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Abstract. In an effort to aid communication among different fields and per-
haps facilitate progress on problems common to all of them, this article dis-
cusses hidden Markov processes from several viewpoints, especially that of
symbolic dynamics, where they are known as sofic measures, or continuous
shift-commuting images of Markov measures. It provides background, de-

scribes known tools and methods, surveys some of the literature, and proposes
several open problems.

Contents

1. Introduction 3

2. Subshift background 3

2.1. Subshifts 3

2.2. Sliding block codes 5

2.3. Measures 6

2.4. Hidden Markov (sofic) measures 6

3. Factor maps and thermodynamical concepts 9

3.1. Markovian and non-Markovian maps 9

3.2. Thermodynamics on subshifts 001 11

3.3. Compensation functions 12

3.4. Relative pressure 14

3.5. Measures of maximal and relatively maximal entropy 15

3.6. Finite-to-one codes 18

3.7. The semigroup measures of Kitchens and Tuncel 18

4. Identification of hidden Markov measures 20

4.1. Formal series and formal languages 21

Received by the editors August 13, 2010.
2010 Mathematics Subject Classification. Primary: 60K99, 60-02, 37-02; Secondary: 37B10,

60J10, 37D35, 94A15.

1



2 MIKE BOYLE AND KARL PETERSEN

4.1.1. Basic definitions 21

4.1.2. Rational series and languages 23

4.1.3. Distance and topology in F(A) 24

4.1.4. Recognizable (linearly representable) series 24

4.2. Equivalent characterizations of hidden Markov measures 28

4.2.1. Sofic measures—formal series approach 28

4.2.2. Proof that a series is linearly representable if and only
if it is a member of a stable finitely generated
submodule of F(A) 29

4.2.3. Proof that a formal series is linearly representable if
and only if it is rational 30

4.2.4. Linearly representable series correspond to sofic
measures 33

4.3. Sofic measures—Furstenberg’s approach 34

4.4. Sofic measures—Heller’s approach 37

4.4.1. Stochastic module 37

4.4.2. The reduced stochastic module 38

4.4.3. Heller’s answer to Problem 4.34 38

4.5. Linear automata and the reduced stochastic module for a
finitary measure 39

4.6. Topological factors of finitary measures, and Nasu’s core
matrix 41

5. When is a sofic measure Markov? 42

5.1. When is the image of a 1-step Markov measure under a
1-block map 1-step Markov? 42

5.1.1. Stochastic module answer 43

5.1.2. Linear algebra answer 43

5.2. Orders of Markov measures under codes 46

6. Resolving maps and Markovian maps 49

6.1. Resolving maps 49

6.2. All factor maps lift 1-1 a.e. to Markovian maps 50

6.3. Every factor map between SFT’s is hidden Markovian 51

References 53



SYMBOLIC DYNAMICS VIEWPOINT 3

1. Introduction

Symbolic dynamics is the study of shift (and other) transformations on spaces
of infinite sequences or arrays of symbols and maps between such systems. A sym-
bolic dynamical system, with a shift-invariant measure, corresponds to a stationary
stochastic process. In the setting of information theory, such a system amounts
to a collection of messages. Markov measures and hidden Markov measures, also
called sofic measures, on symbolic dynamical systems have the desirable property
of being determined by a finite set of data. But not all of their properties, for
example the entropy, can be determined by finite algorithms. This article surveys
some of the known and unknown properties of hidden Markov measures that are of
special interest from the viewpoint of symbolic dynamics. To keep the article self
contained, necessary background and related concepts are reviewed briefly. More
can be found in [66, 78, 77, 96].

We discuss methods and tools that have been useful in the study of symbolic sys-
tems, measures supported on them, and maps between them. Throughout we state
several problems that we believe to be open and meaningful for further progress.
We review a swath of the complicated literature starting around 1960 that deals
with the problem of recognizing hidden Markov measures, as closely related ideas
were repeatedly rediscovered in varying settings and with varying degrees of gener-
ality or practicality. Our focus is on the probability papers that relate most closely
to symbolic dynamics. We have left out much of the literature concerning proba-
bilistic and linear automata and control, but we have tried to include the main ideas
relevant to our problems. Some of the explanations that we give and connections
that we draw are new, as are some results near the end of the article. In Section
5.2 we give bounds on the possible order (memory) if a given sofic measure is in
fact a Markov measure, with the consequence that in some situations there is an
algorithm for determining whether a hidden Markov measure is Markov. In Section
6.3 we show that every factor map is hidden Markovian, in the sense that every
hidden Markov measure on an irreducible sofic subshift lifts to a fully supported
hidden Markov measure.

2. Subshift background

2.1. Subshifts. Let A be a set, usually finite or sometimes countable, which we
consider to be an alphabet of symbols.

(2.1) A∗ =

∞⋃

k=0

Ak

denotes the set of all finite blocks or words with entries from A, including the empty
word, ǫ; A+ denotes the set of all nonempty words in A∗; Z denotes the integers and
Z+ denotes the nonnegative integers. Let Ω(A) = AZ and Ω+(A) = AZ+ denote
the set of all two or one-sided sequences with entries from A. If A = {0, 1, . . . , d−1}
for some integer d > 1, we denote Ω(A) by Ωd and Ω+(A) by Ω+

d . Each of these
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spaces is a metric space with respect to the metric defined by setting for x 6= y

(2.2) k(x, y) = min{|j| : xj 6= yj} and d(x, y) = e−k(x,y).

For i ≤ j and x ∈ Ω(A) we denote by x[i, j] the block or word xixi+1 . . . xj . If
ω = ω0 . . . ωn−1 is a block of length n, we define

(2.3) C0(w) = {y ∈ Ω(A) : y[0, n− 1] = ω},

and, for i ∈ Z,

(2.4) Ci(ω) = {y ∈ Ω(A) : y[i, i+ n− 1] = ω}.

The cylinder sets Ci(ω), ω ∈ A∗, i ∈ Z, are open and closed and form a base for the
topology of Ω(A).

In this paper, a topological dynamical system is a continuous self map of a
compact metrizable space. The shift transformation σ : Ωd → Ωd is defined by
(σx)i = xi+1 for all i. On Ωd the maps σ and σ−1 are one-to-one, onto, and con-
tinuous. The pair (Ωd, σ) forms a topological dynamical system which is called the
full d-shift.

If X is a closed σ-invariant subset of Ωd, then the topological dynamical system
(X,σ) is called a subshift. In this paper, with “σ-invariant” we include the require-
ment that the restriction of the shift be surjective. Sometimes we denote a subshift
(X,σ) by only X , the shift map being understood implicitly. When dealing with
several subshifts, their possibly different alphabets will be denoted by A(X),A(Y ),
etc.

The language L(X) of the subshift X is the set of all finite words or blocks that
occur as consecutive strings

(2.5) x[i, i+ k − 1] = xixi+1 . . . xi+k−1

in the infinite sequences x which comprise X . Denote by |w| the length of a string
w. Then

(2.6) L(X) = {w ∈ A∗ : there are n ∈ Z, y ∈ X such that w = yn . . . yn+|w|−1}.

Languages of (two-sided) subshifts are characterized by being extractive (or fac-
torial) (which means that every subword of any word in the language is also in
the language) and insertive (or extendable) (which means that every word in the
language extends on both sides to a longer word in the language).

For each subshift (X,σ) of (Ωd, σ) there is a set F(X) of finite “forbidden” words
such that

(2.7) X = {x ∈ Ωd : for each i ≤ j, xixi+1 . . . xj /∈ F(X)}.

A shift of finite type (SFT) is a subshift (X,σ) of some (Ω(A), σ) for which it is
possible to choose the set F(X) of forbidden words defining X to be finite. (The
choice of set F(X) is not uniquely determined.) The SFT is n-step if it is possible
to choose the set of words in F(X) to have length at most n+1. We will sometimes
use “SFT” as an adjective describing a dynamical system.
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One-step shifts of finite type may be defined by 0, 1 transition matrices. Let M
be a d × d matrix with rows and columns indexed by A = {0, 1, . . . , d − 1} and
entries from {0, 1}. Define

(2.8) ΩM = {ω ∈ AZ : for all n ∈ Z,M(ωn, ωn+1) = 1}.

These were called topological Markov chains by Parry [72]. A topological Markov
chain ΩM may be viewed as a vertex shift: its alphabet may be identified with
the vertex set of a finite directed graph such that there is an edge from vertex i
to vertex j if and only if M(i, j) = 1. (A square matrix with nonnegative integer
entries can similarly be viewed as defining an edge shift, but we will not need edge
shifts in this paper.) A topological Markov chain with transition matrix M as above
is called irreducible if for all i, j ∈ A there is k such that Mk(i, j) > 0. Irreducibility
corresponds to the associated graph being strongly connected.

2.2. Sliding block codes. Let (X,σ) and (Y, σ) be subshifts on alphabets A,A′,
respectively. For k ∈ N, a k-block code is a map π : X → Y for which there are
m,n ≥ 0 with k = m+ n+ 1 and a function π : Ak → A′ such that

(2.9) (πx)i = π(xi−m . . . xi . . . xi+n).

We will say that π is a block code if it is a k-block code for some k.

Theorem 2.1 Curtis-Hedlund-Lyndon Theorem. For subshifts (X,σ) and (Y, σ),
a map ψ : X → Y is continuous and commutes with the shift (ψσ = σψ) if and
only if it is a block code.

If (X,T ) and (Y, S) are topological dynamical systems, then a factor map is a
continuous onto map π : X → Y such that πT = Sπ. (Y, S) is called a factor
of (X,T ), and (X,T ) is called an extension of (Y, S). A one-to-one factor map is
called an isomorphism or topological conjugacy.

Given a subshift (X,σ), r ∈ Z and k ∈ Z+, there is a block code π = πr,k onto
the subshift which is the k-block presentation of (X,σ), by the rule

(2.10) (πx)i = x[i+ r, i+ r + 1, . . . , i+ r + k − 1] for all x ∈ X.

Here π is a topological conjugacy between (X,σ) and its image (X [k], σ) which is a
subshift of the full shift on the alphabet Ak.

Two factor maps φ, ψ are topologically equivalent if there exist topological con-
jugacies α, β such that αφβ = ψ. In particular, if φ is a block code with (φx)0
determined by x[−m,n] and k = m + n + 1 and ψ is the composition (πm,k)−1

followed by φ, then ψ is a 1-block code (i.e. (ψx)0 = ψ(x0)) which is topologically
equivalent to φ.

A sofic shift is a subshift which is the image of a shift of finite type under a factor
map. A sofic shift Y is irreducible if it is the image of an irreducible shift of finite
type under a factor map. (Equivalently, Y contains a point with a dense forward
orbit. Equivalently, Y contains a point with a dense orbit, and the periodic points
of Y are dense.)
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2.3. Measures. Given a subshift (X,σ), we denote by M(X) the set of σ-invariant
Borel probability measures on X . These are the measures for which the coordinate
projections πn(x) = xn for x ∈ X,n ∈ Z, form a two-sided finite-state stationary
stochastic process.

Let P be a d × d stochastic matrix and p a stochastic row vector such that
pP = p. (If P is irreducible, then p is unique.) Define a d × d matrix M with
entries from {0, 1} by M(i, j) = 1 if and only if P (i, j) > 0. Then P determines a
1-step stationary (σ-invariant) Markov measure µ on the shift of finite type ΩM by

(2.11)
µ(Ci(ω[i, j])) = µ{y ∈ ΩM : y[i, j] = ωiωi+1 . . . ωj}

= p(ωi)P (ωi, ωi+1) · · ·P (ωj−1, ωj)

(by the Kolmogorov Extension Theorem).

For k ≥ 1, we say that a measure µ ∈ M(X) is k-step Markov (or more simply
k-Markov) if for all i ≥ 0 and all j ≥ k − 1 and all x in X ,

(2.12) µ(C0(x[0, i])|C0(x[−j,−1])) = µ(C0(x[0, i])|C0(x[−k,−1])).

A measure is 1-step Markov if and only if it is determined by a pair (p, P ) as
above. A measure is k-step Markov if and only if its image under the topological
conjugacy taking (X,σ) to its k-block presentation is 1-step Markov. We say that
a measure is Markov if it is k-step Markov for some k. The set of k-step Markov
measures is denoted by Mk (adding an optional argument to specify the system
or transformation if necessary.) From here on, “Markov” means “shift-invariant
Markov with full support”, that is, every nonempty cylinder subset ofX has positive
measure. With this convention, a Markov measure with defining matrix P is ergodic
if and only if P is irreducible.

A probabilist might ask for motivation for bringing in the machinery of topolog-
ical and dynamical systems when we want to study a stationary stochastic process.
First, looking at M(X) allows us to consider and compare many measures in a
common setting. By relating them to continuous functions (“thermodynamics”—
see Section 3.2 below) we may find some distinguished measures, for example max-
imal ones in terms of some variational problem. Second, by topological conjugacy
we might be able to simplify a situation conceptually; for example, many problems
involving block codes reduce to problems involving just 1-block codes. And third,
with topological and dynamical ideas we might see (and know to look for) some
structure or common features, such as invariants of topological conjugacy, behind
the complications of a particular example.

2.4. Hidden Markov (sofic) measures. If (X,σ) and (Y, σ) are subshifts and
π : X → Y is a sliding block code (factor map), then each measure µ ∈ M(X)
determines a measure πµ ∈ M(Y ) by

(2.13) (πµ)(E) = µ(π−1E) for each measurable E ⊂ Y.

(Some authors write π∗µ or µπ−1 for πµ.)
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If X is SFT, µ is a Markov measure on X and π : X → Y is a sliding block
code, then πµ on Y is called a hidden Markov measure or sofic measure. (Various
other names, such as “submarkov” and “function of a Markov chain” have also been
used for such a measure or the associated stochastic process.) Thus πµ is a convex
combination of images of ergodic Markov measures. From here on, unless otherwise
indicated, the domain of a Markov measure is assumed to be an irreducible SFT,
and the Markov measure is assumed to have full support (and thus by irreducibility
be ergodic). Likewise, unless otherwise indicated, a sofic measure is assumed to
have full support and to be the image of an ergodic Markov measure. Then the
sofic measure is ergodic and it is defined on an irreducible sofic subshift. Hidden
Markov measures provide a natural way to model systems governed by chance in
which dependence on the past of probabilities of future events is limited (or at
least decays, so that approximation by Markov measures may be reasonable) and
complete knowledge of the state of the system may not be possible.

Hidden Markov processes are often defined as probabilistic functions of Markov
chains (see for example [33]), but by enlarging the state space each such process can
be represented as a deterministic function of a Markov chain, such as we consider
here (see [8]).

The definition of hidden Markov measure raises several questions.

Problem 2.2. Let µ be a 1-step Markov measure on (X,σ) and π : X → Y a
1-block code. The image measure may not be Markov—see Example 2.8. What are
necessary and sufficient conditions for πµ to be 1-step Markov?

This problem has been solved, in fact several times. Similarly, given µ and π,
it is possible to determine whether πµ is k-step Markov. Further, given π and a
Markov measure µ, it is possible to specify k such that either πµ is k-step Markov
or else is not Markov of any order. These results are discussed in Section 5.

Problem 2.3. Given a shift-invariant measure ν on (Y, σ), how can one tell whether
or not ν is a hidden Markov measure? If it is, how can one construct Markov
measures of which it is the image?

The answers to Problem 2.3 provided by various authors are discussed in Section
4. The next problem reverses the viewpoint.

Problem 2.4. Given a sliding block code π : X → Y and a Markov measure ν on
(Y, σ), does there exist a Markov measure µ on X such that πµ = ν?

In Section 3, we take up Problem 2.4 (which apart from special cases remains
open) and some theoretical background that motivates it.

Recall that a factor map π : X → Y between irreducible sofic shifts has a degree,
which is the cardinality of the preimage of any doubly transitive point of Y [66].
(If the cardinality is infinite, it can only be the power of the continuum, and we
simply write degree(π) = ∞.) If π has degree n < ∞, then an ergodic measure ν
with full support on Y can lift to at most n ergodic measures on X . We say that
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the degree of a hidden Markov measure ν, also called its sofic degree, is the minimal
degree of a factor map which sends some Markov measure to ν.

Problem 2.5. Given a hidden Markov measure ν on (Y, σ), how can one determine
the degree of ν? If the degree is n < ∞, how can one construct Markov measures
of which ν is the image under a degree n map?

We conclude this section with examples.

Example 2.6. An example was given in [69] of a code π : X → Y that is non-
Markovian: some Markov measure on Y does not lift to any Markov measure on
X , and hence (see Section 3.1) no Markov measure on Y has a Markov preimage on
X . The following diagram presents a simpler example, due to Sujin Shin [91, 93],
of such a map. Here π is a 1-block code: π(1) = 1 and π(j) = 2 if j 6= 1.

