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Abstract. Fix a topological system (X, T ), with its space K(X, T ) of T -

invariant Borel probabilities. If (Y, S) is a symbolic system (subshift) and

ϕ : (Y, S) → (X, T ) is a topological extension (factor map), then the function

h
ϕ
ext

on K(X, T ) which assigns to each µ the maximal entropy of a measure

ν on Y mapping to µ is called the extension entropy function of ϕ. The in-

fimum of such functions over all symbolic extensions is called the symbolic

extension entropy function and is denoted by hsex. In this paper we com-

pletely characterize these functions in terms of functional analytic properties
of an entropy structure on (X, T ). The entropy structure H is a sequence of
entropy functions hk defined with respect to a refining sequence of partitions

of X (or of X × Z, for some auxiliary system (Z, R) with simple dynamics)
whose boundaries have measure zero for all the invariant Borel probabilities.
We develop the functional analysis and computational techniques to produce
many dynamical examples; for instance, we resolve in the negative the question
of whether the infimum of the topological entropies of symbolic extensions of
(X, T ) must always be attained, and we show that the maximum value of hsex

need not be achieved at an ergodic measure. We exhibit several characteriza-
tions of the asymptotically h-expansive systems of Misiurewicz, which emerge

as a fundamental natural class in the context of the entropy structure. The
results of this paper are required for the Downarowicz-Newhouse results [DN]

on smooth dynamical systems.
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1. Introduction

Suppose S, T are selfhomeomorphisms of compact metrizable spaces X,Y and
ϕ : Y → X is a continuous surjection such that Tϕ = ϕS. Then we refer to ϕ, and
also (Y, S), as an extension of (X,T ). We say it is a symbolic extension if (Y, S) is
a subshift over a finite alphabet. Symbolic extensions are fundamental to the use
of symbolic dynamics in the study of dynamical systems (e.g. [Bow]).

We introduce hsex(T ), the symbolic extension entropy of T , by setting

hsex(T ) = inf{htop(S) : (Y, S) is a symbolic extension of (X,T )}

where htop(S) denotes the topological entropy of S. We adopt the convention that
the infimum of the empty set is by definition∞. Abbreviating, we use “sex entropy”
as synonymous with “symbolic extension entropy”. Sex entropy was studied [BFF,
D2] in the notation of the residual entropy of T , which is by definition hres(T ) =
hsex(T )−htop(T ). The residual entropy gives a coarse measure of describability of
a system by symbolic dynamics. The notational choice of sex entropy will be more
natural for most of the current paper (e.g., Remark 8.2).

We define the extension entropy function of an extension ϕ : (Y, S)→ (X,T ) as

hϕext : K(X,T )→ [0,∞)

µ 7→ sup{h(S, ν) : ν ∈ K(Y, S) and ϕν = µ}

where e.g. K(X,T ) denotes the compact space of T -invariant Borel probabilities,
h(S, ν) is the measure theoretic entropy of S with respect to the measure ν, and
we let ϕ abbreviate the induced map ϕ∗ on measures. For a given µ, the number
hϕext(µ) measures the complexity of the orbits appearing in Y above the support
of µ. There is a variational principle ([LeWa, DS1]) which gives a precise a.e.
formulation of this idea in terms of fiber entropies (see 6.5).

In this paper, we will study entropy jumps to symbolic systems at the level of
measures. We introduce hsex(T, ·), the symbolic extension entropy function of T ,
by setting

hsex(T, µ) = inf{hϕext(µ) : ϕ is a symbolic extension of T}

and similarly we define the residual entropy function of T onK(X,T ) by hres(T, µ) =
hsex(T, µ) − h(T, µ). Sex entropy as a function on measures provides a much finer
probe into the dynamics of T than the number hsex(T ). We will obtain a rather
complete functional analytic understanding of sex entropy functions.

For this, given a system (X,T ), we define an entropy structure, generalizing to
arbitrary systems the entropy structure introduced in [D2] in dimension zero as a
key tool for studying residual entropy. First, suppose the system (X,T ) admits a
refining sequence of finite Borel partitions Pk with small boundaries (i.e., boundaries
which have measure zero for every measure in K(X,T )). In this case (a common
one – see 7.6), we may define an entropy structure for (X,T ) to be the sequence
H of functions hk : K(X,T ) → R defined by the rule hk : µ 7→ h(T, µ, Pk). For a
general system (X,T ), we define the sequence H with respect to (X × Z, T × R),
where (Z,R) can be any nonperiodic zero entropy minimal system (see 5.2). The
point of this is that (X × Z, T ×R) admits the required refining sequence Pk with
small boundaries, as a consequence of the deep constructions of Lindenstrauss [Li],
using the mean dimension theory of dynamical systems developed by Lindenstrauss
and Weiss [LiWe]. Our results will not depend on the particular sequence H chosen
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for a system (there is no canonical sequence). In any case H will be a nondecreasing
sequence of affine nonnegative upper semicontinuous (u.s.c.) functions with u.s.c.
differences.

We define a superenvelope of the sequence H to be a function E such that for
each k the difference E−hk is nonnegative and u.s.c. We allow just one unbounded
superenvelope, E ≡ ∞. Our key result is the Sex Entropy Theorem (5.5): If H is
an entropy structure for (X,T ), then E is a bounded affine superenvelope for the
entropy sequence H if and only if there exists a symbolic extension ϕ of (X,T ) such
that E = hϕext.

Consequently, we identify hsex(T, ·) as the infimum of all affine superenvelopes
of H, which equals EH, the smallest superenvelope of the entropy structure. We
give two additional characterizations of this function, along with practical methods
for estimation. The Entropy Structure Realization Theorem of [DS2] (see 8.4)
shows that every nondecreasing bounded sequence of affine u.s.c. functions with
u.s.c. differences on a Choquet simplex is realized as the entropy structure of a
dynamical system. Along with the Sex Entropy Theorem, this reduces various
questions of sex entropy to problems (or exercises) in functional analysis.

From here we describe the organization of the paper.
The work in the sections 2-4 is pure functional analysis. We use F to denote

a nondecreasing sequence of nonnegative u.s.c. functions fk with u.s.c. differences
fk+1 − fk and lim fk = f . Entropy results follow by replacing F with H. In
Section 2, we introduce functional analytic background necessary for the sequel, and
we characterize superenvelopes in terms of “continuous covers” of F . In Section 3,
we study the smallest superenvelope EF of F . We give an inductive characterization
of EF in terms of tail defects of upper semicontinuity along F , using a construction
which is often practical but in general can be unavoidably transfinite. We also
provide estimates for EF . Work from this section is used in [DN], which provides
the first Cr (1 ≤ r < ∞) examples of positive residual entropy. (If T is C∞, then
hres(T, ·) ≡ 0 [BFF].) In Section 4, we give material on affine functions necessary
to later entropy attainability results.

In Section 5, we give a careful statement of our key result, the Sex Entropy
Theorem. In Section 6, we prove a zero dimensional case (the main argument) of
this theorem. We explain the passage to the general case in Section 7. In Section 8,
we assemble and discuss the applications of the preceding sections to symbolic ex-
tensions, including a variational principle for sex entropy and several attainability
(and nonattainability) results. For the sex entropy and residual entropy functions,
maximum values need not be attained on ergodic measures – a rare situation in
ergodic theory. If hsex(T, ·) is affine (which is always the case when K(X,T ) is a
Bauer simplex), then it will be the extension entropy function of a symbolic ex-
tension of T . On the other hand, it can happen that no symbolic extension of T
has topological entropy equal to hsex(T ). We exhibit additional characterizations
of asymptotic h-expansiveness, which is a very natural condition in the entropy
structure/sex entropy context: T is asymptotically h-expansive if and only if it has
a principal extension to a symbolic system (i.e., the sex entropy function hsex equals
h), if and only if hk converges to h uniformly. We explain how the characterization
in [D2] of the residual entropy of a system is a consequence of the superenvelope
results. By mixing functional analytic examples of the earlier sections with the
Entropy Structure Realization Theorem, we produce several examples of residual
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entropy phenomena. To be concrete, we end the section with two explicit construc-
tions of dynamical systems: one with positive residual entropy, and another with
zero residual entropy but with no symbolic extension of equal entropy.

Our entropy structures use refining sequences of partitions with small bound-
aries. To avoid partition constructions and the invocation of an auxiliary system in
our general construction of an entropy structure (5.2(II)), and to get a better un-
derstanding of the dynamical meaning of sex entropy, it is appropriate to examine
the relation of entropy to scale in terms of shrinking covers, continuous functions,
epsilon-orbits with epsilon going to zero, and so on. Not all natural definitions give
an entropy structure whose bounded affine superenvelopes are the sex entropy func-
tions of symbolic extensions. The appropriate structures and equivalence relations
are explained in [D3].

We thank the referees for their careful readings of the paper, and for their nu-
merous useful suggestions which have improved it.

2. Semicontinuity, separation theorems and superenvelopes

This section contains certain general observations concerning the behavior of
sequences of u.s.c. functions on compact metrizable spaces, including, in particular,
affine u.s.c. functions on convex sets (simplexes). (For our applications we only
consider the metrizable case, although most statements below hold without the
metrizability assumption.)

Upper semicontinuous functions
We begin by recalling some basic facts about u.s.c. functions.

Definition 2.1. A function f : K 7→ R defined on a topological Hausdorff space K
is called upper semicontinuous (u.s.c.) if one of the following equivalent conditions
holds.

(1) f = infα gα for some family {gα} of continuous functions.
(2) f = limα gα, where (gα) is a nonincreasing net (sequence in metric spaces)

of continuous functions.
(3) For each r ∈ R, the set {x : f(x) ≥ r} is closed.
(4) lim supx′→x f(x′) ≤ f(x) at each x ∈ K.

Properties 2.2. (1) The infimum of any family of u.s.c. functions is again
u.s.c. (by 2.1(1)).

(2) Both the sum and the supremum of finitely many u.s.c. functions are u.s.c.
(by 2.1(3)).

(3) A uniform limit of u.s.c. functions is u.s.c.
(4) If f = lim fα is the limit of a nonincreasing net of u.s.c. functions defined

on a compact domain K, and g > f is a continuous function, then g > fα
for some α. In particular, a nonincreasing convergence of u.s.c. functions
to a continuous limit is always uniform.

(5) Every u.s.c. function from a compact domain to R is bounded above and
attains its maximum.

Notation 2.3. SUP(f) will be used to denote the supremum of f , i.e. supx∈K f(x),
while supα fα always means the function defined by pointwise supremum. We use
INF and inf similarly.
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Proposition 2.4 (Exchanging Suprema and Infima). If (fα) is a nonincreas-
ing net of u.s.c. functions on a compact space, then infα SUP(fα) = SUP(infα fα).

Proof. The inequality “≥” is obvious. To prove the converse, suppose that

inf
α

SUP(fα) > SUP(inf
α
fα) .

Viewing the left hand side as a constant function g we have g > infα fα. Thus, by
Property 2.2(4), g > fα(x) for some α and every point x, including the point where
f achieves SUP. But g ≤ SUP(fα) by definition, a contradiction. �

We now pass to lifting and projecting u.s.c. functions. Let π : M → K be a
continuous map. If f is a continuous (or u.s.c.) function on K then the lifted
function f ◦ π is a continuous (or u.s.c.) function on M . This lift we denote by the
same letter f . We can also push functions down:

Definition 2.5. If π : M → K is a surjection and f is a bounded real-valued
function on M , then f [K] is the function defined on K by

f [K](x) = sup
y∈π−1(x)

f(y) .

Remark 2.6. In the case that f is u.s.c. and π is a continuous surjection between
compact spaces, it is easily seen using Definition 2.1(3) that f [K] is also u.s.c.

Below, exK denotes the set of extreme points of a convex set K. A Choquet
simplex is a compact convex subset K of a locally convex space such that the
dual of the continuous affine functions on K is a lattice [AE, p.69]. We will only
need the characterization of Choquet: a metrizable compact convex subset K of
a locally convex space is a Choquet simplex if and only if for each x in K there
exists a unique Borel probability µx supported on exK such that

∫
fdµ = f(x) for

every continuous affine function on K [P1, p.60]. Every Choquet simplex is affinely
homeomorphic to K(X,T ) for some homeomorphism T of a Cantor set [D1, O];
here the integral representation is the ergodic decomposition of a measure.

