain the new equation

$$P(\text{Type I error}) = P(T \ge t_{\alpha, n-1}).$$

This last probability is equal to α by definition (draw a picture).