2

X : 1 3
π

1 2 : Y

5 4

Example 2.7. Consider the shifts of finite type given by the graphs below, the
1-block code π given by the rule π(a) = a, π(b1) = π(b2) = b, and the Markov
measures µ, ν defined by the transition probabilities shown on the edges. We have
πµ = ν, so the code is Markovian—some Markov measure maps to a Markov
measure.

b1

1/2

1/2

a

1/2

1/2

π
a

1

b
1/2

1/2

b2
1/2

1/2

Example 2.8. This example uses the same shifts of finite type and 1-block code as
in Example 2.7, but we define a new 1-step Markov measure on the upstairs shift
of finite type X by assigning transition probabilities as shown.

b1

1/3

2/3

a

2/3

1/3

π
a b

b2
2/3

1/3
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The entropy of the Markov measure µ (the definition is recalled in Sec. 3.2) is
readily obtained from the familiar formula −

∑
piPij logPij , but there is no such

simple rule for computing the entropy of ν. If ν were the finite-to-one image of some
other Markov measure µ′, maybe on some other shift of finite type, then we would
have h(ν) = h(µ′) and the entropy of ν would be easily computed by applying the
familiar formula to µ′. But for this example (due to Blackwell [13]) it can be shown
[69] that ν is not the finite-to-one image of any Markov measure. Thus Problem
2.5 is relevant to the much-studied problem of estimating the entropy of a hidden
Markov measure (see [44, 45] and their references).

Example 2.9. In this example presented in [97], X = Y = Σ2 = full 2-shift, and
the factor map is the 2-block code

(2.14) (πx)0 = x0 + x1 mod 2.

Suppose 0 < p < 1 and µp is the Bernoulli (product) measure onX , with µ(C0(1)) =
p. Let νp denote the hidden Markov measure πµp = πµ1−p. If p 6= 1/2, then νp is
a hidden Markov measure strictly of degree 2 (it is not degree 1).

3. Factor maps and thermodynamical concepts

3.1. Markovian and non-Markovian maps. We have mentioned (Example 2.8)
that the image under a factor map π : X → Y of a Markov measure need not be
Markov, and (Example 2.6) that a Markov measure on Y need not have any Markov
preimages. In this section we study maps that do not have the latter undesirable
property. Recall our convention: a Markov measure is required to have full support.

Definition 3.1. [18] A factor map π : ΩA → ΩB between irreducible shifts of
finite type (A and B are 0, 1 transition matrices, see (2.8)) is Markovian if for every
Markov measure ν on ΩB, there is a Markov measure on ΩA such that πµ = ν.

Theorem 3.2. [18] For a factor map π : ΩA → ΩB between irreducible shifts of
finite type, if there exist any fully supported Markov µ and ν with πµ = ν, then π
is Markovian.

Note that if a factor map is Markovian, then so too is every factor map which
is topologically equivalent to it, because a topological conjugacy takes Markov
measures to Markov measures. We will see a large supply of Markovian maps (the
“e-resolving factor maps”) in Section 6.1.

These considerations lead to a reformulation of Problem 2.4:

Problem 3.3. Give a procedure to decide, given a factor map π : ΩA → ΩB,
whether π is Markovian.

We sketch the proof of Theorem 3.2 for the 1-step Markov case: if any 1-step
Markov measure on ΩB lifts to a 1-step Markov measure, then every 1-step Markov
measure on ΩB lifts to a 1-step Markov measure. For this, recall that if M is an
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irreducible matrix with spectral radius ρ, with positive right eigenvector r, then
the stochasticization of M is the stochastic matrix

(3.1) stoch(M) =
1

ρ
D−1MD ,

where D is the diagonal matrix with diagonal entries D(i, i) = r(i).

Now suppose that π : ΩA → ΩB is a 1-block factor map, with π(i) denoted i
for all i in the alphabet of ΩA; that µ, ν are 1-step Markov measures defined by
stochastic matrices P,Q; and that πµ = ν. Suppose that ν′ ∈ M(ΩB) is defined by
a stochastic matrix Q′. We will find a stochastic matrix P ′ defining µ′ in M(ΩA)
such that πµ′ = ν′.

First define a matrix M of size matching P by M(i, j) = 0 if P (i, j) = 0 and
otherwise

(3.2) M(i, j) = Q′(i, j)P (i, j)/Q(i, j).

This matrix M will have spectral radius 1. Now set P ′ = stoch(M). The proof that
πµ′ = ν′ is a straightforward computation that πµ′ = ν′ on cylinders C0(y[0, n])
for all n ∈ N and y ∈ ΩB. This construction is the germ of a more general
thermodynamic result, the background for which we develop in the next section.
We finish this section with an example.

Example 3.4. In this example one sees explicitly how being able to lift one Markov
measure to a Markov measure, allows one to lift other Markov measures to Markov
measures.

Consider the 1-block code π from Ω3 = {0, 1, 2}Z to Ω2 = {0, 1}Z, via 0 7→ 0 and
1, 2 7→ 1. Let ν be the 1-step Markov measure on Ω2 given by the transition matrix

(
1/2 1/2
1/2 1/2

)
.

Given positive numbers α, β, γ < 1, the stochastic matrix

(3.3)




1/2 α(1/2) (1 − α)(1/2)
1/2 β(1/2) (1 − β)(1/2)
1/2 γ(1/2) (1 − γ)(1/2)




defines a 1-step Markov measure on Ω3 which π sends to ν.

Now, if ν′ is any other 1-step Markov measure on X2, given by a stochastic
matrix (

p q
r s

)
,

then ν′ will lift to the 1-step Markov measure defined by the stochastic matrix

(3.4)



p αq (1 − α)q
r βs (1 − β)s
r γs (1 − γ)s


 .
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3.2. Thermodynamics on subshifts 001. We recall the definitions of entropy
and pressure and how the thermodynamical approach provides convenient machin-
ery for dealing with Markov measures (and hence eventually, it is hoped, with
hidden Markov measures).

Let (X,σ) be a subshift and µ ∈ M(X) a shift-invariant Borel probability mea-
sure on X . The topological entropy of (X,σ) is

(3.5) h(X) = lim
n→∞

1

n
log |{x[0, n− 1] : x ∈ X}|.

The measure-theoretic entropy of the measure-preserving system (X,σ, µ) is
(3.6)

h(µ) = hµ(X) = lim
n→∞

1

n

∑
{−µ(C0(w)) log µ(C0(w)) : w ∈ {x[0, n− 1] : x ∈ X}}.

(For more background on these concepts, one could consult [78, 96].)

Pressure is a refinement of entropy which takes into account not only the map
σ : X → X but also weights coming from a given “potential function” f on X .
Given a continuous real-valued function f ∈ C(X,R), we define the pressure of f
(with respect to σ) to be

(3.7) P (f, σ) = lim
n→∞

1

n
log
∑

{exp[Sn(f, w)] : w ∈ {x[0, n− 1] : x ∈ X}},

where

(3.8) Sn(f, w) =
n−1∑

i=0

f(σix) for some x ∈ X such that x[0, n− 1] = w.

(In the limit the choice of x doesn’t matter.) Thus,

(3.9) if f ≡ 0, then P (f, σ) = h(X).

The pressure functional satisfies the important Variational Principle:

(3.10) P (f, σ) = sup{h(µ) +

∫
f dµ : µ ∈ M(X)}.

An equilibrium state for f (with respect to σ) is a measure µ = µf such that

(3.11) P (f, σ) = h(µ) +

∫
f dµ.

Often (e.g., when the potential function f is Hölder continuous on an irreducible
shift of finite type), there is a unique equilibrium state µf which is a (Bowen) Gibbs
measure for f : i.e., P (f, σ) = log(ρ), and

(3.12) µf (C0(x[0, n− 1])) ∼ ρ−n expSnf(x).

Here “∼” means the ratio of the two sides is bounded above and away from zero,
uniformly in x and n.

If f ∈ C(ΩA,R), depends on only two coordinates, f(x) = f(x0x1) for all x ∈ ΩA,
then f has a unique equilibrium state µf , and µf ∈ M(ΩA). This measure µf is



12 MIKE BOYLE AND KARL PETERSEN

the 1-step Markov measure defined by the stochastic matrix P = stoch(Q), where

(3.13) Q(i, j) =

{
0 if A(i, j) = 0,

exp[f(ij)] otherwise .

(For an exposition see [73].)

The pressure of f is log ρ, where ρ is the spectral radius of Q. Conversely, a
Markov measure with stochastic transition matrix P is the equilibrium state of the
potential function f [ij] = logP (i, j).

By passage to the k-block presentation, we can generalize to the case of k-step
Markov measures: if f(x) = f(x0x1 · · ·xk), then f has a unique equilibrium state
µ, and µ is a k-step Markov measure.

Definition 3.5. We say that a function on a subshift X is locally constant if there
is m ∈ N such that f(x) depends only on x[−m,m]. LC(X,R) is the vector space
of locally constant real-valued functions on X . Ck(X,R) is the set of f in LC(X,R)
such that f(x) is determined by x[0, k − 1].

We can now express a viewpoint on Markov measures, due to Parry and Tuncel
[95, 74], which follows from the previous results.

Theorem 3.6. [74] Suppose ΩA is an irreducible shift of finite type; k ≥ 1; and
f, g ∈ Ck(X,R). Then the following are equivalent.

(1) µf = µg.
(2) There are h ∈ C(X,R) and c ∈ R such that f = g + (h− h ◦ σ) + c.
(3) There are h ∈ Ck−1(X,R) and c ∈ R such that f = g + (h− h ◦ σ) + c.

Proposition 3.7. [74] Suppose ΩA is an irreducible shift of finite type. Let

(3.14) W = {h− h ◦ σ + c : h ∈ LC(ΩA,R), c ∈ R} .

Then the rule [f ] 7→ µf defines maps

Ck(ΩA,R)/W → Mk(σA)

LC(ΩA,R)/W → ∪kMk(σA),

and these maps are bijections.

3.3. Compensation functions. Let π : (X,T ) → (Y, S) be a factor map between
topological dynamical systems. A compensation function for the factor map is a
continuous function ξ : X → R such that

(3.15) PY (V ) = PX(V ◦ π + ξ) for all V ∈ C(Y,R).

Because h(πµ) ≤ h(µ) and
∫
V d(πµ) =

∫
V ◦ π dµ, we always have

PY (V ) = sup{h(ν) +

∫

Y

V dν : ν ∈ M(Y )}(3.16)

≤ sup{h(µ) +

∫

X

V ◦ π dµ : µ ∈ M(X)} = PX(V ◦ π),(3.17)
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with possible strict inequality when π is infinite-to-one, in which case a strict in-
equality h(µ) > h(πµ) can arise from (informally) the extra information/complexity
arising from motion in fibers over points of Y . The pressure equality (3.15) tells
us that the addition of a compensation function ξ to the functions V ◦ π takes into
account (and exactly cancels out), for all potential functions V on Y at once, this
measure of extra complexity. Compensation functions were introduced in [18] and
studied systematically in [97]. A compensation function is a kind of oracle for how
entropy can appear in a fiber. The Markovian case is the case in which the oracle
has finite range, that is, there is a locally constant compensation function.

A compensation function for a factor map π : X → Y is saturated if it has the
form G ◦ π for a continuous function G on Y .

Example 3.8. For the factor map in Examples 2.7 and 2.8, the formula

(3.18) G(y) =

{
− log 2 if y = .a . . .

0 if y = .b . . .

determines a saturated compensation function G ◦ π on ΩA. The sum (or cocycle)
SnG(y) = G(y) + G(σy) + · · · + G(σn−1y) measures the growth of the number of
preimages of initial blocks of y:

(3.19) |π−1(y0 . . . yn−1)| = 2#{i:yi=a,0≤i<n}±1 ∼ 2#{i:yi=a,0≤i<n} = e−SnG(y).

Example 3.9. In the situation described at the end of Section 3.1, in which a 1-
step Markov measure maps to a 1-step Markov measure under a 1-block map, an
associated compensation function is

(3.20) ξ(x) = logP (i, j) − logQ(i, j) when x0x1 = ij.

Theorem 3.10. [18, 97] Suppose that π : ΩA → ΩB is a factor map between
irreducible shifts of finite type, with f ∈ LC(ΩA) and g ∈ LC(ΩB), and πµf = µg.
Then there is a constant c such that f − g ◦ π + c is a compensation function.
Conversely, if ξ is a locally constant compensation function, then µξ+g◦π is Markov
and πµξ+g◦π = µg.

In Theorem 3.10, the locally constant compensation function ξ relates potential
functions on ΩB to their lifts by composition on ΩA in the same way that the
corresponding equilibrium states are related:

(3.21)
LC(ΩB) →֒ LC(ΩA) via g → (g ◦ π) + ξ

M(ΩB) →֒ M(ΩA) via µg → µ(g◦π)+ξ.

Theorem 3.10 holds if we replace the class of locally constant functions with the
class of Hölder (exponentially decaying) functions, or with functions in the larger
and more complicated “Walters class” (defined in [97, Section 4]). More generally,
the arguments in [97, Theorem 4.1] go through to prove the following.

Theorem 3.11. Suppose that π : ΩA → ΩB is a factor map between irreducible
shifts of finite type. Let VA,VB be real vector spaces of functions in C(ΩA,R), C(ΩB ,R)
respectively such that the following hold.
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(1) VA and VB contain the locally constant functions.
(2) If f is in VA or VB, then f has a unique equilibrium state µf , and µf is a

Gibbs measure.
(3) If f ∈ VB, then f ◦ π ∈ VA.

Suppose f ∈ VA and g ∈ VB, and πµf = µg. Then there is a constant C such that
f − g ◦ π+C is a compensation function. Conversely, if ξ in VA is a compensation
function, then for all g ∈ VB it holds that πµξ+g◦π = µg.

Moreover, if G ∈ VB, then G ◦ π is a compensation function if and only if there
is c ≥ 1 such that

(3.22)
1

c
≤ eSnG(y) |π−1(y0 . . . yn−1)| ≤ c for all y, n.

Problem 3.12. Determine whether there exists a factor map π : X → Y between
mixing SFT’s and a potential function F ∈ C(X) which is not a compensation
function but has a unique equilibrium state µF whose image πµF is the measure
of maximal entropy on Y . If there were such an example, it would show that the
assumptions on function classes in Theorem 3.11 cannot simply be dropped.

We finish this section with some more general statements about compensation
functions for factor maps between shifts of finite type.

Proposition 3.13. [97] Suppose that π : ΩA → ΩB is a factor map between irre-
ducible shifts of finite type. Then

(1) There exists a compensation function.
(2) If ξ is a compensation function, g ∈ C(ΩB,R), and µ is an equilibrium

state of ξ + g ◦ π, then πµ is an equilibrium state of g.
(3) The map π takes the measure of maximal entropy (see Section 3.5) of ΩA

to that of ΩB if and only if there is a constant compensation function.

Yuki Yayama [99] has begun the study of compensation functions which are
bounded Borel functions.

3.4. Relative pressure. When studying factor maps, relativized versions of en-
tropy and pressure are relevant concepts. Given a factor map π : ΩA → ΩB between
shifts of finite type, for each n = 1, 2, · · · and y ∈ Y , let Dn(y) be a set consisting of
exactly one point from each nonempty set [x0 · · ·xn−1]∩π−1(y). Let V ∈ C(ΩA,R)
be a potential function on ΩA. For each y ∈ ΩB, the relative pressure of V at y
with respect to π is defined to be

(3.23) P (π, V )(y) = lim sup
n→∞

1

n
log

[ ∑

x∈Dn(y)

exp
( n−1∑

i=0

V (σix)
)]
.

The relative topological entropy function is defined for all y ∈ Y by

(3.24) P (π, 0)(y) = lim sup
n→∞

1

n
log
∣∣Dn(y)

∣∣,
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the relative pressure of the potential function V ≡ 0.

For the relative pressure function, a Relative Variational Principle was proved
by Ledrappier and Walters ([64], see also [30]): for all ν in M(ΩB) and all V in
C(ΩA),

(3.25)

∫
P (π, V ) dν = sup

{
h(µ) +

∫
V dµ : πµ = ν

}
− h(ν).

In particular, for a fixed ν ∈ M(ΩB), the maximum measure-theoretic entropy
of a measure on ΩA that maps under π to ν is given by

h(ν) + sup{hµ(X |Y ) : πµ = ν} = h(ν) + sup{h(µ) − h(ν) : πµ = ν}(3.26)

= h(ν) +

∫

Y

P (π, 0) dν .

In [80] a finite-range, combinatorial approach was developed for the relative
pressure and entropy, in which instead of examining entire infinite sequences x in
each fiber over a given point y ∈ ΩB, it is enough to deal just with preimages of
finite blocks (which may or may not be extendable to full sequences in the fiber).
For each n = 1, 2, . . . and y ∈ Y let En(y) be a set consisting of exactly one point
from each nonempty cylinder x[0, n−1] ⊂ π−1y[0, n−1]. Then for each V ∈ C(ΩA),

(3.27) P (π, V )(y) = lim sup
n→∞

1

n
log

[ ∑

x∈En(y)

exp
( n−1∑

i=0

V (σix)
)]

a.e. with respect to every ergodic invariant measure on Y. Thus, we obtain the
value of P (π, V )(y) a.e. with respect to every ergodic invariant measure on Y if we
delete from the definition of Dn(y) the requirement that x ∈ π−1(y).

In particular, the relative topological entropy is given by

(3.28) P (π, 0)(y) = lim sup
n→∞

1

n
log |π−1y[0, n− 1]|

a.e. with respect to every ergodic invariant measure on Y .