Proposition 2.7. If π : M → K is a continuous affine surjection between convex
sets, and f is an affine function defined on M , then f [K] is concave. If in addition
M and K are Choquet simplexes and π preserves the extreme points (i.e., π(exM) ⊂
exK), then f [K] is affine.

Proof. Let x = αx1 + βx2 in K (α ∈ (0, 1), β = 1− α). Clearly

π−1(x) ⊃ {αy1 + βy2 : y1 ∈ π
−1(x1), y2 ∈ π

−1(x2)}

hence concavity follows. For the reversed inclusion, and hence convexity of f [K]

(with all the additional assumptions) we will apply the Choquet Representation
Theorem and the Radon-Nikodym Theorem. Let µi be the unique probability
measure supported by exK with barycenter at xi, (i = 1, 2). Clearly, µ = αµ1+βµ2

is the unique probability measure supported by exK with barycenter at x, and
each µi is absolutely continuous with respect to µ. Let fi denote the corresponding
Radon-Nikodym derivative defined on exK. Note that αf1 + βf2 ≡ 1. Let ν be
the probability measure on exM with barycenter at a chosen point y ∈ π−1(x).
Consider the measures νi on exM defined by dνi = (fi ◦ π)dν (here we use the
assumption π(exM) ⊂ exK). We have

νi(exM) = 〈fi ◦ π, ν〉 = 〈fi, π(ν)〉 .
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Since the barycenter of π(ν) coincides with the image by π of the barycenter of ν,
i.e., with π(y) = x, by the uniqueness of such measure, we have π(ν) = µ. Thus

νi(exM) = 〈fi, µ〉 = 1,

which shows that each νi is a probability measure. Then we let yi be the barycenter
of νi. The image π(yi) coincides with the barycenter of the measure π(νi), and it
is straightforward to verify that π(νi) = µi, hence π(yi) = xi (i = 1, 2). Finally,

αdν1 + βdν2 = ((αf1 + βf2) ◦ π)dν = dν,

hence, passing to barycenters, αy1 + βy2 = y, which completes the proof. �

Separation theorems
A function f is called lower semicontinuous (l.s.c.) if −f is u.s.c. Essential to the

sequel are various results, collected below, on separating l.s.c. and u.s.c. functions.
We give some proof details where we lack precise references.

Theorem 2.8 (Sandwich Theorem). Let K be a compact metric space. Suppose
h and f are functions defined on a compact metric space K, h ≤ f , h is u.s.c. and
f is l.s.c. Then there exists a continuous function g such that h ≤ g ≤ f .

Proof. See e.g. [T]. (The result holds for a topological space K if and only if K is
normal.) �

Theorem 2.9 (Separation of Disjoint Epigraphs). Suppose h and f are func-
tions defined on a compact convex subset K of a locally convex linear space, h < f ,
h is u.s.c. and f is l.s.c.

(1) If h is concave and f is convex, then there exists an affine continuous
function g such that h < g < f .

(2) If h is concave, then there exists a concave continuous function g such that
h < g < f .

Proof. (1) This is [C, Theorem 21.20], which we include for context.
(2) The concave u.s.c. function h is the pointwise infimum of the continuous

affine functions a such that h < a (see [C, Prop. 2.18]). Because f is l.s.c. with
h < f , it follows that for each x ∈ K there is an open neighborhood V and an affine
function gV such that h < gV and gV (y) < f(y) for y ∈ V . Let g = min gV , where
the minimum is over a finite cover of K by such sets V . �

Theorem 2.10 (Edwards’ Separation Theorem). Suppose h and f are func-
tions defined on a Choquet simplex K, h ≤ f , h is convex and f is concave l.s.c.
Then there exists an affine continuous function g such that h ≤ g ≤ f .

Proof. See e.g. [AE], Theorem 7.6. �

Theorem 2.11. Suppose h and f are functions defined on a Choquet simplex,
h < f , h is affine u.s.c. and f is l.s.c. Then there exists an affine continuous
function g such that h < g < f .

Proof. Choose ε > 0 such that h+ε < f . By Theorem 2.9(2), there exists a concave
continuous function g1 such that h+ ε < g1 < f . By Theorem 2.10, there exists an
affine continuous function g2 such that h+ ε ≤ g2 ≤ g1. Let g = g2. �
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Envelopes and superenvelopes
Let f be a bounded function defined on a compact domain K. We assume the

set K is also convex in discussions involving convex structure. Throughout this
paper we will be using the following notation:

Notation 2.12. f̃ denotes the u.s.c. envelope of f , i.e., f̃ = infα gα, where gα
ranges over all continuous functions above f (i.e., gα ≥ f).

In fact, f̃ is the smallest u.s.c. function above f , and

f̃(x) = max

{
f(x), lim sup

x′→x

f(x′)

}
.

It is also immediately seen that for any functions f and g, f̃ + g ≤ f̃ + g̃, with
equality holding if f or g is continuous.

Definition 2.13. f̂ denotes the u.s.c. concave envelope of f , i.e., f̂ = infα gα,
where gα range over all affine continuous functions above f .

Remarks 2.14. Clearly, f ≤ f̃ ≤ f̂ . In fact, f̂ is the smallest concave u.s.c.

function above f (see [C, Prop. 2.18]). If f is affine then f̃ is concave, hence f̃ = f̂ .

Indeed, let x = αx1 + βx2, and (using the above displayed formula for f̃) choose

sequences xi,n → xi, (i = 1, 2) such that f(xi,n)→ f̃(xi). Then

f̃(x) ≥ lim
n
f(αx1,n + βx2,n) = lim

n
[αf(x1,n) + βf(x2,n)] = αf̃(x1) + βf̃(x2).

Notation 2.15. If f is unbounded, we set f̃ = f̂ ≡ ∞ which is to say that these
envelopes do not exist (in the proper sense). Obviously, in any case SUP(f) =

SUP(f̃) = SUP(f̂).

For the rest of this section, we set the following

Notation 2.16. F denotes (fk)
∞
k=1, a nondecreasing sequence of u.s.c. functions

fk : K → [0,+∞), where K is compact metrizable, all differences fk+1 − fk are
u.s.c., and limk fk = f . We allow ∞ as a possible value of f . We let f0 denote the
zero function.

Definition 2.17. A superenvelope of F is a function E on K such that either (i)
E is bounded and for each k ≥ 1 the function E − fk is nonnegative and u.s.c., or
(ii) E is the constant function ∞.

Suppose E is a finite superenvelope of F . Then E = (E − f1) + f1, so E is itself
a u.s.c. function. The functions E − fk converge nonincreasingly to the function
E− f , which hence is also u.s.c. and nonnegative. Since the pointwise minimum of
two superenvelopes is easily seen to be again a superenvelope, the superenvelopes
of F form a directed family. It follows immediately from Property 2.2(1) that there
exists a smallest superenvelope of F , namely, the pointwise infimum (limit) of all
superenvelopes. We denote that superenvelope by EF . This function is either
bounded or it is the constant ∞.

We will now provide our first construction of the smallest superenvelope EF . By
a continuous cover (or simply cover) of F we shall mean any sequence G = (gk)k∈N

of continuous functions from K to [0,∞] such that gk ≥ fk − fk−1 for each k ∈ N.
Let ΣG denote Σ∞

k=1gk. We will consider the u.s.c. function

inf
G

Σ̃G,
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where the infimum is taken over all covers G of F .

Theorem 2.18. EF = infG Σ̃G. There exists a cover G with SUP(ΣG) = SUP(EF).

Proof. Notice that the set {G} of all covers of F is a directed family, with the order
G < G′ if gk ≤ g′k for each k; the common successor of two covers is obtained as

their pointwise minimum. By attaching to each cover G the function Σ̃G, we regard

{Σ̃G} as a net indexed by G. This is a nonincreasing net of u.s.c. functions, and

the infimum in the definition of infG Σ̃G is in fact a nonincreasing limit.
Let Fk denote the sequence (fn+k − fk)n∈N. We can write

inf
G

Σ̃G = lim
G

(
Σki=1gi+Σ̃Gk

)
= fk + inf

G
Σ̃Gk ,

where Gk = (gn+k)n∈N is the cover of Fk obtained by “truncating” G (in fact all

covers of Fk are such truncations). The difference between the function infG Σ̃G
and fk is hence a nonnegative u.s.c. function. We have proved that the function

infG Σ̃G is a superenvelope of F , hence it is not smaller than EF .
The converse inequality holds trivially if EF ≡ ∞. Suppose EF is bounded and

let g ≥ EF be a continuous function. We will inductively construct a cover G such

that ΣG ≤ g. This will end the proof, because then also Σ̃G ≤ g and hence

inf
G

Σ̃G ≤ inf
g≥EF

g = EF .

(1) It is clear that

f1 ≤ g − (EF − f1)

and in this inequality the assumptions of the Sandwich Theorem 2.8 hold. Thus,
there exists a continuous function g1 in between.

(2) Suppose we have found continuous functions g1, g2, . . . , gk such that we have
gi ≥ fi − fi−1 for i = 1, 2, . . . , k, and

k∑

i=1

gi ≤ g − (EF − fk) .

(This condition was fulfilled in (1) above for the case k = 1.) Then

fk+1 − fk ≤ g −

k∑

i=1

gi − (EF − fk+1)

and again, the assumptions of the Sandwich Theorem are being fulfilled. Thus a
continuous function gk+1 exists between the expressions on both sides. It is seen
that the inductive assumption is now satisfied for k + 1. In this manner a cover
G = (gk)k∈N of F is constructed. Finally, since each EF − fk is nonnegative,
Σki=1gi ≤ g holds for each k, hence ΣG ≤ g.

The cover mentioned in the last statement of the theorem is obtained by applying
the last argument to the constant function g ≡ SUP(EF). �

Example 2.19. Let K consist of a sequence (an)n≥2 and its limit b. Define f1 =
1{b} and fk = fk−1 + 1{ak} if k ≥ 2. Clearly f ≡ 1, and it is not hard to see using
continuous covers (or Proposition 3.13) that EF = 1{b} + 1. In this example, it is
seen that f being u.s.c. (even continuous) does not imply that it is equal to EF .
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Example 2.20. Let K be a space without isolated points, and let (qn)n∈N be a
dense sequence. Set f1 = 1q1 and fk = fk−1 + 1{qk} if k ≥ 2. Clearly f ≤ 1;
however, EF ≡ ∞. To see this, check that ΣG is unbounded for any continuous
cover G, or apply Proposition 3.9.

Example 2.21. Let K be the following subset of R2:

K = {(0, 0)} ∪ {( 1
m
, 0) : m ∈ N} ∪ {( 1

m
, 1
n
) : (m,n) ∈ N2, m ≤ n} .

For k ∈ N and given a, b, c ∈ R, define fk =
∑k
i=1 di, where

d1 = a · 1{(0,0)} , d2k = b · 1{( 1
k
,0)} , d2k+1 = c · 1{( 1

mk
, 1

nk
)} ,

and (mk, nk) is some linear ordering of the set {(m,n) ∈ N2 : m ≤ n}. Clearly
SUP(f) = max{a, b, c}. By analyzing continuous covers (or computing EF from
Theorem 3.3), one can check EF

(
( 1
m
, 1
n
)
)

= c, EF
(
( 1
m
, 0)

)
= b+c, and EF ((0, 0)) =

a + b + c. Playing with higher order accumulation points in K, we can obtain ar-
bitrary real numbers 0 < r1 ≤ r2 as SUP(f) and SUP(EF).

3. Estimates and inductive characterization of EF

Throughout this section we continue the notation and assumptions of (2.16), and
we also assume that f is bounded (otherwise there is no point in estimating EF).
First of all, it is important to realize that when EF is bounded, the functions EF
and f must be equal on a large set.

Proposition 3.1. If EF <∞, then EF = f on a residual subset of K.

