
THE CENTRAL LIMIT THEOREM

Throughout the discussion below , let X1, X2, . . . be i.i.d. rv’s, each with finite
expected value µ and finite nonzero standard deviation σ. Given n, define X to be
the average (X1 + · · ·+Xn)/n, and define Sn to be the sum X1 + · · ·+Xn. Then

E(Sn) = nµ and

V (Sn) = nσ2

st.dev.(Sn) = σ
√
n.

(The equation for the variance of Sn holds because the Xi are independent, so the
variance of the sum of the Xi is the sum of the variances.) Now, X = (1/n)Sn, so

E(X) = µ = (1/n) E(Sn)

V (X) =
σ2

n
= (1/n)2 V (Sn)

st.dev.(X) =
σ√
n

= (1/n) st.dev.(Sn)

REMARKS
1. We can think of the i.i.d. condition as meaning that the Xi are repeated exper-
iments, or alternately random samples, from some given probability distribution.

2. Note: the expected value of the sample average is the same as the expected value
of each Xi. This is common sense. We can think of X as an estimate of the true
population average µ.

3. Note, as n gets bigger, the spread (standard deviation) of X gets smaller. This
is common sense: a bigger sample should give a more reliable estimate of the true
population average.

4. Notation: let N (µ, σ) denote the normal distribution with mean µ and standard
deviation σ.

THEOREM (Central Limit Theorem) Suppose that X1, X2, . . . is a sequence of
i.i.d. rv’s, each with finite expected value µ and finite nonzero standard deviation
σ. Let Z be the standardized version of X, i.e.

Z =
X − µ

(σ/
√
n)

.

Then as n → ∞, Z −→ N (0, 1).
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REMARKS

1. Note the CLT has an extra assumption (finite variance) which the LLN does not
have. The CLT gives you more information when it is applicable.

2. The CLT is an incredible law of nature. Under modest assumptions, the process
of independent repetition has a universal effect on the averaging process, depending
only on the mean and standard deviation of the underlying population.

3. There are different ways to describe exactly what Z −→ N (0, 1) means. We say
for this: Z converges in distribution to N (0, 1) as n → ∞. This means just what
it meant when we discussed the normal approximation to Binom(n, p) as n → ∞.
Informally, it means that if n is large enough, then we have (for all numbers a < b)

Prob
(

a <
(X − µ)

(σ/
√
n)

< b
)

≈ Prob (a < Z < b)

where ≈ means “approximately equals”. As n goes to infinity, the approximation
gets as good as we want.
Equivalently we could express the approximation by

Prob
(

a(σ/
√
n) < (X − µ) < b(σ/

√
n)

)

≈ Prob
(

a < Z < b
)

or by

Prob
(

µ+ a(σ/
√
n) < X < µ+ b(σ/

√
n)
)

≈ Prob
(

a < Z < b
)

.

We might also use the notation X −→ N (µ, σ/
√
n) to describe this situation.

RULE OF THUMB
How large should n be for the CLT approximation to be good enough? Really,
that depends on the particular r.v. X and on how good “good enough” has to be.
Our rule of thumb will be that, unless we have explicit information to the contrary,
n ≥ 30 is large enough for “good enough”.

EXAMPLE
Let us go through those inequalities in an example, with a = −2 and b = 2.
We will take the r.v. X corresponding to flipping a fair coin.
So, X = 0 with probability 1/2, and X = 1 with probability 1/2.

For this X, µ = .5 and σ =
√

(.5)(1− .5) = .5. Let n = 10, 000.

Then the standard deviation for X is (σ/
√
n) = (.5)/

√
10, 000 = .005 .

Here are the inequalities above with these numbers put in.

Prob
(

−2 <
(X − .5)

.005
< 2

)

≈ Prob (−2 < Z < 2)

Prob
(

−2(.005) < (X − .5) < 2(.005)
)

≈ Prob
(

−2 < Z < 2
)

Prob
(

.5− 2(.005) < X < .5 + 2(.005)
)

≈ Prob
(

−2 < Z < 2
)

.
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If we compute out the last line, we get

Prob
(

.49 < X < .51
)

≈ Prob
(

−2 < Z < 2
)

= Prob(Z ≤ 2)− Prob(Z ≤ −2)

= .9772− .0228 = .9544.

This means: if the experiment is to flip a fair coin 10,000 times:
then in about 95% of those experiments,
the percentage of the flips which equal heads will be between 49% and 51%.

SUMS AND AVERAGES
Let us look again at one of the ways to express the CLT:

Prob
(

a(σ/
√
n) < (X − µ) < b(σ/

√
n)

)

≈ Prob
(

a < Z < b
)

.

Remember, X = (X1 + · · ·+Xn)/n. If we multiply each element of the inequality
on the left by n, we don’t change the truth of the inequality, so we don’t change its
probability. So we get

Prob
(

aσ
√
n < (X1 + · · ·+Xn)− nµ < bσ

√
n
)

≈ Prob
(

a < Z < b
)

.

Sometimes it’s easier to think in terms of sums.

For example, suppose X1, . . . , X10,000 are i.i.d. random variables corrsponding to
10,000 flips of a fair coin. For each Xi, the mean µ is 1/2; the variance is 1/4;
and the standard deviation σ is 1/2. Let S = X1 + · · · + X10,000. The standard
deviation of S is

√
10, 000σ, which is (100)(1/2) = 50. The mean of S is 5, 000.

Now what is the probability that the number of heads seen is in the interval
[4900, 5100] ? That’s the interval of numbers within two standard deviations of
the mean, so the probability is about .95.

What’s the probability that the number of heads is not in the interval [4800, 5200]?
That’s the probability of being more than four standard deviations away from the
mean. That probability is about .000 063 .
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