And if µ is relatively maximal over ν, in the sense that it achieves the supremum
in (3.26), then

(3.29) hµ(X |Y ) =

∫

Y

lim
n→∞

1

n
log |π−1y[0, n− 1]| dν(y).

3.5. Measures of maximal and relatively maximal entropy. Already Shan-
non [90] constructed the measures of maximal entropy on irreducible shifts of finite
type. Parry [72] independently and from the dynamical viewpoint rediscovered
the construction and proved uniqueness. For an irreducible shift of finite type the
unique measure of maximal entropy is a 1-step Markov measure whose transition
probability matrix is the stochasticization, as in (3.1), of the 0, 1 matrix that defines
the subshift. When studying factor maps π : ΩA → ΩB it is natural to look for
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measures of maximal relative entropy, which we also call relatively maximal mea-
sures : for fixed ν on ΩB, look for the µ ∈ π−1ν which have maximal entropy in that
fiber. Such measures always exist by compactness and upper semicontinuity, but,
in contrast to the Shannon-Parry case (when ΩB consists of a single point), they
need not be unique. E.g., in Example 2.9, the two-to-one map π respects entropy,
and for p 6= 1/2 there are exactly two ergodic measures (the Bernoulli measures
µp and µ1−p) which π sends to νp. Moreover, there exists some Vp ∈ C(Y ) which
has νp as a unique equilibrium state [52, 81], and Vp ◦ π has exactly two ergodic
equilibrium states, µp and µ1−p.

Here is a useful characterization of relatively maximal measures due to Shin.

Theorem 3.14 [92]. Suppose that π : X → Y is a factor map of shifts of finite
type, ν ∈ M(Y ) is ergodic, and πµ = ν. Then µ is relatively maximal over ν if and
only if there is V ∈ C(Y,R) such that µ is an equilibrium state of V ◦ π.

If there is a locally constant saturated compensation function G ◦ π, then every
Markov measure on Y has a unique relatively maximal lift, which is Markov, because
then the relatively maximal measures over an equilibrium state of V ∈ C(Y,R) are
the equilibrium states of V ◦ π + G ◦ π [97]. Further, the measure of maximal
entropy maxX is the unique equilibrium state of the potential function 0 on X ; and
the relatively maximal measures over maxY are the equilibrium states of G ◦ π.

It was proved in [79] that for each ergodic ν on Y , there are only a finite number
of relatively maximal measures over ν. In fact, for a 1-block factor map π between 1-
step shifts of finite type X,Y , the number of ergodic invariant measures of maximal
entropy in the fiber π−1{ν} is at most

(3.30) Nν(π) = min{|π−1{b}| : b ∈ A(Y ), ν[b] > 0}.

This follows from the theorem in [79] that for each ergodic ν on Y , any two
distinct ergodic measures onX of maximal entropy in the fiber π−1{ν} are relatively
orthogonal. This concept is defined as follows.

For µ1, . . . , µn ∈ M(X) with πµi = ν for all i, their relatively independent
joining µ̂ over ν is defined by:

if A1, . . . , An are measurable subsets of X and F is the σ-algebra of Y , then

(3.31) µ̂(A1 × . . .×An) =

∫

Y

n∏

i=1

Eµi
(111Ai

|π−1F) ◦ π−1 dν

in which E denotes conditional expectation. Two ergodic measures µ1, µ2 with
πµ1 = πµ2 = ν are relatively orthogonal (over ν), µ1 ⊥ν µ2, if

(3.32) (µ1 ⊗ν µ2){(u, v) ∈ X ×X : u0 = v0} = 0.

This means that with respect to the relatively independent joining or coupling,
there is zero probability of coincidence of symbols in the two coordinates.
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That the second theorem (distinct ergodic relatively maximal measures in the
same fiber are relatively orthogonal) implies the first (no more than Nν(π) relatively
maximal measures over ν) follows from the Pigeonhole Principle. If we have n >
Nν(π) ergodic measures µ1, . . . , µn on X , each projecting to ν and each of maximal
entropy in the fiber π−1{ν}, we form the relatively independent joining µ̂ on Xn

of the measures µi as above. Write pi for the projection Xn → X onto the i’th
coordinate. For µ̂-almost every x̂ in Xn, π(pi(x̂)) is independent of i; abusing
notation for simplicity, denote it by π(x̂). Let b be a symbol in the alphabet of
Y such that b has Nν(π) preimages a1, . . . , aNν(π) under the block map π. Since

n > Nν(π), for every x̂ ∈ π−1[b] there are i 6= j with (pix̂)0 = (pj x̂)0. At least one
of the sets Si,j = {x̂ ∈ Xn : (pix̂)0 = (pj x̂)0} must have positive µ̂-measure, and
then also

(3.33) (µi ⊗ν µj){(u, v) ∈ X ×X : πu = πv, u0 = v0} > 0,

contradicting relative orthogonality. (Briefly, if you have more measures than
preimage symbols, two of those measures have to coincide on one of the symbols:
with respect to each measure, that symbol a.s. appears infinitely many times in
the same place.)

The second theorem is proved by “interleaving” measures to increase entropy. If
there are two relatively maximal measures over ν which are not relatively orthogo-
nal, then the measures can be ‘mixed’ to give a measure with greater entropy. We
concatenate words from the two processes, using the fact that the two measures are
supported on sequences that agree infinitely often. Since X is a 1-step SFT, we can
switch over whenever a coincidence occurs. That the switching increases entropy
is seen by using the strict concavity of the function −t log t and lots of calculations
with conditional expectations.

Example 3.15. Here is an example (also discussed in [79, Example 1]) showing that
to find relatively maximal measures over a Markov measure it is not enough to
consider only sofic measures which map to it. We describe a factor map π which
is both left and right e-resolving (see section 6.1) and such that there is a unique
relatively maximal measure µ above any fully-supported Markov measure ν, but
the measure µ is not Markov, and it is not even sofic.

We use vertex shifts of finite type. The alphabet for the domain subshift is
{a1, a2, b} (in that order for indexing purposes), and the factor map (onto the 2-
shift (Ω2, σ)) is the 1-block code π which erases subscripts. The transition diagram
and matrix A for the domain shift of finite type (ΩA, σ) are

(3.34)

a1

b




1 1 1
0 1 1
1 1 1


 .

a2
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Above the word banb in Ω2 there are n + 1 words in ΩA: above an we see k a1’s
followed by n−k a2’s, where 0 ≤ k ≤ n. Let us for simplicity consider the maximal
measure ν on (Ω2, T ); so, ν(C0(ba

nb)) = 2−n−2. Now the maximal entropy lift µ
of ν will assign equal measure 2−(n+2)/(n + 1) to each of the preimage blocks of
banb. If µ is sofic, then (as in Sec. 4.1.4) there are vectors u, v and a square matrix
Q such that µ(C0(b(a1)

nb) = uQnv for all n > 0. Then the function n 7→ uQnv is
some finite sum of terms of the form rnj(λn) where j ∈ Z+ and r, λ are constants.
The function n 7→ 2−(n+2)/(n+ 1) is not a function of this type.

Problem 3.16. Is it true that for every factor map π : ΩA → ΩB every (fully
supported) Markov measure ν on ΩB has a unique relatively maximal measure
that maps to it, and this is also a measure with full support?

Remark 3.17. After the original version of this paper was posted on the Math Arxiv
and submitted for review, we received the preprint [100] of Jisang Yoo containing
the following result: ”Given a factor map from an irreducible SFT X to a sofic
shift Y and an invariant measure ν on Y with full support, every measure on X
of maximal relative entropy over ν is fully supported.” This solves half of Problem
3.16.

3.6. Finite-to-one codes. Suppose π : ΩA → ΩB is a finite-to-one factor map of
irreducible shifts of finite type. There are some special features of this case which
we collect here for mention. Without loss of generality, after recoding we assume
that π is a 1-block code. Given a Markov measure µ and a periodic point x we
define the weight-per-symbol of x (with respect to µ) to be

(3.35) wpsµ(x) := lim
n→∞

1

n
logµ{y : xi = yi, 0 ≤ i < n} .

Proposition 3.18. Suppose π : ΩA → ΩB is a finite-to-one factor map of irre-
ducible shifts of finite type. Then

(1) The measure of maximal entropy on ΩB lifts to the measure of maximal
entropy on ΩA.

(2) Every Markov measure on ΩB lifts to a unique Markov measure of equal
order on ΩA.

(3) If µ, ν are Markov measures on ΩA,ΩB respectively, then the following are
equivalent:
(a) πµ = ν
(b) for every periodic point x in ΩA, wpsµ(x) = wpsν(πx).

Proofs can be found in, for example, [56]. For infinite-to-one codes, we do not
know an analogue of Prop. 3.18 (3).

3.7. The semigroup measures of Kitchens and Tuncel. There is a hierarchy
of sofic measures according to their sofic degree. Among the degree-1 sofic measures,
there is a distinguished and very well behaved subclass, properly containing the
Markov measures. These are the semigroup measures introduced and studied by
Kitchens and Tuncel in their memoir [57]. Roughly speaking, semigroup measures
are to Markov measures as sofic subshifts are to SFT’s.
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A sofic subshift can be presented by a semigroup [98, 57]. Associated to this are
nonnegative transition matrices R0, L0. A semigroup measure (for the semigroup
presentation) is defined by a state probability vector and a pair of stochastic ma-
trices R,L with 0/+ pattern matching R0, L0 and satisfying certain consistency
conditions. These matrices can be multiplied to compute measures of cylinders. A
measure is a semigroup measure if there exist a semigroup and apparatus as above
which can present it. We will not review this constructive part of the theory, but
we mention some alternate characterizations of these measures.

For a sofic measure µ on X and a periodic point x in X , the weight-per-symbol
of x with respect to µ is still well defined by (3.35). Let us say a factor map
π respects µ-weights if whenever x, y are periodic points with the same image we
have wpsµ(x) = wpsµ(y). Given a word U = U [−n . . . 0] and a measure µ, let µU

denote the conditional measure on the future, i.e. if UW is an allowed word then
µU (W ) = µ(UW )/µ(U).

Theorem 3.19. [57] Let ν be a shift-invariant measure on an irreducible sofic
subshift Y . Then the following are equivalent:

(1) ν is a semigroup measure.
(2) ν is the image of a Markov measure µ under a finite-to-one factor map

which respects µ-weights.
(3) ν is the image of a Markov measure µ under a degree 1 resolving factor

map which respects µ-weights.
(4) The collection of conditional measures µU , as U ranges over all Y -words,

is finite.

There is also a thermodynamic characterization of these measures as unique
equilibrium states of bounded Borel functions which are locally constant on doubly
transitive points, very analogous to the characterization of Markov measures as
unique equilibrium states of continuous locally constant functions. The semigroup
measures satisfy other nice properties as well.

Theorem 3.20. [57] Suppose π : X → Y is a finite-to-one factor map of irreducible
sofic subshifts and µ and ν are semigroup measures on X and Y respectively. Then

(1) ν lifts by π to a unique semigroup measure on X, and this is the unique
ergodic measure on X which maps to ν;

(2) πµ is a semigroup measure if and only if π respects µ-weights;
(3) there is an irreducible sofic subshift X ′ of X such that π maps X ′ finite-to-

one onto X [69], and therefore ν lifts to a semigroup measure on X ′.

In contrast to the last statement, it can happen for an infinite-to-one factor
map between irreducible SFTs that there is a Markov measure on the range which
cannot lift to a Markov measure on any subshift of the domain [69].

We finish here with an example. There are others in [57].
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Example 3.21. This is an example of a finite-to-one, one-to-one a.e. 1-block code
π : ΩA → ΩB between mixing vertex shifts of finite type, with a 1-step Markov
measure µ on ΩA, such that the following hold:

(1) For all periodic points x, y in ΩA, πx = πy implies that wpsµ(x) = wpsµ(y) .
(2) πµ is not Markov on ΩB.

Here the alphabet of ΩA is {1, 2, 3}; the alphabet of ΩB is {1, 2};

A =




0 1 0
1 0 1
1 1 0


 and B =

(
0 1
1 1

)
;

and π is the 1-block code sending 1 to 1 and sending 2 and 3 to 2. The map π
collapses the points in the orbit of (23)∗ to a fixed point and collapses no other
periodic points. (Given a block B, we let B∗ denote a periodic point obtained by
infinite concatenation of the block B.)

Let f be the function on ΩA such that f(x) = log 2 if x0x1 = 23, f(x) = log(1/2)
if x0x1 = 32 and f(x) = 0 otherwise. Let µ be the 1-step Markov measure which is
the unique equilibrium state for f , defined by the stochasticization P of the matrix

M =




0 1 0
1 0 2
1 1/2 0


 .

Let λ denote the spectral radius of M . Suppose that ν = πµ is Markov, of any
order. Then wpsν(2∗) = wpsµ((23)∗) = − logλ. Also, there must be a constant c
such that for all large n,

(3.36) wpsν((12n)∗) =
1

n+ 1
(c+ (n+ 1)wpsν(2∗)) =

c

n+ 1
− logλ .

So, for all large n,
(3.37)

c

2n+ 1
− logλ = wpsν((122n)∗) = wpsµ((1(23)n)∗) =

1

2n+ 1
log(2λ−(2n+1))

and

c

2n+ 2
− logλ = wpsν((122n+1)∗) = wpsµ((1(23)n2)∗) =

1

2n+ 2
log(λ−(2n+2)) .

Thus c = log 2 and c = 0, a contradiction. Therefore πµ is not Markov.

4. Identification of hidden Markov measures

Given a finite-state stationary process, how can we tell whether it is a hidden
Markov process? If it is, how can we construct some Markov process of which it is
a factor by means of a sliding block code? When is the image of a Markov mea-
sure under a factor map again a Markov measure? These questions are of practical
importance, since scientific measurements often capture only partial information
about systems under study, and in order to construct useful models the significant
hidden variables must be identified and included. Beginning in the 1960’s some
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criteria were developed for recognizing a hidden Markov process: loosely speaking,
an abstract algebraic object constructed from knowing the measures of cylinder sets
should be in some sense finitely generated. Theorem 4.20 below gives equivalent
conditions, in terms of formal languages and series (the series is “rational”), linear
algebra (the measure is “linearly representable”), and abstract algebra (some mod-
ule is finitely generated), that a shift-invariant probability measure be the image
under a 1-block map of a shift-invariant 1-step Markov measure. In the following
we briefly explain this result, including the terminology involved.

Kleene [59] characterized rational languages as the linearly representable ones,
and this was generalized to formal series by Schützenberger [89]. In the study
of stochastic processes, functions of Markov chains were analyzed by Gilbert [40],
Furstenberg [39], Dharmadhikari [23, 24, 25, 26, 27, 28], Heller [48, 49], and oth-
ers. For the connection between rational series and continuous images of Markov
chains, we follow Berstel-Reutenauer [9] and Hansel-Perrin [46], with an addition
to explain how to handle zero entries. Subsequent sections describe the approaches
of Furstenberg and Heller and related work.

Various problems around these ideas were (and continue to be) explored and
solved. In particular, it is natural to ask when is the image of a Markov measure µ
under a continuous factor map π a Gibbs measure (see (3.12), or when is the image
of a Gibbs measure again a Gibbs measure? Chazottes and Ugalde [21] showed
that if µ is k-step Markov on a full shift Ωd and π maps Ωd onto another full shift
ΩD, then the image πµ is a Gibbs measure which is the unique equilibrium state of
a Hölder continuous potential which can be explicitly described in terms of a limit
of matrix products and computed at periodic points. They also gave sufficient
conditions in the more general case when the factor map is between SFT’s. The
case when µ is Gibbs but not necessarily Markov is considered in [22]. For higher-
dimensional versions see for example [63, 68, 43].

Among the extensive literature that we do not cite elsewhere, we can mention
in addition [47, 70, 35, 10, 88].

4.1. Formal series and formal languages.

4.1.1. Basic definitions. As in Section 2.1, continue to let A be a finite alphabet,
A∗ the set of all finite words on A, and A+ the set of all finite nonempty words on
A. Let ǫ denote the empty word. A language on A is any subset L ⊂ A∗.

Recall that a monoid is a set S with a binary operation S × S → S which is
associative and has a neutral element (identity). This means we can think of A∗ as
the multiplicative free monoid generated by A, where the operation is concatenation
and the neutral element is ǫ.

A formal series (nonnegative real-valued, based on A) is a function s : A∗ → R+.
For all w ∈ A∗, s(w) = (s, w) ∈ R+, which can be thought of as the coefficient of w
in the series s. We will think of this s as

∑
w∈A∗ s(w)w, and this will be justified
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later. If v ∈ A∗ and s is the series such that s(v) = 1 and s(w) = 0 otherwise, then
we sometimes use simply v to denote s.

Associated with any language L on A is its characteristic series FL : A∗ → R+

which assigns 1 to each word in L and 0 to each word in A∗ \L. Associated to any
Borel measure µ on AZ+ is its corresponding series Fµ defined by

(4.1) Fµ(w) = µ(C0(w)) = µ{x ∈ AZ+ : x[0, |w| − 1] = w}.

It is sometimes useful to consider formal series with values in any semiring K,
which is just a ring without subtraction. That is, K is a set with operations +
and · such that (K,+) is a commutative monoid with identity element 0, (K, ·) is
a monoid with identity element 1; the product distributes over the sum; and for
k ∈ K, 0k = k0 = 0.