Proof. Suppose EF − f ≥ ε on a set containing an open set U . Then EF − ε1U is
easily seen to be a superenvelope of F , which contradicts minimality of EF . We
have shown that the set where EF − f ≥ ε has empty interior. This set is also
closed, so EF > f on a first category set. �

On the other hand, for f to equal EF exactly is rather special.

Proposition 3.2. The following conditions are equivalent:

(1) EF = f
(2) fk converges to f uniformly on K.

Proof. If (1) holds, then f − fk is a sequence of u.s.c. functions which converge
nonincreasingly to zero. By Property 2.2(4), the convergence is uniform, so (2)
holds.

If (2) holds, then every f−fk is a uniform limit of u.s.c. functions, hence is u.s.c.,
so f is a superenvelope, and obviously it is the minimal one, so (1) holds. �

Evidently the mystery of EF−f has to do with upper semicontinuity and nonuni-
form convergence of the sequence F . We will capture this with an inductive charac-
terization, which is often practical but in general transfinite. Given a nonincreasing
sequence T = (tk) of nonnegative bounded functions on K, we set u0 ≡ 0, and
then for an ordinal α set

uα+1 = lim
k→∞

ũα + tk .

Notice that if uα is bounded, then ũα + tk converges nonincreasingly, and uα+1 is
also nonnegative u.s.c. and bounded. Finally, for a limit ordinal β let

uβ = s̃up
α<β

uα .
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(So, for every α, either uα is bounded or by our convention (2.15) uα ≡ ∞.) We will
apply this construction to the tail sequence T = (τk)k of the sequence F , defined
by τk = f − fk for k ≥ 0. For this choice of T we may write uα as uFα .

Theorem 3.3 (Inductive Characterization). Let F be a nondecreasing se-
quence of nonnegative u.s.c. functions converging to a bounded limit f , and with
u.s.c. differences fk+1 − fk. Let T = (τk)k denote the sequence of tails. The
functions uα = uFα are nondecreasing in α, and

(3.4) uα = uα+1 ⇐⇒ uα = EF − f.

Moreover, such an α exists already among countable ordinals. Consequently,

(3.5) EF − f = sup
α
uα

where the supremum is taken over all countable ordinals α, or equivalently over all
ordinals α.

Proof. That the functions uα are nondecreasing in α is obvious from the definition.
We will first show

(3.6) uα ≤ EF − f

for any α. This is clear for α = 0, so suppose it holds for some α. Write

EF − fk = EF − f + τk ≥ uα + τk.

Because the function on the left is u.s.c., we can replace the function on the right
with its u.s.c. envelope, so

EF − fk ≥ ũα + τk ≥ uα+1.

Passing with k to infinity we obtain uα+1 ≤ EF−f . If β is a limit ordinal and (3.6)
holds for α < β, then the inequality uβ ≤ EF − fk follows from the definition of
uβ and the uppersemicontinuity of EF − f . This proves (3.6) for all α.

We will now prove (3.4). If uα ≡ ∞, then by (3.6) the right side of (3.4) holds,
and obviously the left side holds. Suppose then uα is bounded. If the right side
of (3.4) holds, then

uα + τk = EF − f + τk = EF − fk

which is u.s.c., so we also have ũα + τk = EF − fk. Thus,

uα+1 = lim
k

(EF − fk) = EF − f = uα.

Now assume the left side of (3.4) holds. It suffices to bound, for each k, the “defect
of upper semi-continuity” of uα + τk as follows:

(ũα + τk)− (uα + τk) ≤ uα+1 − uα.

Once this is proved, uα+1 = uα implies that uα + τk is u.s.c. for every k; then
uα + τk = uα + f − fk shows uα + f is a superenvelope; then uα + f ≥ EF , which
together with (3.6) gives equality. To estimate these defects first note that they
converge to uα+1 − uα (because τk converges to zero). It now suffices to show that
they are nondecreasing in k. Let ` > k. We have

(ũα + τ`)− (uα + τ`)− (ũα + τk) + (uα + τk)

= (ũα + τ`)− uα − τ` − (uα + τ` + f` − fk)˜ + uα + τ` + f` − fk

= (ũα + τ`) + f` − fk − (uα + τ` + f` − fk)˜ ≥ 0
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because f` − fk is u.s.c. This completes the proof of the equivalence statement.
For the “Moreover” claim, let Kα = {(x, y) ∈ K×[0,∞] : 0 ≤ y ≤ uα(x)}, a com-

pact set. The space of compact subsets of K × [0,∞] is separable in the Hausdorff
metric, and α < β < γ implies dist(Kα,Kβ) ≤ dist(Kα,Kγ), by inclusion. There-
fore, given ε > 0 there can be only countably many α such that dist(Kα,Kα+1) > ε.
It follows that uα = uα+1 for some countable ordinal α.

The final claim (3.5) is now obvious. �

Examples (which we skip) show that the transfiniteness in the induction is nec-
essary; on the other hand, sometimes one can compute EF by computing uα and
uα = uα+1 for a finite α (e.g., u1 6= u2 = u3 in Example 2.21). The rest of this sec-
tion will be devoted to some practical estimates for EF . We will use the especially
accessible function u := uF1 = infk τ̃k = limk τ̃k.

Proposition 3.7. Let τk and uF1 be defined as in Theorem 3.3, and set u = uF1 .

(1) The functions τ̃k − τk converge nondecreasingly in k to the limit u.

(2) f̃ − f ≤ u ≤ f̃ .
(3) The pointwise supremum of u is infk SUP(τk) = limk SUP(τk).

Proof. (1) The proof of Theorem 3.3 showed the defects (ũα + τk) − (uα + τk)
converge nondecreasingly in k to uα+1 − uα. The case α = 0 is (1).

(2) The first inequality follows from (1) because f̃ − f = τ̃0− τ0, and the second
inequality is trivial by the definition of u = u1.

(3) By the Exchanging Suprema and Infima statement of Proposition 2.4,

inf
k

SUP(τk) = inf
k

SUP(τ̃k) = SUP(inf
k
τ̃k) = SUP(u).

�

We recall a standard definition from topology

Definition 3.8. A point x has order of accumulation 0 in a set K when it is an
isolated point in K, i.e., when {x} is open. Let K(1) denote the compact set of all
points that are not of order 0. Inductively, x is (an accumulation point) of order
r = r(x) (r ≥ 1) in K if it is an isolated point of the compact set K (r) of points
which are not of order smaller than r. We set r(x) = ∞ for points which are not
of any finite order.

Proposition 3.9. For t > 0, let r(t, x) denote the order of accumulation of x in
the set Kt of points where u ≥ t. Then EF(x) ≥ f(x) + tr(t, x).

Proof. By the characterization (3.5) of EF − f in Theorem 3.3, it suffices to prove
the claim: if r(t, x) ≥ m, then um(x) ≥ mt. The case m = 0 is trivial. Suppose
the claim holds for m, and r(t, x) ≥ m + 1. Choose points xn from Kt such that
limxn = x and r(xn) ≥ m. Then um+1(x) ≥ limn um+1(xn) = limn limk(um(xn) +
τk(xn))

∼ ≥ limn limk(mt+ τk(xn))
∼ ≥ mt+ limn u(xn) ≥ (m+ 1)t . �

From here we concern ourselves with bounds on EF from above.

Proposition 3.10. Let r(x) denote the order of accumulation of x in the domain
K of f . We have the following estimate of the minimal superenvelope EF :

EF(x) ≤ f(x) + r(x)u(x).
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Proof. We proceed by induction on r. By Proposition 3.1, EF = f at any isolated
point, so the statement holds for r = 0. Suppose we have proved it for some
r ≥ 0. Let x be a point of order r + 1. Define E as EF except at x where we
set E(x) = f(x) + (r + 1)u(x). We complete the proof by showing that E is a
superenvelope of F . The functions E − fk are nonnegative. We only need to verify
their upper semi-continuity at x, i.e., given k we need

lim sup
x′→x

(E − fk)(x
′) ≤ (E − fk)(x).

The point x is surrounded only by points x′ 6= x of order at most r, for which

(E − fk)(x
′)− (E − fk)(x) = EF(x′)− fk(x

′)− f(x)− (r + 1)u(x) + fk(x)

≤ f(x′) + ru(x′)− fk(x
′)− f(x)− (r + 1)u(x) + fk(x)

= τk(x
′)− τk(x) + r

(
u(x′)− u(x)

)
− u(x) .

Passing to limsup over x′ → x, we appeal to upper semicontinuity of u and then
Proposition 3.7(1) to obtain

lim sup
x′→x

(E − fk)(x
′)− (E − fk)(x) ≤ τ̃k(x)− τk(x)− u(x) ≤ 0

as required. �

A refinement of the above method leads to another estimate:

Theorem 3.11. For t > 0 and x ∈ X, define rt(x) to be 0 if u(x) < t, and other-
wise define rt(x) to be 1 plus the order of accumulation of x in the set {x : u(x) ≥ t}
(i.e., rt(x) = 1 + r(t, x)). Suppose there is an open set V and a function g : R→ R

such that rt(x) ≤ g(t) for all x ∈ V , and
∫ ∞

0
g(t)dt < ∞. Define the nonnegative

function

E(x) = f(x) +

∫ ∞

0

rt(x)dt .

Then E − fk is u.s.c. on V . If EF is bounded, then EF(x) ≤ E(x) for all x ∈ V .

Proof. The integral is unaffected if the upper limit ∞ is changed to u(x). Let xn
be a sequence from V \ {x} with limxn = x. We need to show for k ∈ N that

lim sup
n

(E − fk)(xn) ≤ (E − fk)(x).

Given t with 0 < t ≤ u(x), all points sufficiently close to x have order of accumula-
tion in {x : u(x) ≥ t} smaller than that of x, i.e., lim supn rt(xn) ≤ rt(x) − 1. For
t > u(x), by upper semicontinuity of u, lim supn rt(xn) = 0. Thus, for all t > 0
we can write lim supn rt(xn) ≤ max{rt(x)− 1, 0}. By the Dominated Convergence
Theorem,

lim sup
n

∫ ∞

0

rt(xn)dt ≤

∫ u(x)

0

rt(x)dt− u(x)

and therefore (with τk = f − fk)

lim sup
n

(E − fk)(xn) ≤ lim sup
n

τk(xn) + lim sup
n

∫ ∞

0

rt(xn)dt

≤ τ̃k(x) +

∫ u(x)

0

rt(x)dt− u(x)

≤ τ̃k(x) +

∫ ∞

0

rt(x)dt− (τ̃k(x)− τk(x))
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because u estimates from above the defect of τk. The last expression, after cancel-
lation, coincides with (E − fk)(x).

Now suppose that EF is bounded. If M is a constant such that E ≤ M on V
(e.g. M = SUP(f)+

∫ ∞

0
g(t)dt), then the function which equals E on V and equals

EF +M outside V is a superenvelope. This proves the final claim. �

Remark 3.12. The domination assumption cannot be dropped. For instance, in
general u(x) = 0 does not imply EF(x) = f(x) (it does whenever Theorem 3.11
applies). For example, x can be the limit of closed sets Cn with SUP(u|Cn) = 1

n
,

u(x) = f(x) = 0, but SUP(EF|Cn) = 1, hence EF(x) = 1.

Proposition 3.13. Suppose j is a nonnegative integer such that fk+1 − fk is con-
tinuous whenever k ≥ j. Then EF = fj + τ̃j , and SUP(EF) ≤ 2SUP(f).

If all fk are continuous, then EF = f̃ and SUP(EF) = SUP(f).

Proof. Let E denote the function fj + τ̃j . Since EF − fj is u.s.c. and majorizes τj ,
it also majorizes τ̃j = E − fj , hence EF ≥ E. On the other hand, for every k the
difference fj − fk is u.s.c. (consider the cases k > j and k ≤ j), so

E − fk = fj + τ̃j − fk is u.s.c. and

E − fk ≥ fj + τj − fk = f − fk ≥ 0.

