
Inferential statistics

Confidence intervals.

Let us suppose that we have i.i.d. random variables X1, . . . , Xn each with
mean µ and standard deviation σ > 0. Let X be the average, (X1 + · · · +
Xn)/n.

Let Z be the standardization of X,

Z =
X − µ

(σ/
√
n)

.

Suppose c is a positive number. Then each of the following three conditions
is equivalent to the others (hence all four events have the same probability):

|Z| < c∣∣∣ X − µ
(σ/
√
n)

∣∣∣ < c

µ− c(σ/
√
n) < X < µ+ c(σ/

√
n)

X − c(σ/
√
n) < µ < X + c(σ/

√
n) .

Let us suppose, for an example, that c = 2.57, and n is large, so that by the
Central Limit Theorem we approximate the distribution of Z to be N (0, 1).
Then Prob(|Z| < 2.57) = .99. Then the interval(

X − 2.57
σ√
n
, X + 2.57

σ√
n

)
is called a 99% confidence interval for µ. We interpret this to mean the fol-
lowing: if we repeat the experiment of computing X many times, then for
about 99 of those times, the computed confidence interval will contain µ.

EXAMPLE. Suppose X1, . . . , X100 are i.i.d random variables which have uni-
form distribution on [a − 1/2, a + 1/2], where a is unknown. Suppose the
random sample produces sample mean equal to 5. Compute a 99% confi-
dence interval for a.
SOLUTION. Each Xi has mean a and variance 1/12. Putting this into the
display above with n = 100, we get the 99% confidence interval(

5− 2.57

√
1/12√
100

, 5 + 2.57

√
1/12√
100

)
≈ (4.26, 5.74) .



For a 95% confidence interval, above we’d use 1.96 in place of 2.57.

CLT and standard deviation.

In the example above, using the CLT to get a confidence interval for µ,
we had i.i.d. random variables with know standard deviation, and we used
that for the computation. Usually, you don’t know that standard deviation,
and have to estimate it. There are some subtleties to this; we’ll just look at
two important ways to do it.

Population proportion.

Suppose, as with flipping coins, that the i.i.d. rv’s X1, . . . , Xn equal 1 with
probabilty p and equal 0 with probability (1− p).

Suppose we want a confidence interval for p.
Here for each Xk, the mean is p and the standard deviation is

√
p(1− p).

Write X as p̂ (the “sample proportion”) to emphasize its relation to p. We
use p̂ to estimate both the mean and the standard deviation– just substitute
the experimental result p̂ for p, giving a 99% confidence interval(

p̂− 2.57

√
p̂(1− p̂)√

n
, p̂+ 2.57

√
p̂(1− p̂)√

n

)
EXAMPLE. 144 voters are randomly surveyed and asked if they will vote for
Trump. 48 of those surveyed answer yes. Give a 95% confidence interval for
the proportion of voters who would vote for Trump.

ANSWER. We have
√
n = 12, p̂ = 48/144 = 1/3,

√
(p̂)(1− p̂) =

√
(1/3)(2/3) ≈

.47 . So the confidence interval is(
.33− (1.96)

.47

12
, .33 + (1.96)

.47

12

)
≈ (.25, .41)

Polling is hard!



Sample standard deviation.

Given our i.i.d. rv’s X1, . . . , Xn: we assume they have mean µ and posi-
tive variance σ2. For the confidence interval, how should we estimate σ? The
natural thing would be to estimate σ2 and take a square root. If we knew the

number µ, then we could estimate σ2 by

(
(X1−µ)2+ · · · (Xn−µ)2

)
/n. Since

we don’t have µ, we could estimate by replacing µ with X in this expression.
For reasons we won’t go into, a better estimate is

s2 =

(
(X1 −X)2 + · · · (Xn −X)2

)
n− 1

.

(but note, dividing by n − 1 rather than n has little effect when n is large).
The number s2 (or the random variable producing it) is called the sample
variance, and its square root s is the sample standard deviation.

To get a confidence interval for the mean for a large sample, just use s in
place of σ in the formula.

EXAMPLE. Suppose in a random sample of 400 undergraduate men at UMD
that the average best time for running a mile is 6 minutes, and the sample
standard deviation is 1.2 minute. Compute a 95% confidence interval for the
average best time for running a mile for UMD undergraduate men.

ANSWER. The 95% confidence interval (in minutes) is

=

(
X − 1.96

s√
n
, X + 1.96

s√
n

)
=

(
6− (1.96)

1.2√
400

, 6 + (1.96)
1.2√
400

)
≈ (5.88, 6.12) .



Hypothesis Testing

To see the basic idea of hypothesis testing, we’ll first consider an example.

Example.

You are looking for strong evidence that a certain coin is not fair (proba-
bility of heads is not 1/2). So, you set up a probability model ASSUMING
THAT THE COIN IS FAIR, and run an experiment. If the result is sufficient
unlikely (assuming the coin is fair), then you have your evidence.

Your experiment will be to flip the coin 10,000 times, and count the number
of heads. Formally, let X(k) = 1 if the kth flip is heads; X(k) = 0 otherwise.
Assume the Xk are i.i.d. with 1 and 0 each having probability p = 1/2. Each
Xk has standard deviation

√
p(1− p = 1/2 . Let S = X1 + · · ·+X10,000.

(So, S has distribution Binomial(n, p) with n = 10, 000 and p = 1/2.) Then
S has mean µ = 5000 and standard deviation

√
nσ = 50.

Let Z = (S − 5000)/50; the distribution of Z in the model is very close
to N (0, 1) (n is large!).

You decide to reject the “fair coin” hypothesis if you get a sample mean
X with |X| > c, where c is the number such that

(
Prob|Z| ≥ c

)
= .01 .

Looking at the tables, determine that c here is approximately 2.6 .
Note, |Z| > 2.6 is equivalent to |S − 5000| > (2.6)(50) = 130.

Now you do the experiment.

(i) Suppose the outcome is 5100 heads. You may remain suspicious, but
you don’t abandon the fair coin hypothesis. Put another way, the evidence
for unfairness doesn’t meet the standard you set.
(ii) Suppose the outcome is 5200 heads. You decide the evidence is good
enough to declare the coin unfair. Moreover,

(
Prob|S| ≥ 5200

)
=
(
Prob|Z| ≥

4
)
≈ .000 063: you would have made the same decision even if you’d de-



manded evidence with .000 063 in place of .01. (Here .000 063 is called the
“P-value” of the result.) Very strong evidence!

We considered just the simple example, but this is how hypothesis testing is
done in general (with a variety of probability distributions and tests). If the
observed result is very unlikely given the assumed model, then that is strong
evidence to reject the model. You set up “the model” so that rejecting it is
what you are getting evidence for.

Note, when you decide on the cutoff probability for your test (we picked
.01), you can make two kinds of mistake: keeping an incorrect assumption of
fair coin, or drawing an incorrect conclusion of unfair coin. The cutoff choice
represents a tradeoff.

Sounds convoluted, but it makes sense.