We denote the set of all K-valued formal series based on A by K〈〈A〉〉 or FK(A).
We further abbreviate R+〈〈A〉〉 = F(A).

Then F(A) is a semiring in a natural way: For f1, f2 ∈ F(A), define

(1) (f1 + f2)(w) = f1(w) + f2(w)
(2) (f1f2)(w) =

∑
f1(u)f2(v), where the sum is over all u, v ∈ A∗ such that

uv = w, a finite sum.

The neutral element for multiplication in F(A) is

(4.2) s1(w) =

{
1 if w = ǫ

0 otherwise.

As discussed above, we will usually write simply ǫ for s1. There is a natural injection
R+ →֒ F(A) defined by t 7→ tǫ for all t ∈ R+.

Note that:

• R+ acts on F(A) on both sides:
(ts)(w) = ts(w), (st)(w) = s(w)t, for all w ∈ A∗, for all t ∈ R+.

• There is a natural injection A∗ →֒ F(A) as a multiplicative submonoid:
For w ∈ A∗ and v ∈ A∗, define

w(v) = δwv =

{
1 if w = v

0 otherwise.

This is a 1-term series.

Definition 4.1. The support of a formal series s ∈ F(A) is

supp(s) = {w ∈ A∗ : s(w) 6= 0}.

Note that supp(s) is a language. A language corresponds to a series with coefficients
0 and 1, namely its characteristic series.
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Definition 4.2. A polynomial is an element of F(A) whose support is a finite
subset of A∗. Denote the K-valued polynomials based on A by ℘K(A) = K〈A〉.
The degree of a polynomial p is deg(p) = max{|w| : p(w) 6= 0} and is −∞ if p ≡ 0.

Definition 4.3. A family {fλ : λ ∈ Λ} ⊂ F(A) of series is called locally finite if
for all w ∈ A∗ there are only finitely many λ ∈ Λ for which fλ(w) 6= 0. A series
f ∈ F(A) is called proper if f(ǫ) = 0.

Proposition 4.4. If f ∈ F(A) is proper, then {fn : n = 0, 1, 2, . . .} is locally
finite.

Proof. If n > |w|, then fn(w) = 0, because

fn(w) =
∑

u1...un=w
ui∈A∗, i=1,...,n

f(u1) . . . f(un)

and at least one ui is ǫ. �

Definition 4.5. If f ∈ F(A) is proper, define

f∗ =

∞∑

n=0

fn and f+ =

∞∑

n=1

fn (a pointwise finite sum),

with f0 = 1 = 1 · ǫ = ǫ.

4.1.2. Rational series and languages.

Definition 4.6. The rational operations in F(A) are sum (+), product (·), multipli-
cation by real numbers (tw), and ∗ : f → f∗. The family of rational series consists
of those f ∈ F(A) that can be obtained by starting with a finite set of polynomials
in F(A) and applying a finite number of rational operations.

Definition 4.7. A language L ⊂ A∗ is rational if and only if its characteristic
series

(4.3) F (w) =

{
1 if w ∈ L

0 if w /∈ L

is rational.

Recall that regular languages correspond to regular expressions: The set of reg-
ular expressions includes A, ǫ, ∅ and is closed under +, · , *. A language recog-
nizable by a finite-state automaton, or consisting of words obtained by reading off
sequences of edge labels on a finite labeled directed graph, is regular.

Proposition 4.8. A language L is rational if and only if it is regular. Thus a
nonempty insertive and extractive language is rational if and only if it is the lan-
guage of a sofic subshift.
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4.1.3. Distance and topology in F(A). If f1, f2 ∈ F(A), define

(4.4) D(f1, f2) = inf{n ≥ 0 : there is w ∈ An such that f1(w) 6= f2(w)}

and

(4.5) d(f1, f2) =
1

2D(f1,f2)
.

Note that d(f1, f2) defines an ultrametric on F(A):

(4.6) d(f, h) ≤ max{d(f, g), d(g, h)} ≤ d(f, g) + d(g, h).

With respect to the metric d, fk → f if and only if for each w ∈ A∗, fk(w) → f(w)
in the discrete topology on R, i.e. fk(w) eventually equals f(w).

Proposition 4.9. F(A) is complete with respect to the metric d and is a topo-
logical semiring with respect to the metric d (that is, + and · are continuous as
functions of two variables).

Definition 4.10. A family {Fλ : λ ∈ Λ} of formal series is called summable if there
is a series F ∈ F(A) such that for every δ > 0 there is a finite set Λδ ⊂ Λ such
that for each finite set I ⊂ Λ with Λδ ⊂ I, d(

∑
i∈I Fi, F ) < δ. Then F is called the

sum of the series and we write F =
∑

λ∈Λ Fλ.

Proposition 4.11. If {Fλ : λ ∈ Λ} is locally finite, then it is summable, and
conversely.

Thus any F ∈ F(A) can be written as F =
∑

w∈A* F (w)w, where the formal
series is a convergent infinite series of polynomials in the metric of F(A). Recall
that

(F (w)w)(v) =

{
F (w) if w = v

0 if w 6= v,

where F (w)w ∈ F(A) and w ∈ A*, so that {F (w)w : w ∈ A*} is a locally finite,
and hence summable, subfamily of F(A).

We note here that the set ℘(A) of all polynomials is dense in F(A).

4.1.4. Recognizable (linearly representable) series.

Definition 4.12. F ∈ F(A) is linearly representable if there exists an n ≥ 1 (the
dimension of the representation) such that there are a 1×n nonnegative row vector
x ∈ R

n
+, an n × 1 nonnegative column vector y ∈ R

n
+, and a morphism of multi-

plicative monoids φ : A* → R
n×n
+ (the multiplicative monoid of nonnegative n× n

matrices) such that for all w ∈ A*, F (w) = xφ(w)y (matrix multiplication). A lin-
early representable measure is one whose associated series is linearly representable.
The triple (x, φ, y) is called the linear representation of the series (or measure).
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Example 4.13. Consider a Bernoulli measure B(p0, p1, . . . , pd−1) on Ω+(A) = AZ+

where A = {a0, a1, . . . , ad−1}, and p = (p0, p1, . . . , pd−1) is a probability vector.

Let f =
∑d−1

i=0 piai ∈ F(A). Then

f(w) =

{
pi if w = ai

0 if w 6= ai.

Define Fp = f∗ =
∑

n≥0 f
n. Note that f is proper since we have f(ǫ) = 0. Consider

the particular word w = a2a0. Then f0(w) = f(w) = 0, and for n ≥ 3, we have
fn(w) = 0 because any factorization w = u1u2u3 includes ǫ and f(ǫ) = 0. Thus
Fp(w) = f∗(w) = f2(w) =

∑
uv=w f(u)f(v) = f(a2)f(a0) = p2p0. Continuing in

this way, we see that for wi ∈ A, Fp(w1w2 . . . wn) = pw1
pw2

. . . pwn
.

Example 4.14. Consider a Markov measure µ on Ω+(A) defined by a d×d stochastic
matrix P and a d-dimensional probability row vector p = (p0, p1, · · · , pd−1). Define
Fp,P ∈ F(A) by Fp,P (w1 . . . wn) = µ(C0(w1 . . . wn)) for all w1, . . . , wn ∈ A. Put y =

(1, . . . , 1)tr ∈ R
d
+, x = p ∈ R

d
+, and let φ be generated by φ(aj), j = 0, 1, ..., d− 1,

where

(4.7) φ(aj) =




0 · · · P0j 0 · · · 0
0 · · · P1j 0 · · · 0
... · · ·

...
... · · ·

...
0 · · · Pd−1,j 0 · · · 0


 for each aj ∈ A.

Then the triple (x, φ, y) represents the given Markov measure µ. In this Markov
case each matrix φ(aj) has at most one nonzero column and thus has rank at most
1.

Example 4.15. Now we show how to obtain a linear representation of a sofic measure
that is the image under a 1-block map π of a 1-step Markov measure. Let µ be a
1-step Markov measure determined by a d× d stochastic matrix P and fixed vector
p as in Example 4.14. Let π : X → Y be a 1-block map from the SFT X to a
subshift Y . For each a in the alphabet B = A(Y ) let Pa be the d× d matrix such
that

(4.8) Pa(i′, j′) =

{
P (i′, j′) if π(j′) = a

0 otherwise.

Thus Pa just zeroes out all the columns of P except the ones corresponding to
indices in the π-preimage of the symbol a in the alphabet of Y . Again let y =
(1, . . . , 1)tr. For each a ∈ B define φ(a) = Pa. That the ν-measure of each cylinder
in Y is the sum of the µ-measures of its preimages under π says that the triple
(x, φ, y) represents ν = πµ.

In working with linearly representable measures, it is useful to know that the
nature of the vectors and matrix involved in the representation can be assumed
to have a particular restricted form. Below, we say a matrix P is a direct sum
of irreducible stochastic matrices if the index set for the rows and columns of P
is the disjoint union of sets for which the associated principal submatrices of P
are irreducible stochastic matrices. (Equivalently, there are irreducible stochastic
matrices P1, . . . , Pk and a permutation matrix Q such that QPQ−1 is the block
diagonal matrix whose successive diagonal blocks are P1, . . . , Pk.)
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Proposition 4.16. A formal series F ∈ F(A) corresponds to a linearly repre-
sentable shift-invariant probability measure µ on Ω+(A) if and only if F has a
linear representation (x, φ, y) with P =

∑
a∈A φ(a) a stochastic matrix, y a column

vector of all 1’s, and xP = x. Moreover, in this case the vector x can be chosen to
be positive with the matrix P a direct sum of irreducible stochastic matrices.

Proof. It is straightforward to check that any (x, φ, y) of the specified form lin-
early represents a shift-invariant measure. Conversely, given a linear representa-
tion (x, φ, y) as in Definition 4.12 of a shift-invariant probability measure µ, de-
fine P =

∑
a∈A φ(a) and note that, by induction, for all w ∈ A∗, µ(C0(w)) =

xφ(w)P ky = xP kφ(w)y for all natural numbers k.

Next, one shows that it is possible to reduce to a linear representation (x, φ, y) of
µ such that each entry of x and y is nonzero, and, with P defined as P =

∑
aǫA φ(a),

xP = x and Py = y. This requires some care. If indices corresponding to 0 entries
in x or y, or to 0 rows or columns in P , are jettisoned nonchalantly, the resulting
new φ may no longer be a morphism.

Definition 4.17. A triple (x′, φ′, y′) is obtained from (x, φ, y) by deleting a set I
of indices if the following holds: the indices for (x, φ, y) are the disjoint union of
the set I and the indices for (x′, φ′, y′); and for every symbol a and all indices i, j
not in I we have x′i = xi, y

′
i = yi and φ′(a)(i, j) = φ(a)(i, j). Then we let φ′ also

denote the morphism determined by the map on generators a 7→ φ′(a).

First, suppose that j is an index such that column j of P (and therefore column
j of every φ(a) := Ma) is zero. By shift invariance of the measure, (xP, φ, y) is
still a representation, so we may assume without loss of generality that xj = 0. Let
(x′, φ′, y) be obtained from (x, φ, y) by deleting the index j. We claim that (x′, φ′, y)
still gives a linear representation of µ. This is because for any word a1 . . . am, the
difference [xφ(a1) · · ·φ(am)y]− [x′φ′(a1) · · ·φ′(am)y′] is a sum of terms of the form

(4.9) x(i0)Ma1
(i0, i1)Ma2

(i1, i2) · · ·Mam
(im−1, im)y(im)

in which at least one index it equals j. If i0 = j, then x(i0) = 0; if it = j with
t > 0, then Mat

(it−1, it) = 0. In either case, the product is zero.

By the analogous argument involving y rather than x, we may pass to a new
representation by deleting the index of any zero row of P . We repeat until we arrive
at a representation in which no row or column of P is zero.

An irreducible component of P is a maximal principal submatrix C which is
an irreducible matrix. C is an initial component if for every index j of a column
through C, P (i, j) > 0 implies that (i, j) indexes an entry of C. C is a terminal
component if for every index i of a row through C, P (i, j) > 0 implies that (i, j)
indexes an entry of C.

Now suppose that I is the index set of an initial irreducible component of P ,
and x(i) = 0 for every i in I. Define (x′, φ′, y) by deleting the index set I. By an
argument very similar to the argument for deleting the index of a zero column, the
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triple (x′, φ′, y′) still gives a linear representation of µ. Similarly, if J is the index
set of a terminal irreducible component of P , and y(j) = 0 for every j in J , we
may pass to a new representation by deleting the index set J .

Iterating these moves, we arrive at a representation for which P has no zero row
and no zero column; every initial component has an index i with x(i) > 0; and
every terminal component has an index j with y(j) > 0. We now claim that for
this representation the set of matrices {Pn} is bounded. Suppose not. Then there
is a pair of indices i, j for which the entries Pn(i, j) are unbounded. There is some
initial component index i0, and some k ≥ 0, such that x(i0) > 0 and P k(i0, i) > 0.
Likewise there is a terminal component index j0 and an m ≥ 0 such that y(j0) > 0
and Pm(j, j0) > 0. Appealing to shift invariance of µ, for all n > 0 we have

(4.10) 1 = xPn+k+my ≥ x(i0)P
k(i0, i)P

n(i, j)Pm(j, j0)y(j0),

which is a contradiction to the unboundedness of the entries Pn(i, j). This proves
the family of matrices Pn is bounded.

Next let Qn be the Cesàro sum, (1/n)(P + ... + Pn). Let Q be a limit of a
subsequence of the bounded sequence {Qn}. Then PQ = Q = QP ; xQ and Qy are
fixed vectors of P ; and (xQ, φ,Qy) is a linear representation of µ. It could be that
xQ vanishes on all indices through some initial component, or that Qy vanishes on
all indices through some terminal component. In this case we simply cycle through
our reductions until finally arriving a linear representation (x, φ, y) of µ such that
xP = x; Py = y; the set of matrices {Pn} is bounded; P has no zero row or column;
x does not vanish on all indices of any initial component; and y does not vanish on
all indices of any terminal component.

If C is an initial component of P , then the restriction of x to the indices of C
is a nontrivial fixed vector of C. Thus this restriction is positive, and the spectral
radius of C is at least 1. The spectral radius of C must then be exactly 1, because
the set {Pn} is bounded.

We are almost done. Suppose P is not the direct sum of irreducible matrices.
Then there must be an initial component with index set I and a terminal component
with index set J 6= I, with some i ∈ I, j ∈ J and m minimal in N such that
Pm(i, j) > 0. Because I indexes an initial component, for any k ∈ N we have
that (xP k)i is the sum of the terms xi0P (i0, i1) · · ·P (ik−1, i) such that it ∈ I,
0 ≤ t ≤ k − 1. Because J indexes an terminal component, for any k ∈ N we have
that (P ky)j is the sum of the terms P (j, i1) · · ·P (ik−1, ik)y(ik) such that it ∈ J ,
1 ≤ t ≤ k. Because I 6= J , by the minimality of m we have for all n ∈ N that

(4.11) xy = xPm+ny ≥
n∑

k=0

(xP k)iP
m(i, j)(Pn−ky)j = (n+ 1)xiP

m(i, j)yj ,

a contradiction.

Consequently, P is now a direct sum of irreducible matrices, each of which has
spectral radius 1. The eigenvectors x, y are now positive. Let D be the diagonal ma-
trix with D(i, i) = y(i). Define (x′, φ′, y) = (xD,D−1φD,D−1y). Then (x′, φ′, y)
is the linear representation satisfying all the conditions of the theorem.
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�

Example 4.18. The conclusion of the Proposition does not follow without the hy-
pothesis of stationarity: there need not be any linear representation with positive
vectors x, y, and there need not be any linear representation in which the nonneg-
ative vectors x, y are fixed vectors of P . For example, consider the nonstationary
Markov measure µ on two states a, b with initial vector p = (1, 0) and transition
matrix

(4.12) T =

(
1/2 1/2
0 1

)
=

(
1/2 1/2
0 0

)
+

(
0 0
0 1

)
= Na +Nb .

If q is the column vector (1, 1)tr, then p,Na, Nb, q generate a linear representation
of µ, e.g. 1 = µ(C0(a)) = pNaq, and (1/2)k = µ(C0(a

kbm)) = p(Na)k(Nb)
mq when

k,m > 0 .

Now suppose that there is a linear representation of µ generated by positive
vectors x, y and nonnegative matrices Ma,Mb. Then

(4.13)
1 = µ(C0(a)) = xMay,

0 = µ(C0(b)) = xMby.

From the second of these equations, Mb = 0, since x > 0 and y > 0. But this
contradicts 0 < µ(C0(ab)) = xMaMby.

Next suppose there is a linear representation for which x, y could be chosen
eigenvectors of P = Ma +Mb (necessarily with eigenvalue 1, since xPny = 1 for all
n > 0). Then

(4.14)
1

2
= µ(C0(ab)) = xMaMby ≤ xPMby = xMby = µ(C0(b)) = 0,

which is a contradiction.