Therefore E is a superenvelope, and E ≥ EF . The remaining statements of the
assertion are now obvious. �

4. Affine functions and attainability

In this section we continue to assume the conditions 2.16 governing F and in
addition we suppose the common domainK of the functions fk is a Choquet simplex
and the functions fk are affine. We say a cover G of F is offset if gk > fk − fk−1

for every k.

Proposition 4.1. Given F and K as above, the following hold.

(4.2) EF = inf
GA

Σ̃GA = inf
GA

Σ̂GA = inf
G′

A

Σ̂G′A = lim
G′

A

Σ̂G′A

where GA ranges over all affine covers of F , and G ′A ranges over all affine offset
covers of F . The u.s.c. function EF is concave.

Proof. Obviously, in the formula EF = infG Σ̃G of Theorem 2.18, we can take
the infimum only over offset covers. Then, using Theorem 2.11, every such cover
dominates another cover GA consisting of affine functions. This proves the first
equality. The second equality holds, as explained in Remarks 2.14, because the
functions ΣGA are affine. (This shows EF is concave.) The next equality is obvious
and the last follows because, by Theorem 2.11 again, the affine offset covers form a
directed family. �

Another function of interest to us in this case is

EAF = inf EA,

defined as the infimum of all affine superenvelopes of F . This is also a concave
nonnegative u.s.c. function. In fact we show the following equalities:
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Theorem 4.3.

EAF = EF , inf
EA

SUP(EA) = SUP(EF).

Remark 4.4. Note that since the affine superenvelopes usually DO NOT form a
directed family (see Example 4.7), the second equality is not a consequence of the
first and a statement on exchanging suprema and infima as in Proposition 2.4.

Proof of Theorem 4.3. The inequalities “≥” are obvious and equalities hold if EF ≡
∞. Suppose EF is bounded and let g be an affine continuous function above the
sum of some fixed affine cover, g ≥ ΣGA, GA = (gk)

∞
k=1. We will find an affine

superenvelope EA below g. Set

EA = g − (ΣGA − f)

This EA is an affine function not larger than g. Moreover, for each k ∈ N,

EA− fk = (g−ΣGA) +

∞∑

n=k+1

(fn− fn−1) = g−

k∑

n=1

gn−

∞∑

n=k+1

(gn − (fn − fn−1)) ,

which is nonnegative (see middle expression) and u.s.c. (each gn − (fn − fn−1) is
l.s.c., and so is the sum as a nondecreasing limit). So, EA is an affine superenvelope

of F . Thus EAF ≤ Σ̂GA. But this is true for any ΣGA, so, by (4.2), EAF ≤ EF .
For the second statement let g ≡ SUP(EF) + ε. Using Property 2.2(4) and the
fact that affine offset covers are directed, we can find an affine offset cover G ′A with

Σ̃G′A < g. The above argument now produces an affine superenvelope EA below
SUP(EF) + ε, which ends the proof. �

Given x in a metrizable Choquet simplex K, let µx be the unique Borel proba-
bility on exK such that for every affine continuous (or u.s.c.) function a on K,

a(x) =

∫

exK

(a|exK)dµx

where a|exK is the restriction of a to exK. The point x is called the barycenter of the
measure µx. The restriction map establishes a 1-1 order preserving correspondence
between affine continuous functions on K and certain continuous functions on exK
(namely those which are restrictions of affine continuous functions on K). We can
define

gaff(x) =

∫

exK

gdµx

for any bounded continuous (or u.s.c.) function g on exK, but in general this
function need not be continuous (u.s.c.), because the map x 7→ µx need not be
continuous.

A Bauer simplex is a Choquet simplex K such that the extreme set exK is
compact. In this case the map x 7→ µx is a continuous affine bijection onto the
Borel probabilities on exK [P1, pp.65-6]. Consequently, for a Bauer simplex K
the map f 7→ f |exK gives a 1-1 correspondence between affine continuous functions
on K and all continuous functions on exK, and the same formula establishes a
1-1 correspondence between all nonnegative affine u.s.c. functions on K and all
nonnegative u.s.c. functions on exK. Consequently, for a Choquet simplex K, if g
is nonnegative continuous (u.s.c.) on exK and vanishes outside a compact subset
C of exK, then gaff is necessarily nonnegative continuous (u.s.c.) on K (because
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the closed convex hull of C is a Bauer simplex with extreme set C, and elsewhere
on K the function gaff is 0).

The discussion of Bauer simplicies justifies the easy

Remark 4.5. Our examples 2.19, 2.20, 2.21 can be adapted to produce correspond-
ing affine examples on Bauer simplices, by viewing the given compact domain as
the extreme set of a simplex and extending all functions affinely.

If now F is a sequence of affine nonnegative u.s.c. functions on a Bauer simplexK
then the restriction map is a 1-1 correspondence between all affine superenvelopes of
F and all superenvelopes of F|exK . But this implies that the affine superenvelopes
of F form a directed family and that the smallest affine superenvelope of F exists.
Combining this with Theorem 4.3 we conclude:

Theorem 4.6. If F is a sequence of nonnegative affine u.s.c. functions defined on
a Bauer simplex K, then EF is affine.

In the following example we show that for general Choquet simplexes the situa-
tion may be significantly different: the smallest affine superenvelope need not exist,
and the infimum of pointwise suprema of such envelopes may never be attained.
(This example also shows that affine superenvelopes need not form a directed family,
because the limit would equal the smallest superenvelope and it would be affine.)

Example 4.7. We thank Bob Phelps [P2] for showing us the road that leads to this
example. It is an example of a sequence F of nonnegative affine u.s.c. functions de-
fined on a Choquet simplex K for which SUP(EA) > SUP(EF) (= infEA

SUP(EA),
by the second statement of Theorem 4.3), for every affine superenvelope EA of F .

Moreover, in the example EF = f̃ , and in particular SUP(EF) = SUP(f).
Let K be the Choquet simplex whose set of extreme points consists of a point

b1, a sequence (an)n≥1 converging to b1, and a sequence (bn)n≥2 converging to

b =

∞∑

n=1

2−nan.

Define F = (fk)k∈N, where fk = (
∑k
n=1 1{bn})

aff. Since characteristic functions of
single points have compact supports, f1 is an affine u.s.c. function, and fk − fk−1

is an affine continuous function if k ≥ 2. Consequently by Proposition 3.13,

EF = (1{b1})
aff + (

∞∑

n=2

(1{bn})
aff)∼ .

By Theorem 4.9(1) below, EF must assume its maximum on the closure of the
extreme points. The maximum of EF on exK is 1. The only new accumulation
point of exK is b, and since (1{b1})

aff(b) = 0 we have

EF(b) = 0 + (

∞∑

n=2

(1{bn})
aff)∼(b) ≤ 0 + 1 .

Consequently SUP(EF) = 1.
Now suppose EA is an affine superenvelope of F not exceeding 1. Clearly,

EA(bn) = 1 for each n. By upper semi-continuity, EA(b) = 1. Now, EA restricted
to the Bauer simplex whose extreme set I consists of the sequence (an) and its limit
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b1, is an affine u.s.c. function, so it is Eaff, where E is a u.s.c. function on I. Since
EA ≤ 1, also E ≤ 1, and because

1 = EA(b) =

∞∑

n=1

2−nE(an),

E equals 1 at all points an (n ≥ 1). By upper semi-continuity, E(b1) = 1. But
now EA − f1 is not u.s.c., because it has a “bad” jump at b1. This concludes the
example.

Example 4.8. Here is an example of F such that SUP(EF) > sup{EF(µ) : µ ∈
exK}. Consider a simplex whose extreme points consist of two elements b1, b2
and a sequence (an)n≥2 converging to b = 1

2 (b1 + b2). Set f1 = 1aff
{b1,b2}

(so that

f1(b) = 1), and fk = fk−1 + 1aff
{ak}

(k ≥ 2). Using Proposition 3.13, it is easy to

verify SUP(EF) = 2 (attained at b as in Example 2.19) and EF = 1 at all extreme
points.

Finally, we show the maximum of EF must be achieved on the closure of the
extreme points, and we extend the estimate of Proposition 3.10 to the case of an
affine sequence F defined on a Choquet simplex.

Theorem 4.9. Suppose f is bounded. Then (1) SUP(EF) = sup{EF(µ) : µ ∈
exK}, and (2) if x ∈ exK and r(x) denotes its order within the set exK, then
EF(x) ≤ f(x) + r(x)u(x).

Remark 4.10. Unfortunately, the last inequality does not apply in general to
x ∈ exK, and therefore does not provide an upper bound for SUP(EF).

Proof. By Proposition 3.10, both assertions hold on Bauer simplices, where (EF)|exK
equals E(F|exK). For a general Choquet simplex K let M denote the Bauer sim-
plex of all probability measures supported by exK. The map π assigning to each
such measure its barycenter is an affine continuous map from M onto K. Let F ′

denote the lift of F to M . If E is a superenvelope of F ′, then the pushed down
function E[K] is a superenvelope of F , and conversely a superenvelope of F lifts to
a superenvelope of F ′. Therefore EF = (EF ′)[K] and

SUP(EF) ≥ SUP(EF|exK) = SUP((EF ′)[K]|exK)

≥ SUP(EF ′|exM ) = SUP(EF ′) = SUP(EF) .

This proves (1). Now suppose x ∈ exK, so x has a unique preimage x′ in M , and
x′ ∈ exM . Then

EF(x) = (EF ′)[K](x) = (EF ′)(x′) ≤ h(x) + r(x)u(x)

where the passage from x′ to x in the last equality holds because the restriction of
π to exM is a homeomorphism onto exK. �

5. The Sex Entropy Theorem

We now turn to symbolic extensions. For a self contained statement of our key
result, we recall some notation.

Definitions 5.1. We let K(X,T ) denote the space of T -invariant Borel probabil-
ities on X. We let ϕ : (Y, S) → (X,T ) denote a symbolic extension (i.e. ϕ is a
continuous surjection Y → X intertwining S and T , and (Y, S) is a subshift over a
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finite alphabet). The extension entropy function of ϕ is by definition the function
hϕext : K(X,T ) → [0,+∞) which sends µ to max{h(S, ν) : ν ∈ K(Y, S) and ϕν =
µ}. Given (X,T ), we will say a sequence of partitions Pk of X is refining if the
maximum diameter of an element of Pk goes to zero with k and for each k the
partition Pk+1 refines Pk. The partitions have small boundaries if their boundaries
have measure zero for all µ in K(X,T ).

Definition 5.2. An entropy structure for (X,T ) is a sequence H of functions hk
defined on K(X,T ) in one of two ways.

(I) Suppose Pk is a refining sequence of finite Borel partitions with small bound-
aries. Define H by setting hk : µ 7→ h(T, µ, Pk).

(II) Suppose (Z,R) is an aperiodic minimal zero entropy system, λ ∈ K(Z,R),
and (X × Z, T × R) is the product system. Define H by first choosing an entropy
structure H′ = (h′k) for (X × Z, T ×R) defined as in (I), and then setting hk(µ) =
h′k(µ× λ). (The existence of such a structure H′ follows from Fact 7.6(3).)

Remark 5.3. Not every system admits a refining sequence of finite Borel partitions
with small boundaries, so it is tempting to take only (II) as a definition for entropy
structure, with some fixed choice for (Z,R) such as the dyadic adding machine.
However, this would not produce a canonical sequence H (H still depends on the
choice of partition), and (I) is more direct in the many cases where it applies. The
supply of sequences providing an entropy structure satisfying Theorem 5.5 will be
greatly enriched in [D3].

Remark 5.4. In place of 5.2(II), it is natural to consider defining an entropy
structure on K(X,T ) simply by pushing down to K(X,T ) (by supremum over
preimages) the entropy structure H′ of (X × Z, T ×R). This would produce affine
u.s.c. functions onK(X,T ) which converge nondecreasingly to the entropy function.
We did not make this choice because we also want the functions to have u.s.c.
differences, and this need not be preserved by pushing down.

We now state our key result.

Theorem 5.5 (Sex Entropy Theorem). Suppose T is a homeomorphism of a
compact metrizable space X with entropy structure H = (hk), and htop(T ) < ∞.
Suppose E : K(X,T )→ [0,+∞). Then the following are equivalent.

