
Matrices and Derivatives

For derivatives of functions of more than one variable, matrices play the role
that numbers play for derivatives of functions of one variable.

First we will remember the setup for functions of one variable.
Then we’ll see the generalization.
We’ll use notation y = f(x).

A function f : R → R.

Here f is a function of one variable. The inputs and outputs are numbers.
(The domain could be smaller, e.g. (0,∞) for f(x) = ln x. We write the
domain as R to avoid a distraction.)

Let a be some number.
Given a (small) number ∆x, define ∆y = f(a+∆x)− f(a).

There are TWO KEY FEATURES to f ′(a), the derivative of f at x = a:

(1) The derivative is a NUMBER (defined by a certain limit).
(2) ∆y ≈ m∆x, if m is the derivative.

(I.e., for the linear approximation to ∆y, multiply ∆x by m.)

Example. Suppose y = f(x) is the function defined by the rule f(x) = x2.
Suppose a = 3. Then the derivative f ′(a) is the number 6; ∆y = (3+∆x)2−
32, and the linear approximation is

∆y ≈ f ′(3)∆x = 6∆x .

“Cancellation mnemonic.” One notation for f ′(x) is dy/dx. In this notation,
the linear approximation above looks like

∆y ≈
dy

dx
∆x .

If we think of dx as being like ∆x, and “cancel”, the right side is dy.



Functions f : R2 to R
2.

Now we have a function of two variables, which we’ll call x1 and x2. Instead
of thinking of two inputs, we think of a single input x = (x1, x2) (visualized
as a point in the plane).

We write y = f(x), just as we did for f : R → R. Now, instead of x
and y being numbers, we have x = (x1, x2) and y = (y1, y2). ∆x and ∆y

make sense; each now has two entries. Below, we write them as columns
rather than rows. (Actually, in order to have the matrix multiplications work
out, we always think of x and y as being columns, even though we write rows
inside sentences to avoid ugly displays.)

There are THREE KEY FEATURES to f ′(a), the derivative of f at x = a:

(1) The derivative is a MATRIX (defined by a certain limit).
(2) ∆y ≈ M∆x, if M is the derivative.

(I.e., for the linear approximation to ∆y, multiply ∆x by M .)

(3) Computation. The entries of that matrix M are partial derivatives:

M =

(

∂y1/∂x1 ∂y1/∂x2
∂y2/∂x1 ∂y2/∂x2

)

and the linear approximation is

∆y ≈ M∆x =

(

∂y1/∂x1 ∂y1/∂x2
∂y2/∂x1 ∂y2/∂x2

)(

∆x1
∆x2

)

(

∆y1
∆y2

)

≈

((

∂y1/∂x1
)

∆x1 +
(

∂y1/∂x2
)

∆x2
(

∂y2/∂x1
)

∆x1 +
(

∂y2/∂x2
)

∆x2

)

.

Notice that the multiplication gives you another cancellation mnemonic.



Example. Suppose y = (y1, y2), x = (x1, x2) and y = f(x) is defined by

y1 = 5(x1)
2x2 and y2 = (x1)

3(x2)
2 .

Then
(

∂y1/∂x1 ∂y1/∂x2
∂y2/∂x1 ∂y2/∂x2

)

=

(

10x1x2 5(x1)
2

3(x1)
2(x2)

2 (x1)
32x2

)

.

Let us consider the particular input a = (1, 2) and a particular ∆x = (.1, .2).
Then the derivative at a is

(

20 5
12 4

)

and the linear approximation to ∆y = f(a+∆x)− f(x) is

∆y =

(

∆y1
∆y2

)

≈

(

20 5
12 4

)(

.1

.2

)

=

(

3
2

)

giving

f(1.1, 2.2) ≈ f(1, 2) + (3, 2) = (10, 4) + (3, 2) = (13, 6) .

The general case. A function f : Rn
→ R

m.

Here m and n are positive integers. Now an input is x = (x1, . . . xn) and
an output is (y1, . . . , ym). The derivative is an m × n matrix. The entry of
the matrix in row i and column j is ∂yi/∂xj. Then everything goes as in the
2 by 2 case above.



A function f : R2
→ R.

This corresponds to n = 2,m = 1 in the general case above.

Example. y = f(x) = x1(x2)
3. In the general notation we used, y = (y1),

and the derivative is the 1× 2 matrix

M =
(

∂y1/∂x1 ∂y1/∂x2
)

=
(

(x2)
3 3x1(x2)

2
)

.

For the particular input a = (1, 2) and a particular ∆x = (.3, .2), the deriva-
tive is M = (8, 12) and we have the linear approximation

∆y ≈ M∆x =
(

∂y1/∂x1 ∂y1/∂x2
)

(

∆x1
∆x2

)

=
(

8 12
)

(

.3

.2

)

= (2.4 + 2.4) = (4.8) .

So, f(1.3, 2.2) ≈ f(1, 3) +M∆x = 27 + 4.8 = 31.8 .

Sample problem.

For the function y = f(x) from R
2
→ R

2 given by the rule y1 = 4x1 cos(x1x2),
y2 = (x1) sin(3x2), compute the derivative at the input (1, π/2) and use it to
compute the linear approximation to f(1 + .02, π/2 + .03) .

Remark. When we are being systematic, it’s very helpful to use subscripted
coordinate variables like xi, yj. On the other hand, when we only have a
few variables, then it’s often easier to have different letters for them; e.g.,
z = f(x, y) instead of (y1) = f(x1, x2). In the end, when you’re free to name,
use the notation which works best for you for your particular situation.