4.2. Equivalent characterizations of hidden Markov measures.

4.2.1. Sofic measures—formal series approach. The semiring F(A) of formal series
on the alphabet A is an R+-module in a natural way. On this module we have a
(linear) action of A∗ defined as follows:

For F ∈ F(A) and w ∈ A∗, define (w,F ) → w−1F by

(w−1F )(v) = F (wv) for all v ∈ A∗.

Thus

w−1F =
∑

v∈A∗

F (wv)v.

If F = u ∈ A∗, then

(w−1F )(v) = u(wv) =

{
1 if wv = u

0 if wv 6= u.
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Thus w−1u 6= 0 if and only if u = wv for some v ∈ A∗, and then w−1u = v (in the
sense that they are the same function on A∗): w−1v erases w from v if v has w as
a prefix, otherwise w−1v gives 0. Note also that this is a monoid action :

(4.15) (vw)−1F = w−1(v−1F ) .

Definition 4.19. A submodule M of F(A) is called stable if w−1F ∈ M for all
F ∈M , i.e. w−1M ⊂M , for all w ∈ A∗.

Theorem 4.20. Let A be a finite alphabet. For a formal series F ∈ FR+
(A) that

corresponds to a shift-invariant probability measure ν in Ω+(A), the following are
equivalent:

(1) F is linearly representable.
(2) F is a member of a stable finitely generated submodule of FR+

(A).
(3) F is rational.
(4) The measure ν is the image under a 1-block map of a shift-invariant 1-step

Markov probability measure µ.

In the latter case, the measure ν is ergodic if and only if it is possible to choose µ
ergodic.

In the next few sections we sketch the proof of this theorem

4.2.2. Proof that a series is linearly representable if and only if it is a member of
a stable finitely generated submodule of F(A). Suppose that F is linearly repre-
sentable by (x, φ, y). For each i = 1, 2, · · · , n (where n is the dimension of the
representation) and each w ∈ A∗, define

Fi(w) = [φ(w)y]i.

Let M = 〈F1, · · · , Fn〉 be the span of the Fi with coefficients in R+, which is a
submodule of F(A). Since

F (w) = xφ(w)y =
n∑

i=1

xi[φ(w)y]i =
n∑

i=1

xiFi(w),

we have that F =
∑n

i=1 xiFi, which means F ∈M .

We next show that M is stable. Let w ∈ A∗. Then for u ∈ A∗,

(w−1Fi)(u) = Fi(wu) = [φ(wu)y]i = [φ(w)φ(u)y]i

=

n∑

j=1

φ(w)ij [φ(u)y]j =

n∑

j=1

φ(w)ijFj(u).

Since φ(w)ij ∈ R+, we have
∑n

j=1 φ(w)ijFj(u) ∈M, so

w−1Fi =

n∑

j=1

xiφ(w)ijFj ∈ 〈F1, ...Fn〉 = M.
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Conversely, let M be a stable finitely generated left submodule, and assume that
F ∈ 〈F1, · · · , Fn〉 = M. Then there are x1, · · · , xn ∈ R+ such that F =

∑n
i=1 xiFi.

Since M is stable, for each a ∈ A and each i = 1, 2, · · · , n, we have that a−1Fi ∈
〈F1, ...Fn〉. So there exist cij ∈ R+, j = 1, 2, · · · , n, such that a−1Fi =

∑n
j=1 cijFj .

Define φ(a)ij = cij for i, j = 1, 2, · · · , n. Note by linearity that for any nonnegative
row vector (t1, . . . , tn) we have

(4.16) a−1(
n∑

i=1

tiFi) =
n∑

j=1

(
(t1, . . . , tn)φ(a)

)
j
Fj .

Extend φ to a monoid morphism φ : A∗ → R
n×n
+ by defining φ(a1 · · · an) =

φ(a1) · · ·φ(an). Because the action of A∗ on F(A) satisfies the monoidal condi-
tion (4.15), we have from (4.16) that for any w = a1a2 · · · an ∈ A∗,

w−1(

n∑

i=1

tiFi) = (a1 · · ·an)−1(

n∑

i=1

tiFi) = (a−1
n · · · (a−1

1

n∑

i=1

tiFi) · · · )

=
∑

j

(
(t1, . . . , tn)φ(a1) · · ·φ(an)

)
j
Fj =

∑

j

(
(t1, . . . , tn)φ(w)

)
j
Fj .

Define the column vector y by yj = Fj(1) for j = 1, 2, · · · , n and let x be the row
vector (x1, . . . , xn). Then
(4.17)

F (w) = w−1F (1) =

(
∑

j

(
xφ(w)

)
j
Fj

)
(1) =

∑

j

(
xφ(w)

)
j
Fj(1) = xφ(w)y ,

showing that (x, φ, y) is a linear representation for F .

4.2.3. Proof that a formal series is linearly representable if and only if it is rational.
This equivalence is from [59, 89]. Recall that a series is rational if and only if it
is in the closure of the polynomials under the rational operations + (union), ·
(concatenation), ∗, and multiplication by elements of R+.

First we prove by a series of steps that every rational series F is linearly repre-
sentable.

Proposition 4.21. Every polynomial is linearly representable.

Proof. If w ∈ A and |w| is greater than the degree of the polynomial F , then
w−1 ≡ 0. Let S = {w−1F : w ∈ A∗}. Then S is finite and stable, hence S spans a
finitely generated stable submodule M to which F belongs. (Take ǫ−1F = F ). By
Section 4.2.2, F is linearly representable. �

The next observation follows immediately from the definition of stability. The
proof of the Lemma is included for practice.

Proposition 4.22. If F1 and F2 are in stable finitely generated submodules of F(A)
and t ∈ R+, then (F1 +F2) and (tF1) are in stable finitely generated submodules of
F(A).
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Lemma 4.23. For F,G ∈ F(A) and a ∈ A, a−1(FG) = (a−1F )G+ F (ǫ)a−1G.

Proof. For any w ∈ A∗,

(a−1(FG))(w) = (FG)(aw) =
∑

uv=aw

F (u)G(v)

= F (ǫ)G(aw) +
∑

u′v′=w

F (au′)G(v′)

= F (ǫ)G(aw) +
∑

u′v′=w

(a−1F )(u′)G(v′)

= F (ǫ)(a−1G)(w) + ((a−1F )(G))(w).

(4.18)

�

Proposition 4.24. Suppose that for i = 1, 2, Fi ∈Mi, where each Mi is a stable,
finitely generated submodule. Let M = M1F2 + M2. Then M is finitely generated
and stable and contains F1F2.

Proof. The facts that F1F2 ∈ M and M is finitely generated are immediate. The
proof that M is stable is a consequence of the Lemma. For if f1F2+f2 is an element
of M and a ∈ A, then

(4.19) a−1(f1F2 + f2) = (a−1f1)F2 + f1(ǫ)(a
−1F2) + a−1f2.

Note that a−1f1 ∈ M1 and a−1f2, a
−1F2 ∈ M2. Thus f1(ǫ)(a

−1F2) + f2 ∈ M2, so
we conclude that M is stable.

�

Lemma 4.25. If F is proper (that is F1(ǫ) = 0) and a ∈ A, then a−1(F ∗) =
(a−1F )F ∗.

Proof. Recall that F ∗
1 =

∑
n≥0 F

n
1 . Thus a−1(F ∗) = a−1(1 + FF ∗) = a−1(ǫ +

FF ∗) = a−1ǫ+ (a−1F )F ∗ + F (ǫ)a−1(F ∗).

Because (a−1ǫ)(w) = ǫ(aw) = 0 for all w ∈ A∗ and F (ǫ) = 0, we get that
a−1F ∗ = (a−1F )F ∗. �

Proposition 4.26. Suppose M1 is finitely generated and stable, and that F1 ∈M1

is proper. Then F ∗
1 is in a finitely generated stable submodule.

Proof. Define M = R+ +M1F
∗
1 . We have

F ∗
1 = 1 +

∑

n≥1

Fn
1 = (1 + F1F

∗
1 ) ∈M.

Also M is finitely generated (by 1 and the fiF
∗
1 if the fi generate M1).

To show that M is stable, suppose that t ∈ R+ and a ∈ A. Then for any u ∈ A∗

we have (a−1t)(u) = t(au) = 0, so a−1t = 0 ∈ R+. And for any f1 ∈M1 and a ∈ A,
a−1(f1F

∗
1 ) = (a−1f1)F

∗
1 + f1(ǫ)a

−1(F ∗
1 ). Since M1 is stable, a−1f1 ∈ M1 and the
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first term is in M1F
∗
1 . By the Lemma, the second term is f1(ǫ)(a

−1F1)F
∗
1 , which

is again in M1F
∗
1 . �

These observations show that if F is rational, then F lies in a finitely generated
stable submodule, so by Section 4.2.2 F is linearly representable.

Now we turn our attention to proving the statement in the title of this section
in the other direction. So assume that F ∈ F(A) is linearly representable. Then
F (w) = xφ(w)y for all w ∈ A for some (x, φ, y). Consider the semiring of formal

series FK(A) = KA∗

, where K is the semiring R
n×n
+ of n × n nonnegative real

matrices and n is the dimension of the representation. Let D =
∑

a∈A φ(a)a ∈
FK(A). The series D is proper, so we can form

(4.20) D∗ =
∑

h≥0

Dh =
∑

h≥0

(∑

a∈A

φ(a)a
)h

=
∑

h≥0

( ∑

w∈Ah

φ(w)w
)

=
∑

w∈A

φ(w)w.

This series D∗ is a rational element of FK(A), since we started with a polynomial
and formed its *. By Lemma 4.27 below, each entry (D∗)ij is rational in FR+

(A).

With D and D∗ now defined, we have that

(4.21) F (w) = xφ(w)y =
∑

i,j

xiφ(w)ijyj =
∑

i,j

xiD
∗(w)ijyj ,

and each D∗(w)ij is a rational series applied to w. Thus F (w) is a finite linear
combination of rational series D∗

ij applied to w and hence is rational.

Lemma 4.27. Suppose D is an n × n matrix whose entries are proper rational
formal series (e.g., polynomials). Then the entries of D∗ are also rational.

Proof. We use induction on n. The case n = 1 is trivial. Suppose the lemma holds

for n − 1, and D is n × n with block form D =

(
a u
v Y

)
, with a a rational series.

The entries of D can be thought of as labels on a directed graph; a path in the
graph has a label which is the product of the labels of its edges; and then D∗(i, j)
represents the sum of the labels of all paths from i to j (interpret the term “1”
in D(i, i) as the label of a path of length zero). With this view, one can see that

D∗ =

(
b w
x Z

)
, where

(1) b = (a+ uY ∗v)∗ ,
(2) Z = (Y + va∗u)∗ ,
(3) w = buY ∗ ,
(4) x = Y ∗vb .

Now Y ∗ and Z have rational entries by the induction hypothesis, and consequently
all entries of D∗ are rational. �
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4.2.4. Linearly representable series correspond to sofic measures. The (topological)
support of a measure is the smallest closed set of full measure. Recall our convention
(Sec. 2.4) that Markov and sofic measures are ergodic with full support.

Theorem 4.28 [39, 46, 48]. A shift-invariant probability measure ν on Ω+(A)
corresponds to a linearly representable (equivalently, rational) formal series F =
Fν ∈ FR+

(A) if and only if it is a convex combination of measures which (restricted
to their supports) are sofic measures. Moreover, if (x, φ, y) is a representation of
Fν such that x and y are positive and the matrix

∑
i∈B φ(i) is irreducible, then ν

is a sofic measure.

Proof. Suppose that ν is the image under a 1-block map (determined by a map
π : A → B between the alphabets) of a 1-step Markov measure µ. Then ν is
linearly representable by the construction in Example 4.15.

Alternatively, if Fµ is represented by (x, φ, y) then for each w ∈ A∗ we have

(4.22) Fµ(w) =
∑

i,j

xiφ(w)ijyj =
∑

i,j

xi

(
[
∑

a∈A

φ(a)a]∗(w)
)

ij
yj .

For u ∈ B∗ define

(4.23) Fν(u) =
∑

i,j

xi

([∑

b∈B

(
∑

a∈A,φ(a)=b

φ(a))b
]∗

(u)

)

ij

yj

to see that Fν is a linear combination of rational series and to see its linear repre-
sentation.

Conversely, suppose that ν corresponds to a rational (and hence linearly repre-
sentable) formal series F = Fν ∈ FR+

(B) with dimension n. Let (x, φ, y) represent
F . To indicate an ordering of the alphabet B, we use notation B = {1, 2, . . . , k}
and φ(i) = Pi. First assume that the n× n matrix P is irreducible and the vectors
x and y are positive. We will construct a Markov measure µ and a 1-block map π
such that ν = πµ.

Applying the standard stochasticization trick as in the last paragraph of the proof
of Proposition 4.16, we may assume that the irreducible matrix P is stochastic,
every entry of y is 1, and x is stochastic. Define matrices with block forms,

M =




P1 P2 · · · Pk

P1 P2 · · · Pk

· · · · · · · · · · · ·
P1 P2 · · · Pk


 , R =




I
I
· · ·
I


 ,

C =
(
P1 P2 · · · Pk

)
, Mi =




0 · · · Pi · · · 0
0 · · · Pi · · · 0
· · · · · · · · · · · · · · ·
0 · · · Pi · · · 0




where each Pi is n× n; R is nk × k; I is the n× n identity matrix; C and the Mi

are nk × nk; and Mi is zero except in the i’th block column, where it is RPi. The
matrix M is stochastic, but it can have zero columns. (We thank Uijin Jung for
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pointing this out.) Let M ′ be the largest principal submatrix of M with no zero
column or row.

We have a strong shift equivalence M = RC, P = CR, and it then follows
from the irreducibility of P that M ′ is irreducible. Therefore, there is a unique left
stochastic fixed vector X for M . Let Y be the nk × 1 column vector with every
entry 1. We have MR = RP , and consequently XR = x. Also, MiR = RPi for
each i. So, for any word i1 · · · ij , we have

xPi1 · · ·Pij
y = XRPi1 · · ·Pij

y

= XMi1 · · ·Mij
Ry = XMi1 · · ·Mij

Y .

This shows that (X,Φ, Y ) is also a representation of Fν , where Φ(i) = Mi. Let
X ′,Φ′(i) = M ′

i , Y
′ be the restrictions of X,Φ(i), Y to the vectors/matrices on the

indices of M ′. Then (X ′,Φ′, Y ′) is also a representation of Fν . Let A′ be the
0, 1 matrix of size matching M ′ whose zero entries are the same as for M ′. Then
(X ′,M ′, Y ′) defines an ergodic Markov measure µ on ΩA′ and there is a 1-block
code π such that πµ = ν. Explicitly, π is the restriction of the code which sends
{1, 2, . . . n} to 1; {n+ 1, n+ 2, . . . 2n} to 2; and so on. Thus ν is a sofic measure.

Now, for the representation (x, φ, y) of Fν , we drop the assumption that the
matrix P is irreducible. However, by Proposition 4.16, without loss of generality
we may assume that P is the direct sum of irreducible stochastic matrices P (j);
x is a positive stochastic left fixed vector of P ; and y is the column vector with
every entry 1. Restricted to the indices through P (j), x is a fixed vector of P (j)

and therefore is a multiple cjx
(j) of the stochastic left fixed vector x(j) of P (j).

Note,
∑

j cj = 1. If y(j) denotes the column vector with every entry 1 such that

P (j)y(j) = y(j), then

(x, φ, y) =
∑

j

cj(xj , P
(j), y(j)) .

If follows from the irreducible case that µ is a convex combination of sofic measures.
�

4.3. Sofic measures—Furstenberg’s approach. Below we are extracting from
[39, Secs. 18–19] only what we need to describe Furstenberg’s approach to the
identification of sofic measures and compare it to the others. This leaves out a lot.
We follow Furstenberg’s notation, apart from change of symbols, except that we
refer to shift-invariant measures as well as finite-state stationary processses.

Furstenberg begins with the following definition.

Definition 4.29. [39, Definition 18.1] A stochastic semigroup of order r is a semi-
group S having an identity e (i.e., a monoid), together with a set of r elements
A = {a1, a2, . . . , ar} generating S, and a real-valued function F defined on S
satisfying

(1) F (e) = 1,
(2) F (s) ≥ 0 for each s ∈ S and F (ai) > 0, i = 1, 2, . . . , r ,
(3) Σr

i=1F (ais) = Σr
i=1F (sai) = F (s) for each s ∈ S.
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Given a subshift X on an alphabet {a1, a2, . . . , ar} with shift-invariant Borel
probability µ and µ(ai) > 0 for every i, let S be the free semigroup of all formal
products of the ai, with the empty product taken as the identity e. Define F
on S by F (e) = 1 and F (ai1ai2 . . . aik

) = µ(C0(ai1ai2 . . . aik
)). Clearly the triple

({a1, a2, . . . , ar}, S, F ) is a stochastic semigroup, which we denote S(X).

Conversely, any stochastic semigroup ({a1, a2, . . . , ar}, S, F ) determines a unique
shift-invariant Borel probability µ for which F (ai1ai2 . . . aik

) = µ(C0((ai1ai2 . . . aik
)))

for all ai1ai2 . . . aik
. We denote by X(S) this finite-state stationary process (equiv-

alently the full shift on r symbols with invariant measure µ). Two stochastic semi-
groups are called equivalent if they define the same finite-state stationary process
modulo a bijection of their alphabets. A cone in a linear space is a subset closed
under addition and multiplication by positive real numbers [39, Sec. 15.1].