(1) E is a bounded affine superenvelope of H.
(2) There is a symbolic extension ϕ : (Y, S)→ (X,T ) such that E = hϕext.

The proof of Theorem 5.5 splits into two parts. In the next section, we will prove
the theorem for a convenient choice of H when the space X has dimension zero.
Then in Section 7, we will address general (X,T ) and alternate choices of H.

6. Proof of the Sex Entropy Theorem: a zero dimensional case

This section is devoted to proving Theorem 5.5 in the following special case:

Case Z 6.1. X is zero dimensional and the entropy structure is given by 5.2(I)
with each Pk a partition into nonempty clopen sets.

Notation 6.2. We now set some notation for the rest of this section. From the
given clopen partitions Pk, we fix a presentation of (X,T ) as the associated inverse
limit of subshifts,

(X,T ) =
←−−
lim
k→∞

(Xk, S) .
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The alphabet for Xk is some set in bijective correspondence with Pk. The points
of Xk correspond to itineraries through Pk under T . The bonding maps (factor
maps) Xk+1 → Xk are the amalgamations (surjective one-block maps) which reflect
inclusion of an element of Pk+1 in a unique element of Pk. The entropy structure
H has an equivalent description here as hk(µ) = h(S, µk), where µk denotes the
projection of µ to the system (Xk, S). Of course, limk hk(µ) = h(µ), the entropy
of T with respect to the measure µ. The functions hk are nonnegative, u.s.c.,
affine and bounded by h(T ). As explained in [D2], and below, they also have u.s.c.
differences.

Measure-theoretic conditional entropy.
Recall that a sequence (an) of real numbers is called subadditive if an+m ≤

an + am for all n,m ∈ N. For such a sequence (an), the sequence (an/n) converges
to its infimum. Moreover, if (ni) is a subsequence satisfying ni|ni+1 then the
convergence is monotone along (ni). By the way, we recall that the property ni|ni+1

is equivalent to (ni) being a base of an odometer.
We recall some elementary entropy theory. For details and proofs see e.g. [Wa].
Let (Y, ν, S) be a measure preserving system, and let P1 and P2 be two partitions

of Y , P1 < P2 (P1 a refinement of P2). We denote

Pn1 :=

n−1∨

i=0

T−iP1.

Throughout this paper we shall write:

H(ν, P1) = −
∑

A∈P1

ν(A)log(ν(A));

H(ν, P1|P2) =
∑

B∈P2

ν(B)H(νB , P1) = H(ν, P1)−H(ν, P2),

where νB denotes the conditional measure induced by ν on B (or zero if ν(B) = 0).
It is known that H(ν, Pn1 |P

n
2 ) is a subadditive sequence, and hence divided by n

converges to its infimum h(ν, P1|P2) = h(ν, P1)−h(ν, P2) known as the conditional
entropy. We denote

Hn(ν, P1|P2) =
1

n
H(ν, Pn1 |P

n
2 ),

and we call it the (nth) approximative conditional entropy.
We can now recover a central observation of [D2]:

Proposition 6.3. If ϕ is a factor map (quotient map) of subshifts, ϕ : (Y, S) →
(Y ′, S), then the conditional entropy map ν 7→ h(ν)− h(ϕν) is u.s.c.

Proof. Let P2 be the pullback of the zero coordinate partition of Y ′, and let
P1 be a generating clopen partition of Y which refines P2. Then the function
Hn : ν 7→ Hn(ν, P1|P2) is continuous. Therefore infnHn is u.s.c. This infimum is
the conditional entropy map. �

It follows that for our entropy structure H, the difference functions hk − hk−1

are u.s.c. We can now prove the easy direction of the Sex Entropy Theorem.

Proof of Theorem 5.5 (2) =⇒ (1) in Case Z.
For the given symbolic extension ϕ : (Y, S) → (X,T ), we must show hϕext is a

bounded affine superenvelope of H. Clearly hϕext is bounded and each hϕext − hk is
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nonnegative. For each k, postcomposing ϕ with the projection X → Xk produces
a factor map ϕk of subshifts. Because

(hϕext − hk)(µ) = max{h(ν)− h(ϕkν) : ϕν = µ, ν ∈ K(Y, S)}

we have that hϕext − hk is the pushdown (by ϕ) of a function which is u.s.c. (by
Proposition 6.3) and affine. It follows that hϕext − hk is u.s.c., and it is affine by
Proposition 2.7 because the map ϕ sends ergodic measures to ergodic measures. �

Now we set some notation for the next lemma, which will be essential to our

proof of the converse. Let (Y, S) and (Y ′, S) be full shifts: Y = ΛZ and Y ′ = Λ′Z,
where Λ and Λ′ are finite sets (called alphabets). Suppose also that (Y ′, S) is a
factor of (Y, S) via an amalgamation π. This means that the “zero coordinate
partition” P1 of Y into cylinders of the form Ua = {y ∈ Y : y(0) = a} (a ∈ Λ) is
a refinement of the corresponding “zero coordinate partition” P2 of Y ′ lifted to Y
by preimage. In this case Hn(ν, P1|P2) is determined by observing the (cylinders
generated by) blocks of length n in Y ′ and their preimages (which are blocks of
length n in Y ). Because P1 and P2 generate the Borel sigma-fields in Y and Y ′,
respectively, they suffice for all evaluations of entropy, and we will not use any
other partitions. We therefore skip their indicators in the notation of h(ν, P1),
h(ν, P2), h(ν, P1|P2) and H(ν, P1|P2). Instead, we will write h(ν), h(πν), h(ν|πν)
and Hn(ν|πν), respectively, where πν always denotes the image of ν on Y ′ defined
by πν(A) = ν(π−1(A)). Now, suppose C is a block of some length m in Y . Its
image by π is a block B in Y ′ of the same length. Consider the invariant measure
νC carried by the periodic orbit of the sequence . . . CCC . . . . The code π sends this
measure to the measure µB supported by . . . BBB . . . . In such a case, we define

Hn(C|B) = Hn(νC |µB).

Lemma 6.4. Let (Y, S) and (Y ′, S) be full shifts, Y ′ = Λ′Z and Y = ΛZ. Let
π : Y → Y ′ be an amalgamation. Denote λ = #Λ. For n,m ∈ N and blocks C ∈ Λm

and B ∈ Λ′m, B = π(C), let Hn(C|B) denote the corresponding approximative
conditional entropy. Then for every n ∈ N and ε > 0 there exists an m(n,ε) ∈ N

such that for every m ≥ m(n,ε) the following holds
∑

C∈π−1(B)

exp[−mHn(C|B)] ≤ memε(log λ).

Proof. Consider π−1(B) as a probability space with uniform probability P (C) =
1

#π−1(B) = p ≥ λ−m, with a random variable X(C) = Hn(C|B). The expression

to estimate equals 1
p
E(e−mX) (here E denotes the expected value). By Lemma 2

in [D2] (which is simply a conditional version of Lemma 1 in [BGH]), we have for
every t ≥ 0 that

#{C ∈ π−1(B) : Hn(C|B) ≤ t} ≤ em(t+ε)

for m sufficiently large. Clearly, the above cardinality does not exceed #π−1(B),
and it is zero for t < 0. Eventually, we can write

p#{C ∈ π−1(B) : Hn(C|B) ≤ t} ≤

{
0 , t < 0;

min(pem(t+ε), 1) , t ≥ 0.
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This can be interpreted as saying that the cumulative distribution function of X,
FX(t) = Prob(X ≤ t), is below the cumulative distribution function of W , where
W is a random variable with density

f(t) = pmem(t+ε)

on the interval [0, − log p
m
− ε], and with an atom of mass pemε at zero. This means

that the mass of probability of the distribution of X is moved to the right compared
to that of W . Because the function e−mx is decreasing, the expected value E(e−mX)
is not larger than

E(e−mW ) = pmemε(− log p
m
− ε) + 1 · pemε ≤ pmemε(log λ+

1

m
− ε).

This provides the required estimate of 1
p
E(e−mX). �

Topological fiber entropy.
For the final entropy calculation of our theorem (Stage 4), we will need a vari-

ational principle which lets us make the transition from word counts to the sex
entropy of a measure. To recall this principle, let (X,T ) and (Y, S) be two topo-
logical dynamical systems and let π : Y → X be a topological factor map. For an
open cover A of Y and an x in X we set

H(A|x) = log min{#F : F ⊂ A,
⋃
F ⊃ π−1(x)}

and for a probability measure µ on X we set

H(A|µ) =

∫
H(A|x)dµ(x) .

The function x 7→ H(A|x) is easily seen to be u.s.c. on X and hence also µ 7→
H(A|µ) is a u.s.c. function on the space of measures, and it is obviously affine.
Moreover, if the cover A is a partition into closed and open sets, then these maps
are continuous. If µ is an invariant measure then, by a subadditivity argument, the
sequence 1

n
H(An|µ) (where An denotes the joint cover

∨n−1
i=0 S

−i(A)) converges to
its infimum and the convergence is nonincreasing along any subsequence (pk)k∈N

such that for each k, pk+1 is a multiple of pk. Thus, on K(X,T ) we have a well
defined affine u.s.c. function

h(A|·) = lim
n

1

n
H(An|·)

which we call the topological fiber entropy function onK with respect to A. Finally,
on K we define the function

h(Y |·) = sup
A

h(A|·)

which we call the topological fiber entropy function. We will need the following fact:
for µ ∈ K(X,T ),

(6.5) h(Y |µ) = sup
ν
{h(ν|µ) : ν ∈ K(Y, S) and πν = µ} .

In other words, h(Y |µ) = hπext(µ) − h(µ). This fact is essentially a special case of
the “Relativised Variational Principle” [LeWa, Theorem 2.1]. It is also the “Inner
Variational Principle”, which holds for not necessarily metrizable systems [DS1,
Theorem 4]. In the special case that (Y, S) is a subshift, it is known that the
supremum in the definition of h(Y |·) is attained for the zero coordinate partition
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A (which is also a cover). We summarize what we will need for our entropy com-
putation in the following lemma.

Lemma 6.6. Suppose ϕ : (Y, S)→ (X,T ) is a factor map, (Y, S) is a subshift, and
A is the zero coordinate partition of Y . Then for µ ∈ K(X,T ),

hϕext(µ) = lim
n

1

n
H(An|µ) + h(µ)

and the functions µ 7→ H(An|µ) are continuous on K(X,T ).

We are now ready for the difficult direction of the Sex Entropy Theorem.

Proof of Theorem 5.5 (1) =⇒ (2) in Case Z.
Given the bounded affine superenvelope E, we will construct a symbolic exten-

sion ϕ such that hϕext = E. The construction is a combination and simplification of
methods from [BFF] and [D2] which at the same time allows for better control over
entropy properties of the extension. This new construction splits into two main
stages. From an affine superenvelope we derive an SWO, a simplified version of the
notion of a word oracle introduced in [BFF]; then, from the SWO we construct a
symbolic extension with the desired sex entropy. In fact, we present these steps in
the reversed order as stages 2 and 3.

STAGE 1. Preliminary reshaping
As in [D2], we begin with the observation, that it is convenient to consider the

direct product of (X,T ) with an odometer. Let p = (pk)k∈N be a sequence of
positive integers such that pk+1 = pkqk with qk being an integer larger than 1, for
each k. Let (Gp, τ) denote the rotation by 1 of the odometer to base p. We denote
(X ′, T ′) = (X ×Gp, T × τ).

We represent (X,T ) =
←−
lim(Xk, S) as the shift transformation on a closed shift-

invariant family of infinite matrices

x = (xk,n)k∈N,n∈Z,

such that each row (indexed by k) is a sequence over some finite alphabet ∆k. We
let

xk = (xs,n)s≤k,n∈Z

denote the projection of x onto the first k rows. In this setting, (Xk, S) is the
symbolic system obtained from (X,T ) by the projection onto the first k rows. The
alphabet of Xk is contained in the product Λk = ∆1 × · · · × ∆k. Note that each
projection from Xk+1 to Xk is an amalgamation.

