The z tests

March 13, 2006

1 Introduction

In this lecture we will derive the formulas for the two-sided z-test and the uppertailed z-test for the mean in a normal distribution when the variance σ^2 is known. Let x_1, x_2, \dots, x_n be a sample from a normal distribution with mean μ and variance σ^2 . Recall that \overline{X} is the sample mean (the point estimator for the populations mean μ).

2 The two-sided z-test

We wish to give a test to decide between:

$$H_0: \mu = \mu_0$$
$$H_a: \mu \neq \mu_0$$

The two-sided z-test is the decision rule:

reject H_0 if either $\bar{x} \leq \mu_0 - z_{\alpha/2}(\frac{\sigma}{\sqrt{n}})$ or $\bar{x} \geq \mu_0 + z_{\alpha/2}(\frac{\sigma}{\sqrt{n}})$.

We will now prove that the two-sided z-test has significance level (i.e. Type I error probability) equal to α . We will need the following theorem from Probability Theory.

Theorem 1. $Z = (\overline{X} - \mu)/(\frac{\sigma}{\sqrt{n}})$ has standard normal distribution.

We now prove

Theorem 2. The two-sided z-test has significance level α .

Proof.

$$P(\text{Type I error}) = P(\text{Reject } H_0 \text{ when } H_0 \text{ is correct})$$

= $P(\bar{X} \le \mu_0 - z_{\alpha/2}(\frac{\sigma}{\sqrt{n}}) \text{ or } \bar{X} \ge \mu_0 + z_{\alpha/2}(\frac{\sigma}{\sqrt{n}}) \text{ when } \mu = \mu_0)$
= $P(\bar{X} - \mu_0 \le -z_{\alpha/2}(\frac{\sigma}{\sqrt{n}}) \text{ or } \bar{X} - \mu_0 \ge z_{\alpha/2}(\frac{\sigma}{\sqrt{n}}) \text{ when } \mu = \mu_0)$
= $P((\bar{X} - \mu_0)/(\frac{\sigma}{\sqrt{n}}) \le -z_{\alpha/2} \text{ or } (\bar{X} - \mu_0)/(\frac{\sigma}{\sqrt{n}}) \ge z_{\alpha/2} \text{ when } \mu = \mu_0).$

Now we use the assumption that $\mu = \mu_0$ to replace μ_0 by μ in the ratio $(\overline{X} - \mu_0)/(\frac{\sigma}{\sqrt{n}})$. Then we apply Theorem 1 above to deduce that the rewritten ratio $Z = (\overline{X} - \mu)/(\frac{\sigma}{\sqrt{n}})$ has standard normal distribution. Thus we obtain the new equation

$$P(\text{Type I error}) = P((Z \le -z_{\alpha/2} \text{ or } Z \ge z_{\alpha/2})) = P((Z \le -z_{\alpha/2}) + P(Z \ge z_{\alpha/2}))$$

Each of the two probabilities in the last term are equal to $\alpha/2$. To prove this draw a picture, the second is equal to $\alpha/2$ by definition, the second by symmetry.

3 The upper-tailed z-test

We wish to give a test to decide between:

$$H_0: \mu = \mu_0$$
$$H_a: \mu > \mu_0$$

The upper-tailed z-test is the decision rule: reject H_0 if $\bar{x} \ge \mu_0 + z_\alpha(\frac{\sigma}{\sqrt{n}})$. We will now prove that the two-sided z-test has significance level (i.e. Type I error probability) equal to α . Once again we will need Theorem 1. We now prove

Theorem 3. The upper-tailed z-test has significance level α .

Proof.

$$P(\text{Type I error}) = P(\text{Reject } H_0 \text{ when } H_0 \text{ is correct})$$
$$= P(\bar{x} \ge \mu_0 + z_\alpha(\frac{\sigma}{\sqrt{n}}) \text{ when } \mu = \mu_0)$$
$$P(\bar{X} - \mu_0 \ge z_\alpha(\frac{\sigma}{\sqrt{n}}) \text{ when } \mu = \mu_0)$$
$$= P((\overline{X} - \mu_0)/(\frac{\sigma}{\sqrt{n}}) \ge z_\alpha \text{ when } \mu = \mu_0).$$

Now we use the assumption that $\mu = \mu_0$ to replace μ_0 by μ in the ratio $(\overline{X} - \mu_0)/(\frac{\sigma}{\sqrt{n}})$. Then we apply Theorem 1 above to deduce that the rewritten ratio $Z = (\overline{X} - \mu)/(\frac{\sigma}{\sqrt{n}})$ has standard normal distribution. Thus we obtain the new equation

$$P(\text{Type I error}) = P(Z \ge z_{\alpha}).$$

This last probability is equal to α by definition (draw a picture).