Definition 4.30. [39, Definition 19.1] Let D be a linear space, D∗ its dual, and
let C be a cone in D such that for all x, y in D, if x + λy ∈ C for all real λ, then
y = 0. Let θ ∈ C and θ∗ ∈ D∗, and suppose that θ∗ is nonnegative on C. A linear
stochastic semigroup S on (C, θ, θ∗) is a stochastic semigroup ({a1, . . . , ar}, S, F )
whose elements are linear transformations from C to C satisfying

(1)
∑
aiθ = θ;

(2)
∑
a∗i θ

∗ = θ∗ (where L∗ denotes the transformation of D∗ adjoint to a
transformation L of D);

(3) F (s) = (θ∗, sθ) for s ∈ S, where (·, ·) denotes the dual pairing of D∗ and
D;

(4) (θ∗, aiθ) > 0, i = 1, 2, . . . , r.

(S,D, C, θ, θ∗) was called finite dimensional by Furstenberg if there is m ∈ N such
that D = Rm, C is the cone of vectors in Rm with all entries nonnegative, and each
element of S is an m×m matrix with nonnegative entries.

A semigroup S of transformations satisfying (1) to (4) does define a stochastic
semigroup if (θ∗, θ) = 1.

Theorem 4.31. [39, Theorem 19.1] Every stochastic semigroup S is equivalent to
some linear stochastic semigroup.

Proof. Let A0(S) be the real semigroup algebra of S, i.e., the real vector space with
basis S and multiplication determined by the semigroup multiplication in S and
the distributive property,

(4.24)
(∑

αss
)(∑

βtt
)

=
∑

αsβtst.

(Each sum above has finitely many terms.)

If S is the free monoid generated by r symbols, then A0(S) is isomorphic to the
set ℘R(A) of real-valued polynomials, i.e. finitely supported formal series A∗ → R

(see Definition 4.2).
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Extend F from S to a linear functional on A0(S), i.e. F (
∑
αss) =

∑
αsF (s).

Define I = {u ∈ A0(S) : F (u) = 0}, an ideal in A0(S), and the algebra A =
A(S) = A0(S)/I. Define the element τ = a1 + a2 + · · · + ar in A(S) (here ai

abbreviates ai + I) and set D = A/A(e− τ).

The elements of A and in particular those of S operate on D by left multiplica-
tion. Let a′i denote the operator induced by left multiplication by ai ∈ S. Take V
to be the image in D of the set of elements of A that can be represented as positive
linear combinations of elements in S. Denote by u the image in D of an element u
in A. Set θ = e and let θ∗ be the functional induced on D by F on A (F vanishes
on A(e− τ)).

Then the four conditions in the definition of linear stochastic semigroup are
satisfied. This linear stochastic semigroup given by

(4.25) ({a′1, . . . , a
′
r}, D, V, θ, θ

∗)

is equivalent to the given S because F (s′) = (θ∗, s′θ) = F (s). (We will see later that
this construction is closely related to Heller’s “stochastic module” construction.)

�

Given a shift-invariant sofic measure on the set of two-sided sequences on the
alphabet {1, . . . , r} which assigns positive measure to each symbol, it is possible to
associate an explicit finite-dimensional linear stochastic semigroup to µ in the same
way that we attached a linear representation in Example 4.15. Here µ is the image
under some 1-block code π of a Markov measure defined from somem×m stochastic
matrix P . For 1 ≤ i ≤ r, let Pi be the m×m matrix such that Pi(i

′, j′) = P (i′, j′)
if π(j′) = i and otherwise Pi(i

′, j′) = 0. Let θ∗ be a stochastic (probability) left
fixed vector for P and let θ be the column vector with every entry 1. Let C be the
cone of all nonnegative vectors in D = Rm. If we identify Pi with the symbol i,
then these data give a finite-dimensional linear stochastic semigroup equivalent to
S(X). Along with this observation, Furstenberg established the converse.

Theorem 4.32. [39, Theorem 19.2] A linear stochastic semigroup S is finite di-
mensional if and only if the stochastic process that it determines is a 1-block factor
of a 1-step stationary finite-state Markov process.

In the statement of Theorem 4.32, “Markov” does not presume ergodic. The
construction for the theorem is essentially the one given in Theorem 4.28, with a
simplification. Because of the definition of linear stochastic semigroup (Definition
4.30), Furstenberg can begin with θ∗, θ actual fixed vectors of P :=

∑
i Pi. The

triple (P, θ∗, θ) corresponds to (P, x, y) in Theorem 4.16, where x, y need not be
fixed vectors. Thus Furstenberg can reduce more quickly to the form where θ∗ and
θ are positive fixed vectors of P . Note that “finite dimensional” in Theorem 4.32
means more than having the cone C of the linear stochastic semigroup generating
a finite-dimensional space D: here C is a cone in Rm with exactly m (in particular,
finitely many) extreme rays.
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4.4. Sofic measures—Heller’s approach. Repeating some problems already
stated, but with some refinements, here are the natural questions about sofic mea-
sures which we are currently discussing, in subshift language.

Problem 4.33. Let π : ΩA → Y be a 1-block map from a shift of finite type to
a (sofic) subshift and let µ be a (fully supported) 1-step Markov measure on ΩA.
When is πµ Markov? Can one determine what the order (a k such that the measure
is k-step Markov) of the image measure might be?

Problem 4.34. Given a shift-invariant probability measure ν on a subshift Y ,
when are there a shift of finite type ΩA, a factor map π : ΩA → Y , and a 1-step
shift-invariant fully supported Markov measure µ on ΩA such that πµ = ν?

Problem 4.35. If ν is a sofic measure, how can one explicitly construct Markov
measures of which ν is a factor? Are there procedures for constructing Markov
measures that map to ν which have a minimal number of states or minimal entropy?

Problem 4.33 was discussed in [20], for the reversible case. Later complete solu-
tions depend on Heller’s solution of Problem 4.34, so we discuss that first. Effective
answers to the first part of Problem 4.35 are given by Furstenberg and in the proof
of Theorem 4.28.

Problem 4.34 goes back at least to a 1959 paper of Gilbert [40]. Following
Gilbert and Dharmadhikari [23, 24, 25, 26], Heller (1965) created his stochastic
module theory and within this gave a characterization [48, 49] of sofic measures
(1965). We describe this next.

4.4.1. Stochastic module. We describe the stochastic module machinery setup of
Heller [48] (with some differences in notation). Let S = {1, 2, ..., s} be a finite
state space for a stochastic process. Let AS be the associative real algebra with
free generating set S. An AS-module is a real vector space V on which AS acts
by linear transformations, such that for each i ∈ S there is a linear transformation
Mi : V → V such that a word u1...uk sends v ∈ V to Mu1

(Mu2
(...(Muk

(v))..). We
denote an AS-module as ({Mi}, V ) or for brevity just {Mi}, where the Mi are the
associated generating linear transformations V → V as above.

Definition 4.36. A stochastic S-module for a stochastic process with state space
S is a triple (l, {Mi}, r), where ({Mi}, V ) is an AS-module, r ∈ V , l ∈ V ∗, and for
every word u = u1...ut on S its probability Prob(u) = Prob(C0(u)) is given by

(4.26) Prob(u) = lMu1
Mu2

...Mut
r.

Given an AS-module M , an l ∈ V ∗ and r ∈ V , a few axioms are required to
guarantee that they define a stochastic process with state space S. Define σ =∑

{ai : ai ∈ S} and denote by CS the cone of polynomials in AS with nonnegative
coefficients. Then the axioms are that

(1) lr = 1;
(2) l(CSr) ⊂ [0,∞);
(3) for all f ∈ AS , l(f(σ − 1) r) = 0.
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Example 4.37. A stochastic module for a sofic measure. As we saw in Section 4.3,
this setup of a stochastic module arises naturally when a 1-block map π is applied to
a 1-step Markov measure µ with state space S given by an s×s stochastic transition
matrix P and row probability vector l. For each i ∈ S, let Mi be the matrix whose
j’th column equals column j of P if π(j) = i and whose other columns are zero.
The probability of an S-word u = u1...ut is lMu1

Mu2
...Mut

r, where r is the vector
of all 1’s. With V = Rs, presented as column vectors, (l, {Mi}, r) is a stochastic
module for the process given by πµ.

4.4.2. The reduced stochastic module. A stochastic module (l, ({Mi}, V ), r) is re-
duced if (i) V is the smallest invariant (under the operators Mi) vector space con-
taining r and (ii) l annihilates no nonzero invariant subspace of V . Given a sto-
chastic module (l, {Mi}, r) for a stochastic process, with its operators Mi operating
on the real vector space V , a smallest stochastic module (l′, {M ′

i}, r
′) describing

the stochastic process may be defined as follows. Let R1 be the cyclic submodule
of V generated by the action on r; let L1 be the cyclic submodule of V ∗ generated
by the (dual) action on l; let V ′ be R1 modulo the subspace annihilated by L1;
for each i ∈ S let M ′

i be the (well defined) transformation of V ′ induced by Mi;
let r′, l′ be the elements of V ′ and (V ′)⊥ determined by r, l. Now (l′,M ′, r′) is
the reduced stochastic module of the process. V ′ is the subspace generated by the
action of the M ′

i on r′, and no nontrivial submodule of V ′ is annihilated by l′. The
reduced stochastic module is still a stochastic module for the original stochastic
process. We say “the” reduced stochastic module because any stochastic modules
describing the same stochastic process have isomorphic reduced stochastic modules.

4.4.3. Heller’s answer to Problem 4.34. We give some preliminary notation. A
process is “induced from a Markov chain” if its states are lumpings of states of
a finite state Markov process, that is, there is a 1-block code which sends the
associated Markov measure to the measure associated to the stochastic process.
Let (AS)+ be the subset of AS consisting of linear combinations of words with all
coefficients nonnegative. A cone in a real vector space V is a union of rays from the
origin. A convex cone C is strongly convex if it contains no line through the origin.
It is polyhedral if it is the convex hull of finitely many rays.

Theorem 4.38. Let (l, ({Mi}, V ), r) be a reduced stochastic module. The associated
stochastic process is induced from a Markov chain if and only if there is a cone C
contained in the vector space V such that the following hold:

(1) r ∈ C,
(2) lC ⊂ [0,∞),
(3) (AS)+C ⊂ C,
(4) C is strongly convex and polyhedral.

Heller stated this result in [48, Theorem 1]. The proof there contained a mi-
nor error which was corrected in [49]. Heller defined a process to be finitary if
its associated reduced stochastic module is finite dimensional. (We will call the
corresponding measure finitary.) A consequence of Theorem 4.38 is the (obvious)
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fact that the reduced stochastic module of a sofic measure must be finitary. Heller
gave an example [48] of a finitary process which is not a 1-block factor of a 1-step
Markov measure, and therefore is not a factor of any Markov measure. (However, a
subshift with a weakly mixing finitary measure is measure theoretically isomorphic
to a Bernoulli shift [12].)

4.5. Linear automata and the reduced stochastic module for a finitary
measure. The 1960’s and 1970’s saw the development of the theory of probabilis-
tic automata and linear automata. We have not thoroughly reviewed this literature,
and we may be missing from it significant points of contact with and independent
invention of the ideas under review. However, we mention at least one. A finite
dimensional stochastic module is a special case of a linear space automaton, as
developed in [51] by Inagaki, Fukumura and Matuura, following earlier work on
probabilistic automata (e.g. [76, 83]. They associated to each linear space automa-
ton its canonical (up to isomorphism) equivalent irreducible linear space automaton.
When the linear space automaton is a stochastic module, its irreducible linear space
automaton corresponds exactly to Heller’s canonical (up to isomorphism) reduced
stochastic module. Following [51] and Nasu’s paper [70], we will give some concrete
results on the reduced stochastic module.

We continue the Example 4.37 and produce a concrete version of the reduced
stochastic module in the case that a measure on a subshift is presented by a sto-
chastic module which is finite dimensional as a real vector space (for example, in
the case of a sofic measure). Our presentation follows a construction of Nasu [70]
(another is in [51]). Correspondingly, in this section we will reverse Heller’s roles
for row and column vectors and regard the stochastic module as generated by row
vectors.

So, let (u, {Mi}, v) be a finite dimensional stochastic module on finite alphabet
A. We take the presentation so that there is a positive integer n such that the Mi

are n×n matrices; u and v are n-dimensional row and column vectors; and the map
a 7→Ma induces a monoid homomorphism φ from A∗, sending a word w = a1 · · · aj

to the matrix φ(w) = Ma1
· · ·Maj

.

Let U be the vector space generated by vectors of the form uφ(w), w ∈ A∗.
Similarly define V as the vector space generated by vectors of the form φ(w)v,
w ∈ A∗. Let k = dim(U). If k < n, then construct a smaller module (presenting
the same measure) as follows. Let L be a k × n matrix whose rows form a basis

of U . For each symbol a there exists a k × k matrix M̂a such that LMa = M̂aL.
Define û to be the k dimensional row vector such that ûL = u and set v̂ = Lv. Let
a→ M̂a induce a monoid homomorphism φ̂ from A∗, sending a word w = a1 · · · aj

to φ̂(w) = M̂a1
· · · M̂aj

. The subspace Û of Rk generated by vectors of the form

ûφ̂(w) is equal to Rk because ÛL = U and dim(U) = k. It is easily checked that

ûφ̂(w)v̂ = uφ(w)v, for every w in A∗. Let V̂ be the subspace of Rk generated by

column vectors φ̂(w)v̂. We have for each a that LMav = M̂aLv = M̂av̂, so L maps

V onto V̂. Also L maps the space of n-dimensional column vectors onto Rk. It

follows that if dim(V) = n, then dim(V̂) = k.
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If dim(V̂) < k, then repeat the reduction move, but applying it to v (column
vectors) rather than to u. This will give a stochastic module (u, {Ma}, v), say with
m×m matrices Ma and invariant subspaces U ,V generated by the action on u, v.

By construction we have dim(V) = m. And because Û had full dimension, we have
dim(U) = m also. Regarding V as a space of functionals on U , and letting ker(V)
denote the subspace of U annihilated by all elements of V , we see that u 7→ u is
a presentation of the map π : U → U/ker(V). Thus (u, {Ma}, v) is a presentation
of the reduced stochastic module. Also, for all a, πMa = Maπ, and therefore the
surjection π (acting from the right) also satisfies

(4.27)
(∑

a

Ma

)
π = π

(∑

a

Ma

)
.

If (ũ, {M̃a}, ṽ) is another such presentation of the reduced stochastic module, then
it must have the same (minimal) dimension m, and there will be an invertible
matrix G (giving the isomorphism of the two presentations) such that for all a,

(4.28)
(
ũ, {M̃a}, ṽ

)
=
(
uG, {G−1MaG}, G

−1v
)
.

To find G, simply take m words w such that the vectors uφ(w) are a basis for U ,
and let G be the matrix such that for each of these w,

(4.29) uφG = ũφ̃ .

The rows of the matrix L above (a basis for the space U) may be obtained by
examining vectors uφ(w) in some order, with the length of w nondecreasing, and
including as a row any vector not in the span of previous vectors. Let Um denote
the space spanned by vectors uφ(w) with w of length at most m. If for some m it
holds that Um = Um+1, then Um = U . In particular, if n is the dimension of the
original stochastic module, then the matrix L can be found by considering words
of length at most n− 1.

One can check that if two equivalent stochastic modules have dimensions n1 and
n2, then they are equivalent (define the same measure) if and only if they assign the
same measure to words of length n1 +n2−1. (This is a special case of [51, Theorem
5.2].) If the reduced stochastic module of a measure has dimension at most n, then
one can also construct the reduced stochastic module from the measures of words
of length at most 2n− 1 (one construction is given in [51, Theorem 6.2]). However,
without additional information about the measure, this forces the examination of
a number of words which for a fixed alphabet can grow exponentially as a function
of n, as indicated by the following example.

Example 4.39. Let X be the full shift on the three symbols 0, 1, 2. Given k ∈ N,
define a stochastic matrix P indexed by X-words of length k + 1 by P (10k, 0k1) =
1/6 = P (20k, 0k2); P (10k, 0k2) = 1/2 = P (20k, 0k1); P (a0 · · · ak, a1 · · · ak+1) = 1/3
otherwise; and all other entries of P are zero. This matrix defines a (k + 1)-step
Markov measure µ on X which agrees with the Bernoulli (1/3, 1/3, 1/3) measure
on all words of length at most k + 2 except the four words 10k1, 10k2, 20k1, 10k2.
The reduced stochastic module has dimension at most 2k+1, because for any word
U the conditional probabilty function on X-words defined by ρU : W 7→ µ(UW |U)
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will be a constant multiple of ρV for one of the words V = 0k+1, 10j, 20j, with
0 ≤ j ≤ k. The number of X-words of length k + 2 is 3k+2.

4.6. Topological factors of finitary measures, and Nasu’s core matrix. The
content of this section is essentially taken from Nasu’s paper [70], as we explain in
more detail below. Given a square matrix M , in this section we let M∗ denote
any square matrix similar to one giving the action of M on the maximal invariant
subspace on which the action of M is nonsingular.