The product (X ′, T ′) is realized in such manner that in each row xk we apply
a pk-periodically repeating marker, say a comma, and the positions of the commas
in the (k+1)st row coincide with the positions of some (every qkth) commas in the
kth row. (Formally, the alphabet ∆′

k of the kth row is ∆k ∪∆k × {,}). Now, the
projection from X ′

k to Xk (erasing the commas in the first k rows) induces a map
from K ′

k = K(X ′
k, S) onto Kk = K(Xk, S) and even though this map is not 1-1, it

is obvious that h(µ′
k) = h(µk) whenever µ′

k projects to µk. Thus the conditional
entropy functions on K ′ = K(X ′, T ′) coincide with the functions hk lifted from
K = K(X,T ). So, if EA is a bounded affine superenvelope for H on K, its lift (also
denoted by EA) becomes a bounded affine superenvelope for the entropy sequence
(also denoted by H) on K ′. So, it suffices to construct a symbolic extension of
(X ′, T ′) with the required sex entropy function. From now on we will use (X,T )
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to denote (X ′, T ′), we will also skip the apostrophes in X ′
k, K

′
k, etc. We are free to

choose the base p according to our needs, and we will specify p in Stage 3.
For given k, the blocks B of length pk over the alphabet ∆k ending with a comma,

will be called k-blocks and their collection will be denoted by Bk. A rectangular
pk × k block R having a concatenation of pk

ps

of s-blocks in the sth row (for each

s = 1, 2, . . . k) will be called an k-rectangle, and the collection of such will be
denoted by Rk. Notice that a (k+1)-rectangle is a concatenation of qk k-rectangles
with a (k+1)-block added as a new row, which we denote by

R =

(
R(1)R(2) . . . R(qk)

B

)

(see figure below; stars replace any symbols from any ∆k).

∗ ∗ ∗, ∗ ∗ ∗, ∗ ∗ ∗, ∗ ∗ ∗, ∗ ∗ ∗, ∗ ∗ ∗, ∗ ∗ ∗, ∗ ∗ ∗, ∗ ∗ ∗, ∗ ∗ ∗, ∗ ∗ ∗, ∗ ∗ ∗,
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗, ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗, ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗,
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗,

Also note that a k-rectangle is in fact a block over Λk (with added commas). Let
Rk(X) denote the collection of all k-rectangles that actually occur in X.

STAGE 2. Simplified word oracle.
By a simplified word oracle (SWO) we shall understand a sequence of functions

αk : Rk 7→ N such that αk(R) = 0 if and only if R /∈ Rk(X), and

(6.7) αk(R
(1))αk(R

(2)) · · ·αk(R
(qk)) ≥

∑

B∈Bk+1

αk+1

(
R(1)R(2) . . . R(qk)

B

)
.

We now describe a construction of a symbolic extension (Y, S) of (X,T ) given an
SWO. Let Xk denote the set of all possible infinite concatenations of k-rectangles
from Rk(X). Clearly, Xk ⊂ Xk. Our starting point will be constructing (in a
consistent way), for each k, a certain symbolic extension (Y k, S) of (Xk, S) such
that precisely αk(R) blocks will be seen above each k-rectangle R.

Note that R1 = B1. Let λ ∈ N be such that λp1 ≥
∑
R∈R1

α1(R), and let ΛY be
an alphabet with cardinality λ.

Step 1. For each R ∈ R1 pick a family F1(R) of α1(R) different blocks of length
p1 over ΛY (for R not appearing in X this family is empty). The cardinality of ΛY
allows to do it so that for different blocks R the families F1(R) are disjoint. Let F1

be the union of all families F1(R). Attach a comma at the end of every block in F1.
By disjointness, we can define a map ρ1 from F1 onto R1(X) sending each C to the
unique R for which C ∈ F1(R). Let Y 1 be the set of all possible concatenations of
blocks from F1. Clearly, ρ1 sends Y 1 onto X1 and what can be seen above each
1-rectangle R is F1(R) whose cardinality is exactly α1(R).

Step k+1. Suppose the task has been completed for some k. Consider a concate-
nation R(1)R(2) . . . R(qk) of some k-rectangles. Above it in Y k, exactly as many
as αk(R

(1))αk(R
(2)) · · ·αk(R

(qk)) blocks can be seen: namely all possible concate-
nations of qk blocks: first from Fk(R

(1)), next from Fk(R
(2)), and so on. By the

inequality (6.7) in the definition of an SWO, it is thus possible, for each (k+1)-

rectangle R =

(
R(1)R(2) . . . R(qk)

B

)
, to disjointly select from these concatenations

a family Fk+1(R) of cardinality αk+1(R). Note that if two (k+1)-rectangles differ
already in the the first k rows then their families are chosen from disjoint collections
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of concatenations, so obviously they are disjoint. Let Fk+1 be the union of all so
selected families (over all (k+1)-rectangles R, after removing all but the termi-
nal comma in every such block). Let ρk+1 be the map from Fk+1 onto Rk+1(X)
sending each C to the unique R for which C ∈ Fk+1(R). Let Y k be the set of all
possible concatenations of blocks from Fk+1. Clearly, ρk+1 sends Y k+1 onto Xk+1

and what can be seen above each (k+1)-rectangle R is Fk+1(R) whose cardinality
is exactly αk+1(R). The task has been now completed for k+1.

Notice that there are natural maps πk : Xk+1 → Xk (by projection onto the
first k rows, hence they coincide on Xk+1 with the bonding maps of the inverse
limit defining X). These maps are not surjective, but it will not be essential. Also,
we have natural (not surjective) maps κk : Y k+1 → Y k. Namely, each y ∈ Y k+1

being a concatenation of blocks from Fk+1 is, at the same time, a concatenation of
smaller blocks from Fk, hence, adding appropriate commas, we can view y as an
element of Y k. Now notice that the diagram below commutes:

Y 1 ←−−−−
κ1

Y 2 ←−−−−
κ2

Y 3 ←−−−−
κ3

. . .
yρ1

yρ2
yρ3

X1 ←−−−−
π1

X2 ←−−−−
π2

X3 ←−−−−
π3

. . .

The above diagram defines a factor map ρ from the inverse limit (Y , S) =
←−
lim(Y k, S) onto the inverse limit (X,S) =

←−
lim(Xk, S). Clearly X ⊂ X and we

define Y to be the preimage by ρ of X. Because all maps κk do not alter the sym-
bols of yk+1 (only more commas are added), (Y , S) (and hence also (Y, S)) can be
viewed as a subsystem of the direct product of a symbolic system (over the alpha-
bet ΛY ) with the odometer to base p. Finally, the odometer can be replaced by a
zero entropy strictly ergodic symbolic extension, for example, by a regular Toeplitz
flow of which the odometer is a factor [JK]. This completes the construction of a
symbolic extension of (X,T ) using a given SWO.

We have the following convergence:

Lemma 6.8. For µ ∈ K and µk denoting the projection of µ to Kk,

(6.9) h(Y |µ) = lim
k

h(Y k|µk).

Proof. Given k ∈ N, we will justify the following claims:

h(Y |µ) = sup{h(ν)− h(µ) : ν ∈ ρ−1(µ)}

≤ sup{h(κk(ν))− h(µk) : ν ∈ ρ−1(µ)}

≤ sup{h(νk)− h(µk) : νk ∈ ρ
−1
k (µk)} = h(Y k|µk)

= max{h(νk)− h(µk) : νk ∈ ρ
−1
k (µk)} .

The first equality follows from the variational fact (6.5), because ρ(ν) = µ implies ν
is supported on Y . The first inequality holds because for all k we have h(µk) ≤ h(µ)
and also h(κk(ν)) = h(ν) (the maps κk are “essentially” embeddings, only adding
periodic commas). For the second inequality, we take a supremum over a larger set.
The second equality is again (6.5). The supremum is achieved by Proposition 6.3.

Similarly, h(Y k|µk) is nonincreasing in k. We conclude h(Y |µ) ≤ limk h(Y k|µk).
For the converse inequality, let Mk denote the set of measures νk in ρ−1

k (µk) such

that h(νk) − h(µk) ≥ lim` h(Y `|µ`). These sets are nonempty by the mentioned
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monotonicity, since some measure νk satisfies h(νk)−h(µk) = h(Y k|µk). These sets
are also closed, by upper semi-continuity of h in symbolic systems, and κk(Mk+1) ⊂
Mk. By compactness, we can thus find a measure ν on

∏
k Y k such that κk(ν) ∈

Mk for each k. This measure ν is supported on Y , so h(Y |µ) ≥ h(ν) − h(µ) ≥
limk h(Y k|µk). �

STAGE 3. Constructing an SWO from an affine superenvelope.
Let EA be an affine superenvelope of H. By definition the functions Ek :=

EA − hk are nonnegative affine and u.s.c. They converge nonincreasingly to the
function EA − h, which therefore is also nonnegative, affine and u.s.c.

Before we continue with the proof, we need one more technical lemma:

Lemma 6.10. Define functions E
[Kk]
k on K(X,T ) as follows:

E
[Kk]
k (µ) = sup

ξ∈K : ξk=µk

Ek(ξ) .

Then these are affine u.s.c. functions and limk E
[Kk]
k = limk Ek = EA − h.

Proof. Given k, the function E
[Kk]
k is defined by supremum over preimages under

the natural projection K(X,T )→ K(Xk, S). This projection is a continuous affine
surjection between Choquet simplices, and it sends extreme points to extreme points
because it sends ergodic measures to ergodic measures. Because Ek is affine, the

affinity of E
[Kk]
k then follows from Proposition 2.7.

Clearly the sequence E
[Kk]
k converges pointwise, as a nonincreasing sequence of

nonnegative functions, and limk E
[Kk]
k ≥ limk Ek. So, only one inequality for the

limits requires verification. Suppose

lim
k
E

[Kk]
k (µ) > lim

k
Ek(µ) + ε.

For each k we can pick a measure ξk in K projecting to µk such that E
[Kk]
k (µ) =

Ek(ξ
k). It is seen that the ξk approach µ as k → ∞, because they agree with µ

on finer and finer clopen partitions. Further, for s < k, we have Es(ξ
k) ≥ Ek(ξ

k).
Leaving s fixed and letting k → ∞, we obtain, by upper semi-continuity, Es(µ) ≥
limk Ek(ξ

k) > limk Ek(µ) + ε, holding for each s, which is impossible. �

We can now continue with the main proof. By Definition 2.1(2) and Theo-

rem 2.11, we can represent each function E
[k]
k as a strictly decreasing limit of affine

continuous functions fk,i defined on Kk and then lifted to K. Moreover, since E
[k]
k

is nonincreasing in k, we can easily arrange the double sequence fk,i to be nonin-
creasing also in k for each i. Then the sequence of functions fk := fk,k satisfies:

(a) fk > E
[Kk]
k , for each k ∈ N, and

(b) limk fk = EA − h.
Because fk − (hk+1 − hk) > Ek − (hk+1 − hk) = Ek+1 and the function on the left
is constant on the fibers of the projection K → Kk+1, we have

fk − (hk+1 − hk) > E
[Kk+1]
k+1 .

Using the Sandwich Theorem 2.8 (on Kk+1), we can find a continuous function f ′
k+1

with fk − (hk+1 − hk) > f ′k+1 > E
[Kk+1]
k+1 . Then, min(fk+1, f

′
k+1) is a continuous

function strictly above E
[Kk+1]
k+1 , hence, by Theorem 2.11, we can find an affine
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continuous function f ′′
k+1 such that fk−(hk+1−hk) > f ′′k+1 > E

[Kk+1]
k+1 . We redefine

fk+1 to equal f ′′
k+1. We do this for k = 1 and we proceed inductively.

In the end, the conditions (a) and (b) still hold, and fk − (hk+1 − hk) > fk+1.
Appealing to upper semicontinuity of hk+1 − hk, we choose a sequence (εk) of
positive numbers decreasing to zero and satisfying

(c) fk − fk+1 − 5εk > hk+1 − hk .

Next, we will choose the base p = (pk) of an odometer, i.e., a sequence sat-
isfying pk|pk+1, growing rapidly enough to satisfy several conditions. Namely,
note that if (ni) is such a base then, for each k, the functions Hni

(µk+1|µk)
converge nonincreasingly to hk+1 − hk, and thus by (c) the continuous functions
µ 7→ max{fk − fk+1 − 5εk, Hni

(µk+1|µk)} converge nonincreasingly to the contin-
uous function fk − fk+1 − 5εk. By Property 2.2(4) this convergence is uniform, so
we may choose pk to be an index ni large enough to guarantee

(d) (fk − fk+1)(µ)− 4εk > Hpk
(µk+1|µk) for all µ

and we also require

(e) pk+1 ≥ m(pk,εk) of Lemma 6.4 applied to the amalgamation from Xk+1 to Xk,

(f) pk+1e
−pk+1εk log(#Λk+1) ≤ 1, and

(g) epk+1(b+εk) ≥ depk+1be whenever b ≥ 0, where d·e denotes the integer ceiling. (It
suffices to require epk+1εk ≥ 2.)

Observe that Kk+1 is a subset of the set of all shift invariant measures of the full
shift over the alphabet Λk+1. The functions hk+1 − hk and µ 7→ Hpk+1

(µk+1|µk)
are well defined (as entropy) and u.s.c. on this larger set. For each k we find a
continuous affine extension of fk to measures on the full shift over the alphabet
Λk, and by lifting we also have fk defined on measures on the full shift over the
alphabet Λk+1. Then (d) holds on some open neighborhood Uk+1 of Kk+1.

Also note that the periodic measure µB carried by the orbit of . . . BBB . . . , where
B is any sufficiently long block appearing in Xk, is in Uk. As explained prior to
Lemma 6.4, we will identify the block with the measure, so that hk(B), fk(B), etc.
have a definite meaning. Because a subsequence of a base of an odometer is again a
base of an odometer, and the inequalities (d) – (g) are satisfied for subsequences of
(pk), we may specify two more requirements on the speed of growth of the numbers
pk. First, take the length pk of a k-rectangle so large that

(h) if R is a k-rectangle, then µR is in Uk.

Then, by appeal to fk being continuous affine, we take pk large enough that the
value of fk on any concatenation R(1)R(2) . . . R(q) of k-rectangles is close to the
corresponding convex combination of values:

(i)

∣∣∣∣∣fk(R
(1)R(2) . . . R(q))− 1

q

q∑

i=1

fk(R
(i))

∣∣∣∣∣ < εk .

We can now define the SWO. For a k-rectangle R appearing in X, let

αk(R) = depkfk(R)e .

We need to verify the condition (6.7) in the definition of an SWO. Let C =
R(1)R(2) . . . R(qk) be a concatenation of k-rectangles appearing in X. If C does
not occur in X, then the right side of (6.7) is zero and the inequality (6.7) holds
trivially; so suppose C occurs in X. Then, using (g), (d), and (i) for the consecutive
inequalities, we can write
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∑

B∈Bk+1

αk+1

(
C
B

)
=

∑

B∈Bk+1

⌈
exp

[
pk+1fk+1

(
C
B

)]⌉

≤
∑

B∈Bk+1

exp

[
pk+1

(
fk+1

(
C
B

)
+ εk

)]

≤
∑

B∈Bk+1

exp

[
pk+1

(
fk(C)−Hpk

((
C
B

) ∣∣∣C
)
− 3εk

)]

≤ exp

[
pk+1

qk

qk∑

i=1

fk(R
(i))

]
e−2pk+1εk

∑

B∈Bk+1

exp

[
−pk+1Hpk

((
C
B

) ∣∣∣C
)]

.

The first term in the last expression above is not larger than

αk(R
(1))αk(R

(2)) · · ·αk(R
(qk)).

By (e) and Lemma 6.4, the remaining part of that expression is not larger than
pk+1e

−pk+1εk log(#Λk+1), which by (f) is at most 1. This verifies (6.7).

STAGE 4. Entropy calculation
It remains to verify hϕext = EA. First we compute h(Y k|µk) for measures µk car-

ried by Xk. To begin, consider a periodic measure µC , where C = R(1)R(2) . . . R(ql)

is a concatenation of ql k-rectangles (q, l ∈ N). Let B(i, n, C) denote the set of
blocks of length n occurring as the word y[i, i + n − 1] for some point y such
that (ρk(y))[jqlpk, (j + 1)qlpk − 1] = C for all j (i.e., ρk(y) = . . . CCC . . . with
y[0, qlpk − 1] sitting directly above C). Denoting by Ak the zero coordinate parti-
tion of Y k, we have

H(Alpk

k |µC) =
1

qlpk

qlpk∑

i=1

log #B(i, lpk, C) .

The above approximately equals (the error estimate is given with the ± sign)

1

qlpk

ql∑

i=1

pk[log #B(ipk, lpk, C)± pk log λ]

=

[
1

ql

ql∑

i=1

l−1∑

j=0

logαk(R
(i+j))

]
± pk log λ , with i+ j regarded modulo ql,

=

[
1

ql

ql∑

i=1

l logαk(R
(i))

]
± pk log λ

=

[
l
1

ql

ql∑

i=1

log
(
dexp(pkfk(R

(i)))e
)]
± pk log λ

=

[
l
1

ql

ql∑

i=1

log
(
exp(pk[fk(R

(i))± εk−1]
)]
± pk log λ , using (g),

=

[
lpk

1

ql

ql∑

i=1

fk(R
(i))

]
± (pk log λ+ lpkεk−1) .
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Now, by (i), we can replace the above by

lpkfk(µC) ±
(
pk log λ+ lpk (εk−1 + εk)

)
.

Thus
1

lpk
H(Alpk

k |µC) = fk(µC) ±

(
log λ

l
+ εk−1 + εk

)
.

For fixed l, measures of the form µC with C = R(1)R(2) . . . R(ql) are dense. It

follows from continuity of H(Alpk

k |·) (Lemma 6.6) that the last formula holds for

all invariant measures µk on Xk. Passing with l to infinity we obtain

h(Y k|µk) = fk(µk) ± (εk−1 + εk) .

We now pass to the factor map π between Y and X. Consider an invariant
measure µ onX. By projection toXk this measure produces a sequence of measures
µk supported by Xk. By Lemma 6.8, since fk(µ) = fk(µk), and by (b), we arrive
at

hϕext(µ) = h(µ) + h(Y |µ) = h(µ) + lim
k
fk(µ) = EA(µ)

which concludes the proof of the Sex Entropy Theorem in Case Z. �

7. Proof of the Sex Entropy Theorem: the general case

To complete the proof of the Sex Entropy Theorem, we will lift general systems
to zero dimensional systems by principal extensions.

Definition 7.1. [Le] An extension ϕ : (X ′, T ′) → (X,T ) is a principal extension
if h(ν) = h(ϕν) for every ν ∈ K ′ = K(X ′, T ′).

Lemma 7.2. Let ϕ : (Y, S)→ (X,T ) be an extension of (X,T ) and let ϕ′ : (X ′, T ′)→
(X,T ) be a principal extension of (X,T ). Then the fiber product (Z, S ′) of these
extensions, defined as

Z = {(y, x′) : ϕ(y) = ϕ′(x′)}

with S′ = (S × T ′)|Z , is a principal extension of (Y, S).

Proof. Z projects naturally to both Y and X ′ so that the following diagram com-
mutes:

Z

↙ ↘

Y X ′

↘ ↙

X

In this proof it will be convenient to use a classical notation for measure-theoretic
entropies and conditional entropies with respect to given σ-fields [Pa]. Let ν denote
an invariant measure supported by Z, and let BZ , BY , BX′ and BX denote the Borel
σ-fields of the respective spaces, lifted to Z. Then, because BX′ < BX , we have

hν(BY |BX′) ≤ hν(BY |BX).

On the other hand, since X ′ is a principal extension of X,

hν(BY |BX′) = hν(BY ∨ BX′ |BX)− hν(BX′ |BX) ≥ hν(BY |BX)− 0 .
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So, hν(BY |BX′) = hν(BY |BX), and hence

hν(BZ) = hν(BY ∨ BX′) = hν(BY |BX′) + hν(BX′)

= hν(BY |BX) + hν(BX) = hν(BY ∨ BX) = hν(BY ) .

�

Remarks 7.3. Asymptotic h-expansiveness was introduced by Misiurewicz [M1] as
a sufficient condition for the existence of a measure of maximal entropy. For back-
ground, see [M1, M2, BFF, DGS] and their references. For simplicity, we appeal
to the following characterization [D2, Theorem A.1]: a zero dimensional dynamical
system (X,T ) is asymptotically h-expansive if and only if it is topologically conju-
gate to a subsystem of a finite entropy countable product of subshifts. It is easy to
see that the natural entropy structure of such a product converges uniformly, and
this uniform convergence is inherited by systems conjugate to subsystems.

The next theorem is a special case of Ledrappier’s result that principal extensions
respect the topological conditional entropy defined by Misiurewicz [M2].

Theorem 7.4. [Le] Let (X ′, T ′) be a principal extension of (X,T ). Then (X ′, T ′)
is asymptotically h-expansive if and only if (X,T ) is asymptotically h-expansive.

For the proof of the Sex Entropy Theorem, we only use Theorem 7.4 to know
in the proof of Theorem 7.5 below that a zero dimensional principal extension of
an asymptotically h-expansive system must be asymptotically h-expansive. The-
orem 7.5 shows that passing to principal extensions does not restrict much the
variety of symbolic extensions.

Theorem 7.5. Let (X,T ) be an arbitrary topological dynamical system with finite
topological entropy. Let ϕ : (X ′, T ′) → (X,T ) be a zero dimensional principal
extension. If π : (Y, S)→ (X,T ) is a symbolic extension, then (Y, S) has a symbolic
principal extension (Y ′, S) which is an extension of (X ′, T ′).

Proof. The fiber product (Z, S ′) of Lemma 7.2 is a principal extension of the sym-
bolic (and hence zero dimensional and asymptotically h-expansive) system (Y, S).
By Theorem 7.4, (Z, S′) is asymptotically h-expansive itself. Z is zero dimensional,
as a subspace of the zero dimensional product Y ×X ′, so it follows from Remarks 7.3
that H converges uniformly, where H is defined by 5.2(I) from some refining se-
quence of clopen partitions. It then follows from Proposition 3.2 that EH = h, so
by Case Z of the Sex Entropy Theorem, (Z, S ′) admits a principal symbolic exten-
sion, which then becomes both an extension of (X ′, T ′) and a principal extension
of (Y, S), as required. �

Let Pk = {Pk,i} be a refining sequence of finite small-boundary partitions for
a system (X,T ) (recall Definitions 5.1). We recall a standard construction, which
associates to this sequence a zero dimensional principal extension (X ′, T ′) of (X,T )
(and which reduces to the construction described in Notation 6.2 when the Pk,i are
clopen). Given x in X and k ∈ N, define a sequence xk = (xkn)n∈Z by setting
xkn = i ⇐⇒ Tn(x) ∈ Pk,i. Let X ′

k be the closure of {xk : x ∈ X}. The rule
xk+1 7→ xk determines a factor map of subshifts (X ′

k+1, S) → (X ′
k, S). These

maps, used as bonding maps, define (X ′, T ′) as an inverse limit system. The map
π : (X ′, T ′) → (X,T ) is the equivariant map which sends the subset of (X ′, T ′)
with zero coordinate i in the coordinate for X ′

k onto the closure of Pk,i. Any
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point of X with more than one preimage under π must lie in the boundary of
some set T jPi,k. The union of all such boundaries has measure zero for every µ
in K(X,T ), and therefore the inverse image of this union has measure zero for
every µ in K(X ′, T ′). It follows that the map π induces an affine homeomorphism
π : K(X ′, T ′) → K(X,T ) which for every µ in K(X ′, T ′) is a measure theoretic
isomorphism between the measure preserving systems (X ′, µ, S) and (X,πµ, T ),
and in particular respects measure theoretic entropy, so π is a principal extension.
Finally, the entropy structure H on K(X,T ) given by hk(µ) = h(T, µ,Pn) is simply
the renaming by π of the standard entropy structure of the inverse limit system
K(X ′, T ′), which we will call H′.