Adapting terminology from [70], we define the core matrix of a finite dimensional
stochastic module give by matrices, (l, {Mi}, r), to be

∑
i Mi. A core matrix for a

finitary measure µ is any matrix which is the core matrix of a reduced stochastic
module for µ. This matrix is well defined only up to similarity, but for simplicity
of language we refer to the core matrix of µ, denoted Core(µ). Similarly, we define
the eventual core matrix of µ to be Core(µ)

∗
, denoted Core∗(µ). E.g., if Core(µ) is



1
2 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0


, then Core∗(µ) is

(
1
2 0
0 1

)
.

Considering square matrices M and N as linear endomorphisms, we say N is a
quotient of M if there is a linear surjection π such that, writing action from the
right, Mπ = πN . (Equivalently, by duality, the action of N is isomorphic to the
action of M on some invariant subspace.) In this case, the characteristic polynomial

of M divides that of N (but, e.g.

(
2 0
0 2

)
is a principal submatrix of but not a

quotient of




2 1 0
0 2 1
0 0 2


).

Theorem 4.40. Suppose φ is a continuous factor map from a subshift X onto a
subshift Y , µ ∈ M(X) and φµ = ν ∈ M(Y ). Suppose µ is finitary. Then ν is
finitary, and Core∗(ν) is a quotient of Core∗(µ). In particular, if φ is a topological
conjugacy, then Core∗(ν) = Core∗(µ).

The key to the topological invariance in Theorem 4.40 is the following lemma (a
measure version of [70, Lemma 5.2]).

Lemma 4.41. Suppose µ is a finitary measure on a subshift X and n ∈ N. Let
X [n] be the n-block presentation of X; let ψ : X [n] → X the 1-block factor map
defined on symbols by [a1 · · · an] 7→ a1; let µ[n] ∈ M(X [n]) be the measure such that
ψµ[n] = µ. Then µ[n] is finitary and Core∗(µ[n]) is a quotient of Core∗(µ).

Proof of Lemma 4.41. For n > 1, the n-block presentation ofX is (after a renaming
of the alphabet) equal to the 2-block presentation of X [n−1]. So, by induction it
suffices to prove the lemma for n = 2.

Let (l, {Pi}, r) be a reduced stochastic module for µ, where the Pi are k× k and
A(X) = {1, 2, . . . ,m}. For each symbol ij of A(X [2]), define an mk ×mk matrix
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P ′
ij as an m×m system of k× k blocks, in which the i, j block is Pi and the other

entries are zero. Define l′ = (l, . . . , l) (m copies of l) and define r′ =



P1r
...

Pmr


. Then

(l′, {P ′
ij}, r

′) is a stochastic module for µ[2], which is therefore finitary. Also, we

have an elementary strong shift equivalence of the core matrices P and P ′,

P ′ =



P1

...
Pm



(
I · · · I

)
, P =

(
I · · · I

)


P1

...
Pm


 ,

and therefore P ∗ = (P ′)∗. Because Core(µ[2]) is a quotient of P ′, it follows that
Core∗(µ[2]) is a quotient of (P ′)∗ = P ∗ = Core∗(µ). �

If φ : X → Y is a factor map of irreducible sofic shifts of equal entropy, then
φ must send the unique measure of maximal entropy of X , µX , to that for Y .
These are sofic measures, and consequently Theorem 4.40 gives computable ob-
structions to the existence of such a factor map between given X and Y . In his
work, Nasu associated to given X a certain linear (not stochastic) automaton. If
we denote it (l, {Mi}, r), and let log(λ) denote the topological entropy of X , then
(l, {(1/λ)Mi}, r) would be a stochastic module for µX . In the end Nasu’s core
matrix is λCore(µX). Nasu remarked in [70] that his arguments could as well be
carried out with respect to measures to obtain his results, and that is what we have
done here.

Eigenvalue relations between core matrices (not so named) of equivalent lin-
ear automata already appear in [51, Sec.7]. Also, Kitchens [55] earlier used the
(Markov) measure of maximal entropy for an irreducible shift of finite type in a
similar way to show that the existence of a factor map of equal-entropy irreducible
SFTs, ΩA → ΩB, implies (in our terminology) that B∗ is a quotient of A∗. This is
a special case of Nasu’s constraint.

5. When is a sofic measure Markov?

5.1. When is the image of a 1-step Markov measure under a 1-block
map 1-step Markov? We return to considering Problem 4.33. In this subsection,
suppose µ is a 1-step Markov measure, that is, a 1-step fully supported shift-
invariant Markov measure on an irreducible shift of finite type ΩA. Suppose that
π is a 1-block code with domain ΩA. How does one characterize the case when the
measure πµ is again 1-step Markov?

To our knowledge, this problem was introduced, in the language of Markov pro-
cesses, by Burke and Rosenblatt (1958) [20], who solved it in the reversible case
[20, Theorem 1]. Kemeny and Snell [54, Theorems 6.4.8 and 6.3.2] gave another
exposition and introduced the “lumpability” terminology. Kemeny and Snell de-
fined a (not necessarily stationary) finite-state Markov process X to be lumpable
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with respect to a partition of its states if for every initial distribution for X the
corresponding quotient process is Markov. They defined X to be weakly lumpable
with respect to the partition if there exists an initial distribution for X for which
the quotient process Y is Markov. In all of this, by Markov they mean 1-step
Markov. Various problems around these ideas were (and continue to be) explored
and solved. For now we restrict our attention to the question of the title of this
subsection and describe three answers.

5.1.1. Stochastic module answer.

Theorem 5.1. Let (l,M, r) be a presentation of the reduced stochastic module of a
sofic measure ν on Y , in which Mi denotes the matrix by which a symbol i of A(Y )
acts on the module. Suppose k ∈ N. Then the sofic measure ν is k-step Markov if
and only if every product Mi(1) · · ·Mi(k) of length k has rank at most 1.

The case k = 1 of Theorem 5.1 was proved by Heller [48, Prop.3.2] An equivalent
characterization was given a good deal later, evidently without awareness of Heller’s
work, by Bosch [15], who worked from the papers of Gilbert [40] and Dharmadhikari
[23]. The case of general k in Theorem 5.1 was proved by Holland [50, Theorem 4],
following Heller.

5.1.2. Linear algebra answer. One can approach the problem of deciding whether a
sofic measure is Markov with straight linear algebra. There is a large literature using
such ideas in the context of automata, control theory and the “lumpability” strand
of literature emanating from Kemeny and Snell (see e.g. [41] and its references).
Propositions 5.2 and 5.3 and Theorem 5.4 are taken from Gurvits and Ledoux [41].
As with previous references, we are considering only a fragment of this one.

Let N be the size of the alphabet of the irreducible shift of finite type ΩA. Let
π be a 1-block code mapping ΩA onto a subshift Y . Let P be an N ×N irreducible
stochastic matrix defining a 1-step Markov measure µ on ΩA. Let p be the positive
stochastic row fixed vector of P . Let U be the matrix such that U(i, j) = 1 if π
maps the state i to the state j, and U(i, j) = 0 otherwise. Given i ∈ A(ΩA), let i
be its image symbol in Y . Given j ∈ A(Y ), let Pj be the matrix of size P which
equals P in columns i such that i = j, and is zero in other entries. Likewise define
pj. Given a Y -word w = j1 · · · jk, we let Pw = Pj1 · · ·Pjk

.

Alert: We are using parenthetical notation for matrix and vector entries and
subscripts for lists. If πµ is a 1-step Markov measure on Y , then it is defined using
a stochastic row vector q and stochastic matrix Q. The vector q can only be pU ,
and the entries of Q are determined by Q(j, k) = (pjPkU)(k)/q(j). Let ν denote
the Markov measure defined using q,Q. Define qj , Qj by replacing entries of q,Q
with zero in columns not indexed by j. For a word w = j0 . . . jk on symbols from
A(Y ), we have (πµ)(C0(w)) = ν(C0(w)) if and only if

(5.1) pj0Pj1 · · ·Pjk
U = pj0UQj1 · · ·Qjk

(since qj0 = pj0U). Thus πµ = ν if and only if (5.1) holds for all Y -words w. This
remark is already more or less in Kemeny and Snell [54, Theorem 6.4.1].
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For the additional argument which produces a finite procedure, we define certain
vector spaces (an idea already in [31, 56, 86, 87, 41] and elsewhere).

Let Vk denote the real vector space generated by the row vectors pj0Pj1 · · ·Pjk

such that j0j1 · · · jt is a Y -word and 0 ≤ t ≤ k. So, V0 is the vector space generated
by the vectors pj0 , and Vk+1 is the subspace generated by Vk ∪ {vPj : v ∈ Vk, j ∈
A(Y )}. In fact, for k ≥ 0, we claim that

Vk = 〈 {pj0Pj1 · · ·Pjk
: j0 · · · jk ∈ A(Y )k+1} 〉 , and(5.2)

Vk+1 = 〈 {vPj : v ∈ Vk, j ∈ A(Y )} 〉 ,(5.3)

where 〈 〉 is used to denote span. Clearly (5.3) follows from (5.2), which is a
consequence of stationarity, as follows. Because

∑
j pj = p = pP =

∑
j pPj , and

for i 6= j the vectors pi and pPj cannot both be nonzero in any coordinate, we
pj = pPj . So, given t and j1 · · · jt, we have

pj1Pj2 · · ·Pjt
= pPj1Pj2 · · ·Pjt

=
∑

j0

pj0Pj1Pj2 · · ·Pjt
,

from which (5.3) easily follows. Let V = 〈∪k≥0Vk〉.

Proposition 5.2. Suppose P is an N ×N irreducible stochastic matrix and φ is a
1-block code. Let the vector spaces Vk be defined as above, and let n be the smallest
positive integer such that Vn = Vn+1. Then n ≤ N − |A(Y )|, Vn = V, and the
following are equivalent:

(1) φµ is a 1-step Markov measure on the image of φ.
(2) pj0Pj1 · · ·Pjn

U = pj0UQj1 · · ·Qjn
, for all j0 · · · jn ∈ A(Y )n+1.

Proof. For k ≥ 1, we have Vk ⊂ Vk+1, and also

(5.4) Vk = Vk+1 implies Vk = Vt = V for all t ≥ k .

Because dim(V0) = |A(Y )|, it follows that n ≤ N − |A(Y )|.

Because (1) is equivalent to (5.1) holding for all Y -words j0j1 · · · jk, k ≥ 0, we
have that (1) implies (2).

Now suppose (2) holds. For K ≥ 1, the linear condition (5.1) holds for all
Y -words of length k less than or equal to K if and only if vUQj = vPjU for
all j in A(Y ) and all v in VK . (U is the matrix defined above.) Because VK =
Vn for K ≥ n, we conclude from (2) and (5.2) that (5.1) holds for all Y -words
j(0)j(1) · · · j(k), k ≥ 0, and therefore (1) holds. �

Next we consider an irrreducible N × N matrix P defining a 1-step Markov
measure µ on ΩA and a 1-block code φ from ΩA onto a subshift Y . Given a positive
integer k ≥ 1, we are interested in understanding when φµ is k-step Markov. We
use notations U, p, pj, Pj ,Vt and Vn = V as above. Define a stochastic row vector
q indexed by Y -words of length k, with q(j0 · · · jk−1) = (pj0Pj1 · · ·Pjk−1

U)(jk−1).
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Let Q be the square matrix indexed by Y -words of length k whose nonzero entries
are defined by

Q(j0 · · · jk−1, j1 . . . jk) =

(
pj0Pj1 · · ·Pjk

U
)
(jk)

q(j0 · · · jk−1)
.

Then Q is an irreducible stochastic matrix and q is a positive stochastic vector such
that qQ = q. Let ν be the k-step Markov measure defined on Y by (q,Q). The
measures ν and φµ agree on cylinders C0(j0 · · · jk) and therefore on all cylinders
C0(j0 · · · jt) with 0 ≤ t ≤ k. Clearly, if φµ is k-step Markov then φµ must equal ν.

Proposition 5.3. [41] Suppose P is an N×N irreducible stochastic matrix defining
a 1-step Markov measure µ on ΩA and φ : ΩA → Y is a 1-block code. Let k be a
fixed positive integer. With the notations above, the following are equivalent.

(1) φµ is a k-step Markov measure (i.e., φµ = ν).
(2) For every Y -word w = w0 · · ·wk−1 of length k and every v ∈ V,

(5.5) vPw(PU − 1Qw) = 0,

where Pw = Pw0
· · ·Pwk−1

; 1 is the size N column vector with every entry
1; and Qw is the stochastic row vector defined by

(5.6) Qw(j) = Q(w0 · · ·wk−1, w1 · · ·wk−1j) , j ∈ A(Y ) .

Proof. We continue to denote by z(j) the entry in the j’th coordinate of a row
vector z. By construction of ν we have for t = 0 that

(5.7) (πµ)C0(j0 · · · jt+k) = νC0(j0 · · · jt+k) for all j0 · · · jt+k ∈ At+k+1 .

Now suppose t is a nonnegative integer and (5.7) holds for t. Given j0 · · · jt+k, let
w be its terminal word of length k. Then for j ∈ A(Y ),

(πµ)C0(j0 · · · jt+kj) − νC0(j0 · · · jt+kj)

=
(
pj0Pj1 · · ·Pjt+k

PjU
)
(j) −

(
νC0(j0 · · · jt+k)Qw

)
(j)

=
(
pj0Pj1 · · ·Pjt+k

PjU
)
(j) −

(
(pj0Pj1 · · ·Pjt+k

1)Qw
)
(j)

=
(
pj0Pj1 · · ·Pjt+k

[PjU − 1Qw]
)
(j)

=
(
pj0Pj1 · · ·Pjt

Pw[PU − 1Qw]
)
(j),

where the term Pj1 · · ·Pjt
is included only if t > 0, and the last equality holds

because the jth columns of PU and PjU are equal. Thus, given (5.7) for t, by (5.2)
we have (5.7) for t+ 1 if and only vPw[PU − 1Qw] = 0 for all v ∈ Vt and all w of
length k. It follows from induction that (5.7) holds for all t ≥ 0 (i.e. πµ = ν) if
and only if (5.5) holds for all v ∈ V . �

Because V can be computed, Proposition 5.3 gives an algorithm, given k, for
determining whether the image of a 1-step Markov measure is a k-step Markov
measure. The next result gives a criterion which does not require computation of
the matrix Q.
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Theorem 5.4. [41] Let notations be as in Proposition 5.3. Then φµ is a k-step
Markov measure on Y if and only if for every Y -word w of length k,

(5.8)
(
(VPw) ∩ ker(U)

)
P ⊂ ker(U) .

Proof. Let w = w0 · · ·wk−1 be a Y -word of length k. Using the computations of
the proof of Proposition 5.3, we obtain for j ∈ A(Y ) that

0 = πµC0(w0 · · ·wk−1j) − νC0(w0 · · ·wk−1j)

=
(
pw0

Pw1
· · ·Pwk−1

[PU − 1Qw]
)
(j)

=
(
pPw0

Pw1
· · ·Pwk−1

[PU − 1Qw]
)
(j)

=
(
pPw[PU − 1Qw]

)
(j) .

Consequently, the vector v = p satisfies (5.5). Moreover,

(pPwU)(wk−1) = (pw0
Pw1

· · ·Pwk−1
U)(wk−1) = πµC0(w) > 0,

and therefore pPw /∈ ker(U). Because vPw = 0 if and only if vPw1 = 0, the space
VPw is spanned by pPw and (VPw) ∩ ker(U). Thus (5.5) holds for all v ∈ V if and
only if (5.5) holds for all v ∈ V such that vPw ∈ ker(U), which is equivalent to
(5.8). �

Gurvits and Ledoux [41, Sec. 2.2.2] explain how Theorem 5.4 can be used to
produce an algorithm, polynomial in the number N of states, for deciding whether
πµ is a 1-step Markov measure.

5.2. Orders of Markov measures under codes. This section includes items
relevant to the second part of Problem 4.33.

Definition 5.5. Given positive integers m,n, k with 1 ≤ k ≤ n, recursively define
integers N(k,m, n) by setting

N(n,m, n) = 1(5.9)

N(k,m, n) = (1 +mN(k+1,m,n))N(k + 1,m, n) , if 1 ≤ k < n .(5.10)

Proposition 5.6. Suppose π : ΩA → Y is a 1-block code and µ is a 1-step Markov
measure on ΩA. Let n be the dimension of the reduced stochastic module of πµ
and let m = |A(Y )|. Suppose n ≥ 2. (In the case n = 1, πµ is Bernoulli.) Let
K = N(2,m, n). If πµ is not K-step Markov, then it is not k-step Markov for any
k.

Before proving Proposition 5.6, we state our main interest in it.

Corollary 5.7. Suppose µ is a 1-step Markov measure on an irreducible SFT
ΩA determined by a stochastic matrix P , and that there are algorithms for doing
arithmetic in the field generated by the entries of P . Suppose φ is a block code on
ΩA. Then there is an algorithm for deciding whether the measure φµ is Markov.
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Proof. The corollary is an easy consequence of Propositions 5.2 and 5.6. �

The proof of Proposition 5.6 uses two lemmas.

Lemma 5.8. Suppose P1, . . . , Pt are n × n matrices such that rank(P1...PtP1) =
rank(P1) = r. Then for all positive integers m, rank(P1...Pt)

mP1 = r.

Proof. It follows from the rank equality that (P1...Pk) defines an isomorphism from
the image of P1 (a vector space of column vectors) to itself. �

Lemma 5.9. Suppose k,m, n are positive integers and 1 ≤ k ≤ n. Suppose Q is
a collection of m matrices of size n × n, and there exists a product of N(k,m, n)
matrices from Q with rank at least k. Then there are arbitrarily long products of
matrices from Q with rank at least k.

Proof. We prove the proposition by induction on k, for k decreasing from n. The
case k = n is clear. Suppose now 1 ≤ k < n and the lemma holds for k+1. Suppose
a matrix M is a product Qi(1) · · ·Qi(N(k,m,n)) of N(k,m, n) matrices from Q and
has rank at least k. We must show there are arbitrarily long products from Q with
rank at least k.

The given product is a concatenation of products of length N(k + 1,m, n), and
we define corresponding matrices,

(5.11) Pj = Q1+(j−1)(N(k+1,m,n)) · · ·Qj(N(k+1,m,n)), 1 ≤ j ≤ 1 +mN(k+1,m,n) .

If any Pj has rank at least k + 1, then by the induction hypothesis there are
arbitrarily long products with rank at least k + 1, and we are done. So, suppose
every Pj has rank at most k. Because rank(Pj) ≥ rank(M) ≥ k, it follows that M ,
and every Pj , and every subproduct of consecutive Pj ’s, has rank k.

There are only mN(k+1,m,n) words of length N(k + 1,m, n) on m symbols, so
two of the matrices Pj must be equal. The conclusion now follows from Lemma
5.8. �

Proof of Proposition 5.6. As described in Examples 4.37 and 4.5, there are
algorithms for producing the reduced stochastic module for πµ as a set of matrices
Ma (one for each symbol from A(Y )) and a pair of vectors u, v such that for
any Y -word a1 · · · at, (πµ)C0(a1 · · · at) = uMa1

· · ·Mat
v. By Theorem 5.1, πµ is

k-step Markov if and only every product Ma1
· · ·Mak

has rank at most 1. Let

K = N(2,m, n). If πµ is not K-step Markov, then some matrix
∏K

i=1Ma(i) has
rank at least 2, and by Lemma 5.9 there are then arbitrarily long products of Ma’s
with rank at least 2. By Theorem 5.1, this shows that πµ is not k-step Markov for
any k. �

Remark 5.10. Given m and n, the numbers N(k,m, n) grow very rapidly as k
decreases. Consequently, the bound K in Proposition 5.6 (and consequently the
algorithm of Corollary 5.7) is not practical. However, in an analogous case (Problem
5.13 below) we don’t even know the existence of an algorithm.
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Problem 5.11. Find a reasonable bound K for Proposition 5.6.

Example 5.12. This is an example to show that the cardinality of the domain
alphabet cannot be used as the bound K in Proposition 5.6. Given n > 1 in N,
let A be the adjacency matrix of the directed graph G which is the union of two
cycles, a1b1b2 · · · bn+4a1 and a2b3b4 · · · bn+3a2. The vertex set {a1, a2, b1, . . . , bn+4}
is the alphabet A of ΩA. Let φ be the 1-block code defined by erasing subscripts,
and let Y be the subshift which is the image of φ, with alphabet {a, b}. Let µ
be any 1-step Markov measure on ΩA. In G, there are exactly four first return
paths from {a1, a2} to {a1, a2}: a1b1 · · · bn+4a1, a1b1 · · · bn+3a2, a2b3 · · · bn+4a1 and
a2b3 · · · bn+3a2. Thus, in a point of Y , successive occurrences of the symbol a must
correspondingly be separated by m b’s, with m ∈ {n+4, n+3, n+2, n+1}. Each Y -
word abma has a unique preimage word, so φ : ΩA → Y is a topological conjugacy.
Thus φµ is k-step Markov for some k. We have

φ(b1 · · · bn+3a2b3 · · · bn+3a2) =
(
bn+3abn+1

)
a , and

φ(a1b1 · · · bn+4a1b1 · · · bn+1) = ab
(
bn+3abn+1

)
.

So,
(
bn+3abn+1

)
a and ab

(
bn+3abn+1

)
are Y -words, but ab

(
bn+3abn+1

)
a is not a

Y -word. Consequently, we have conditional probabilities,

φµ[y0 = a | y−(2n+5) · · · y−1 =
(
bn+3abn+1

)
] > 0 ,

φµ[y0 = a | y−(2n+7) · · · y−1 = ab
(
bn+3abn+1

)
] = 0 ,

which shows that φµ cannot be (2n+5)-Markov. In contrast, |A| = n+6 < 2n+5.

With regard to the problem (3.3) of determining whether a given factor map is
Markovian, the analogue of Proposition 5.6 is the following open problem.

Problem 5.13. Find (or prove there does not exist) an algorithm for attaching
to any 1-block code φ from an irreducible shift of finite type a number N with
the following property: if a 1-step Markov measure µ on the range of φ has no
preimage measure which is N -step Markov, then µ has no preimage measure which
is Markov.

Remark 5.14. (The persistence of memory) Suppose φ : ΩA → ΩB is a 1-block
code from one irreducible 1-step SFT onto another. We collect some facts on how
the memory of a Markov measure and a Markov image must or can be related.

(1) The image of a 1-step Markov measure can be Markov but not 1-step
Markov. (E.g. the standard map from the k-block presentation to the
1-block presentation takes the 1-step Markov measures onto the k-step
Markov measures.)

(2) If φ is finite-to-one and ν is k-step Markov on ΩB, then there is a unique
Markov measure µ on ΩA such that φµ = ν, and µ is also k-step Markov
(Proposition 3.18).

(3) If any 1-step Markov measure on ΩB lifts to a k-step Markov measure on
ΩA, then for every n, every n-step Markov measure on ΩB lifts to an (n+k)-
step Markov measure on ΩA. (This follows from the explicit construction
(3.2) and passage as needed to a higher block presentation.)
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(4) If φ is infinite-to-one then it can happen [18, Section 2] (“peculiar memory
example”) that every 1-step Markov measure on ΩB lifts to a 2-step Markov
measure on ΩA but not to a 1-step Markov measure, while every 1-step
Markov on ΩA maps to a 2-step Markov measure on ΩB.

6. Resolving maps and Markovian maps

In this section, ΩA denotes an irreducible 1-step shift of finite type defined by
an irreducible matrix A.

6.1. Resolving maps. In this section, π : ΩA → Y is a 1-block code onto a
subshift Y , with Y not necessarily a shift of finite type, unless specified. U denotes
the 0, 1, |A(ΩA)| × |A(Y )| matrix such that U(i, j) = 1 iff π(i) = j. Denote a
symbol (πx)0 by x0.

Definition 6.1. The factor map π as above is right resolving if for all symbols
i, i, k such that ik occurs in Y , there is at most one j such that ij occurs in ΩA

and j = k. In other words, for any diagram

(6.1)

i
y

i −−−−→ k

there is at most one j such that

(6.2)

i −−−−→ j
y

y

i −−−−→ k

Definition 6.2. A factor map π as above is right e-resolving if it satisfies the
definition above, with “at most one” replaced by “at least one”.

Reverse the roles of i and j above to define left resolving and left e-resolving. A
map π is resolving (e-resolving) if it is left or right resolving (e-resolving).

Proposition 6.3. (1) If π is resolving, then h(ΩA) = h(Y ).
(2) If Y = ΩB and h(ΩA) = h(ΩB), then π is e-resolving iff π is resolving.
(3) If π is e-resolving, then Y is a 1-step shift of finite type, ΩB.
(4) If π is e-resolving and k ∈ N, then every k-step Markov measure on Y = ΩB

lifts to a k-step Markov measure on ΩA.

Proof. (1) This holds because a resolving map must be finite-to-one [66, 58].

(2) We argue as in [66, 58]. Suppose π is right-resolving. This means precisely
that AU ≤ UB. If AU 6= UB, then it would be possible to increase some entry of A
by one and have a resolving map onto ΩB from some irreducible SFT ΩC properly
containing ΩA. But now h(ΩC) > h(ΩA), while h(ΩC) = h(ΩB) = h(ΩA) because
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the resolving maps respect entropy. This is a contradiction. The other direction
holds by a similar argument.

(3) This is an easy exercise [18].

(4) We consider k = 1 (the general case follows by passage to the higher block
presentation). Suppose π is right e-resolving. This means that AU ≥ UB. Suppose
Q is a stochastic matrix defining a 1-step Markov measure µ on ΩB. For each
positive entry B(k, ℓ) of B and i such that π(i) = k, let J (i, k, l) be the set of
indices j such that A(i, j) > 0 and π(j) = ℓ. Now simply choose P to be any
nonnegative matrix of size and zero/positive pattern matching A such that for each
i, k, l,

∑
j∈J (i,k,l) P (i, j) = Q(k, ℓ). Then PU = UQ, and this guarantees that

πµ = ν. The condition on the +/0 pattern guarantees that µ has full support on
ΩA. (The code π in Example 3.4 is right e-resolving, and (3.4) gives an example of
this construction.) �

The resolving maps, and the maps which are topologically equivalent to them
(the closing maps), form the only class of finite-to-one maps between nonconjugate
irreducible shifts of finite type which we know how to construct in significant gener-
ality [5, 6, 66, 58, 17]. The e-resolving maps, and the maps topologically equivalent
to them (the continuing maps), are similarly the Markovian maps we know how to
construct in significant generality [18]. If ΩA,ΩB are mixing shifts of finite type
with h(ΩA) > h(ΩB) and there exists any factor map from ΩA to ΩB (as there will
given a trivially necessary condition), then there will exist infinitely many contin-
uing (hence Markovian) factor maps from ΩA to ΩB. However, the most obvious
hope, that the factor map send the maximal entropy measure of ΩA to that of ΩB,
can rarely be realized. Given ΩA, there are only finitely many possible values of
topological entropy for ΩB for which such a map can exist [18].

6.2. All factor maps lift 1-1 a.e. to Markovian maps. Here “all factor maps”
means “all factor maps between irreducible sofic subshifts”. Factor maps between
irreducible SFTs need not be Markovian, but they are in the following strong sense
close to being Markovian, even if the subshifts X and Y are only sofic.

Theorem 6.4. [17] Suppose π : X → Y is a factor map of irreducible sofic sub-
shifts. Then there are irreducible SFT’s ΩA,ΩB and a commuting diagram of factor
maps

(6.3)

ΩA
γ

−−−−→ ΩB

α

y
yβ

X −−−−→
π

Y

such that α, β are degree 1 right resolving and γ is e-resolving. In particular, γ is
Markovian. If Y is SFT, then the composition βγ is also Markovian.

The Markovian claims in Theorem 6.4 hold because finite-to-one maps are Mar-
kovian (Proposition 3.18), e-resolving maps are Markovian (Proposition 6.3), and
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a composition of Markovian maps is Markovian. In the case when π is degree 1 be-
tween irreducible SFTs, the “Putnam diagram” (6.3) is a special case of Putnam’s
work in [82], which was the stimulus for [17].

6.3. Every factor map between SFT’s is hidden Markovian. A factor map
π : ΩA → ΩB is Markovian if some (and therefore every) Markov measure on ΩB

lifts to a Markov measure on ΩA. There exist factor maps between irreducible
SFTs which are not Markovian. In this section we will show in contrast that all
factor maps between irreducible SFTs (and more generally between irreducible sofic
subshifts) are hidden Markovian: every sofic (i.e., hidden Markov) measure lifts to
a sofic measure. The terms Markov measure and sofic measure continue to include
the requirement of full topological support.

Theorem 6.5. Let π : X → Y be a factor map between irreducible sofic subshifts
and suppose that ν is a sofic measure on Y. Then ν lifts to a sofic measure µ on
X. Moreover, µ can be chosen to satisfy degree(µ) ≤ degree(ν).

Proof. We consider two cases.

Case I: ν is a Markov measure on Y . Consider the Putnam diagram (6.3) asso-
ciated to π in Theorem 6.4. The measure ν lifts to a Markov measure µ∗ on ΩA.
Set µ = αµ∗. Then πµ = ν, and degree(µ) = 1 ≤ degree(ν).

Case II: ν is a degree n sofic measure on Y . (Possibly n = ∞.) Then there
are an irreducible SFT ΩC with a Markov measure µ′ and a degree n factor map
g : ΩC → Y which sends µ′ to ν. By Lemma 6.8 below, there exist another
irreducible SFT ΩF and factor maps g̃ and π̃ with degree(g̃) ≤ degree(g) such that
the following diagram commutes:

(6.4)

ΩF
π̃

−−−−→ ΩC

g̃

y
yg

X −−−−→
π

Y

Apply Case I to π̃ to get a degree 1 sofic measure ν∗ on ΩF which π̃ sends to µ′.
Then g̃(ν∗) is a sofic measure of degree at most n which π sends to ν. �

To complete the proof of Theorem 6.5 by proving Lemma 6.8, we must recall
some background on magic words. Suppose X = ΩA is SFT and π : ΩA → Y is a 1-
block factor map. Any X-word v is mapped to a Y -word πv of equal length. Given
a Y -word w = w[1, n] and an integer i in [1, n], set d(w, i) = |{w′

i : πw′ = w}|. As
in [17], the resolving degree δ(π) of π is defined as the minimum of d(w, i) over all
allowed w, i, and w is a magic word for π if for some i, d(w, i) = δ(π). (For finite-to-
one maps, these are the standard magic words of symbolic dynamics [66, 58]; some
of their properties are still useful in the infinite-to-one case. The junior author
confesses an error: [17, Theorem 7.1] is wrong. The resolving degree is not in
general invariant under topological conjugacy, in contrast to the finite-to-one case.)
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If a magic word has length 1, then it is a magic symbol. As remarked in [17,
Lemma 2.4], the argument of [58, Proposition 4.3.2] still works in the infinite-
to-one case to show that π is topologically equivalent to a 1-block code from a
one step irreducible SFT for which there is a magic symbol. (Factor maps π, φ
are topologically equivalent if there exist topological conjugacies α, β such that
αφβ = π.)

Proposition 6.6. Suppose X is SFT; π : X → Y is a 1-block factor map; a
is a magic symbol for π; aQa is a Y -word; and a′Q′a′′ is an X-word such that
π(a′Q′a′′) = aQa. Then the image of the cylinder C0[a

′Q′a′′] equals the cylinder
C0[aQa].

Proof. Suppose PaQaR is a Y -word, with preimage X-words P jajQj(a∗)
jRj , say

1 ≤ j ≤ J , with the 1-block code acting by erasing ∗ and superscripts. Because
a is a magic symbol, there must exist some j such that aj = a′, and there must
exist some k such that (a∗)

k = a′′. Because X is a 1-step SFT, P ja′Q′a′′Rk is an
X-word, and it maps to PaQaR. This shows that the image of C0[a

′Q′a′] is dense
in C0[aQa] and therefore, by compactness, equal to it. �

Corollary 6.7. Suppose π : X → Y is a factor map from an irreducible SFT X to
a sofic subshift Y . Then there is a residual set of points in Y which lift to doubly
transitive points in X.

Proof. Without loss of generality, we assume π is a 1-block factor map, X is a 1-
step SFT, and there is a magic symbol a for π. Let vn = a′Pna

′, n ∈ N, be a set of
X-words such that every X-word occurs as a subset of some Pn and a′ is a symbol
sent to a. The set En of points in X which see the words v1, v2, . . . vn both in the
future and in the past is a dense open subset of X . It follows from Proposition
6.6 that each πEn is open. For every n, En contains En+1, so π(∩nEn) = ∩nπEn.
Thus the set ∩nEn of doubly transitive points in X maps to a residual subset of
Y . �

We do not know whether in Corollary 6.7 every doubly transitive point of Y
must lift to a doubly transitive point of X .

Lemma 6.8. Suppose α : X → Z and β : Y → Z are factor maps of irreducible

sofic subshifts. Then there is an irreducible SFT W with factor maps α̃ and β̃ such

that degree(β̃) ≤ degree(β) and the following diagram commutes.

(6.5)

W
α̃

−−−−→ Y

β̃

y
yβ

X −−−−→
α

Z

Proof. First, suppose X and Y are SFT. The intersection of any two residual sets in
Z is nonempty, so by Corollary 6.7 we may find x and y, doubly transitive in X and
Y respectively, such that αx = βy. Let ΩF be the irreducible component of the fiber
product {(u, v) ∈ X×Y : αx = βy} built from α and β to which the point (x, y) is
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forward asymptotic, and let β̃, α̃ be restrictions to ΩF of the coordinate projections.

These restrictions must be surjective. Note that degree(β̃) ≤ degree(β).

If X and Y are not necessarily SFT, then there are degree 1 factor maps from
irreducible SFT’s, ρ1 : ΩA → X and ρ2 : ΩB → Y , and we can apply the first case

to find α̃ρ1 and β̃ρ2 in the diagram with respect to the pair αρ1, βρ2. Now for α̃

and β̃ we use the maps ρ1α̃ρ1 and ρ2β̃ρ2. �
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