With this in hand, it is now easy to finish the proof of Theorem 5.5 in the case
that the entropy structure H on (X,T ) is given from a sequence Pk as above.

Proof of Theorem 5.5 in Case I of H.
First, if E is a bounded affine superenvelope of H, then E ′ := E ◦π is a bounded

affine superenvelope ofH′, so by the Case Z of Theorem 5.5 proved in the last section
there is a symbolic extension ϕ of (X,T ) such that hϕext = E′, and then π ◦ ϕ is a
symbolic extension of (X,T ) such that hπ◦ϕext = E. Conversely, if ϕ : (Y, S)→ (X,T )
is a symbolic extension of (X,T ), then by Theorem 7.5 there is a symbolic extension

ψ : (Y ′, S) → (X ′, T ′) such that hϕext = hψext ◦ π. Because hψext is a bounded affine
superenvelope of H′, it follows that hϕext is a bounded affine superenvelope of H. �

Existence of principal extensions
Not every system has a refining sequence of small boundary partitions; for exam-

ple, an interval of fixed points is an obstruction. In the next theorem, we note that
many do. The theorem is essentially a collection of results of Kulesza, Lindenstrauss
and Weiss.

Theorem 7.6. Each of the following conditions is sufficient to guarantee that a
system (X,T ) has a refining sequence of small boundary partitions.

(1) X is zero dimensional.
(2) X is finite dimensional and the periodic point set of T is zero dimensional.
(3) (X,T ) has an infinite minimal factor and htop(T ) <∞.

Remark 7.7. It is the last condition (3) on which we will rely to construct an
entropy structure for a general system.

Proof. (1) This is trivial.
(2) This is essentially contained in [Ku], as described in [BFF, App. B]).
(3) In this case the existence of the small boundary partitions follows from two

deep results of Lindenstrauss and Weiss involving the mean dimension (an idea
suggested by Gromov). First, every finite entropy topological dynamical system has
zero mean dimension ([LiWe, Theorem 4.2] and the discussion above it); and second,
every zero mean dimension dynamical system admitting a nonperiodic minimal
factor has the so called small boundary property [Li, Theorem 6.2], which implies
the existence of a basis of the topology consisting of sets whose boundaries have
measure zero for every invariant measure. With these results it is easy to construct
the refining sequence of partitions with small boundaries. �

We get as a corollary a very general statement.

Proposition 7.8. Every finite entropy system (X,T ) has a zero dimensional prin-
cipal extension.
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Proof. Let (Z,R) be an infinite, zero entropy minimal system. Then (X×Z, T ×R)
is a principal extension of (X,T ). By Fact 7.6(3), (X × Z, T × R) has a zero
dimensional principal extension, which by composition is a principal extension of
(X,T ). �

In the special case that (X,T ) is asymptotically h-expansive, there is a more
direct construction of a zero dimensional principal extension [BFF, A.2 and 6.7].

Proof of Theorem 5.5 in Case II of H.
We isolate the main argument of the proof as the next lemma.

Lemma 7.9. Given a system (X,T ), let (Z,R) be an aperiodic minimal system
with an R-invariant Borel probability measure λ such that h(R, λ) = 0 = htop(R).
Set (X ′, T ′) = (X × Z, T × R) and let π : X ′ → X denote the projection on the
first axis. Let (αk) be a refining sequence of partitions on X ′ with small boundaries
for the system (X ′, T ′) and let H′ = (h′k) be the corresponding entropy structure on
K(X ′, T ′), defined for T ′ as in 5.2(I). Let H′′ = (h′′k) be the sequence of functions
on K(X ′, T ′) defined by h′′k(µ

′) = h′k(µ× λ), where µ = πµ′.
Then the following are equivalent.

(1) E is a bounded superenvelope for H′′.
(2) E is a bounded superenvelope for H′.

Proof. Let h denote the entropy function on K(X ′, T ′). Obviously, h is the limit
of both H′ and H′′.

(1) =⇒ (2) Let E be a bounded superenvelope of H′′. There is no inequality
granted between h′k and h′′k . However, given k, we do have E − h′k ≥ E − h =
limnE − h

′′
n, which is nonnegative because E is a superenvelope of H′′. It remains

to show E − h′k is u.s.c. Fix µ′ ∈ K(X ′, T ′) and consider the defect

lim sup
µ′

n
→µ′

(E − h′k)(µ
′
n)− (E − h′k)(µ

′).

Let D be the compact countable set {µ′, µ′
n, µ × λ, µn × λ : n ∈ N}, where (µ′

n) is
a sequence which realizes the above limsup. We will restrict our considerations to
D. We have

E − h′k = (E − h′′` ) + (h′′` − h
′
k),

for any ` > k. Since the first bracket (E − h′′` ) is u.s.c., it suffices to estimate
the defect of upper semicontinuity of the second bracket (restricted to D) at µ′,
for which we can choose ` as large as we need. Because D is countable, we can
find a partition of X, say β, with boundaries of measure zero for all measures
arising as projections of measures from D. Also, because αk has small boundaries,
by choosing this partition β fine enough and by choosing a partition γ of Z fine
enough, we can approximate the partition αk by a coarsening β1 of β×γ such that
for all measures in D,

|h(·, β1)− h(·, αk)| <
ε

2
.

On account of the null boundaries and coarsening, the function h(·, β×γ)−h(·, β1)
is u.s.c. on D. Further, we can approximate β× γ by a coarsening β2 of a partition
α` (for some large `) so that

|h(·, β2)− h(·, β × γ)| <
ε

2
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on D. Also, h(·, α`) − h(·, β2) is u.s.c. (this holds not only on D, but even on K).
Now observe that h(ν ′, β × γ) = h(ν × λ, β × γ), because the partition is a product
partition and htop(R) = 0. Thus the function h′′` − h

′
k at a point ν′ ∈ K(X ′, T ′)

can be written as[
h(ν × λ, α`)− h(ν × λ, β2)

]
+

[
h(ν × λ, β2)− h(ν × λ, β × γ)

]
+

[
h(ν′, β × γ)− h(ν′, β1)

]
+

[
h(ν′, β1)− h(ν

′, αk)
]
.

Only the second and fourth brackets contribute to the defect of upper semiconti-
nuity on D, and their joint contribution is less than ε.

(2) =⇒ (1) Let E be a superenvelope of H′. The argument for nonnegativity
of E − h′′k is essentially the same as for the first implication. The argument for
uppersemicontinuity is also essentially the same, after reversing the roles of ν ′ and
ν × λ:

E − h′′k = (E − h′`) + (h′` − h
′′
k)

and

(h′` − h
′′
k)(ν

′) =
[
h(ν′, α`)− h(ν

′, β2)
]

+
[
h(ν′, β2)− h(ν

′, β × γ)
]

+
[
h(ν × λ, β × γ)− h(ν × λ, β1)

]
+

[
h(ν × λ, β1)− h(ν × λ, αk)

]
.

�

We now prove the implications of the Sex Entropy Theorem for Case II. We
continue the notation of Lemma 7.9.

Proof of Theorem 5.5 (1) =⇒ (2) in Case II of H.
Suppose E is a bounded affine superenvelope of H. By Lemma 7.9, the pullback

E′′ of E to K(X ′, T ′) is a bounded affine superenvelope of H′. By the Sex Entropy
Theorem in Case I, there is a symbolic extension ϕ of (X × Z, T × R) such that
hϕext = E′′. Then hπ◦ϕext = E.

Proof of Theorem 5.5 (2) =⇒ (1) in Case II of H.
Suppose ϕ : (Y, S) → (X,T ) is a symbolic extension and E = hϕext. By Theo-

rem 7.5, let ψ : (Y ′, S) → (X ′, T ′) be a symbolic extension such that (Y ′, S) is a

principal extension of (Y, S), so E = hϕext = hπ◦ψext = (hψext)
[K] where K = K(X,T ).

Because hψext is a bounded affine superenvelope of H′, by Lemma 7.9 it is also a

bounded affine superenvelope of H′′, and therefore each hψext − h
′′
k is u.s.c. It then

follows from Remark 2.6 that (hψext − h
′′
k)

[K] is u.s.c. Because h′′k is constant and

equal to hk on fibers of π, we have (hψext − h
′′
k)

[K] = (hψext)
[K] − hk = E − hk, so

E is a superenvelope of H. As we have seen, it follows from Proposition 2.7 that

E = hπ◦ψext is affine.
�

Remark 7.10. With fiber product constructions, we could have avoided the use
of Lemma 7.9 above for the direction (2) =⇒ (1).

8. Consequences for sex entropy

In this section we collect various (at this point easy) corollaries of our work for
sex entropy. Recall our conventions: the infimum of the empty set is +∞, and the
only unbounded superenvelope is the constant function +∞.
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Theorem 8.1. The sex entropy function hsex(T, ·) is the upper semicontinuous
concave function EH which is the smallest superenvelope of the entropy structure
H. Moreover, there is a variational principle for sex entropy:

hsex(T ) = SUP(hsex(T, ·)) := sup
µ

inf
ϕ
{hϕext(µ) : ϕ is a symbolic extension of T} .

Proof. It suffices to consider the case in which hsex(T ) is finite (equivalently, H
has a bounded superenvelope). The first claim is a consequence of the Sex En-
tropy Theorem and the fact (Proposition 4.3) that EH is the infimum of the affine
superenvelopes of H. The variational principle then follows from the variational
statement in Proposition 4.3. �

Remark 8.2. There is of course no variational principle for residual entropy. The-
orem 8.1 implies

hres(T ) ≤ SUP(hres(T, ·)) := sup
µ

inf
ϕ
{hϕext(µ)−h(µ) : ϕ is a symbolic extension of T}

but it is easy to provide examples in which the inequality is strict. (For example,
let (X,T ) be the disjoint union of a subshift (X1, S) and a system (X2, R) such
that htop(S) ≥ hsex(R) > htop(R).) This is an example of “sex entropy” being
notationally more convenient than “residual entropy”.

The characterization of sex entropy as EH has considerable content on account
of the functional analysis results in sections 2, 3 and 4. The results there for a
sequence F of u.s.c. functions with u.s.c. differences apply to any entropy structure
H = (hk)k. In particular, the characterizations of superenvelopes by continuous
covers (Theorem 2.18) and by the inductive construction of Theorem 3.3 apply.
The transfiniteness of the last construction explains for us some of the subtlety of
residual entropy.

We apply the mix of functional analysis and the Sex Entropy Theorem in the
next theorem, a collection of attainability results.

Theorem 8.3 (Attainability Results). Suppose (X,T ) is a system with entropy
structure H and space of invariant Borel probabilities K(X,T ), and (X,T ) has
some symbolic extension (i.e. EH is bounded).

(1) There is a symbolic extension ϕ such that hϕext = hTsex if and only if EH is
affine. If the ergodic measures are a closed subset of K(X,T ), then EH is
affine.

(2) There is a symbolic extension (Y, S) of (X,T ) such that htop(S) = hsex(T )
⇐⇒ there exists an affine superenvelope EA of H with SUP(EA) = SUP(EH).

(3) The sex entropy function hsex(T, ·) on K(X,T ) achieves its maximum on
the closure of the ergodic measures.

Proof. The characterizations in (1) and (2) follow from the Sex Entropy Theo-
rem 5.5 and the characterization of hsex(T, ·) as EH. The claim in (1) involving
ergodic measures follows from the Bauer simplex statement in Theorem 4.6 with F
replaced by H. The claim (3) follows from hsex(T, ·) = EH and Theorem 4.9. �

Similarly, the results of Sections 2 and 3 for estimating or computing EF apply
to EH. Moreover, all abstract candidates F actually occur as entropy structures:
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Theorem 8.4. Entropy Structure Realization Theorem [DS2, Theorem 3]
Let K be a Choquet simplex and let F = (fk)k∈N be a nondecreasing sequence of non-
negative affine u.s.c. functions on K such that each fk − fk−1 is u.s.c. Then there
exist a zero dimensional dynamical system (X,T ) in the form of an inverse limit of

subshifts (X,T ) =
←−
limk(Xk, S), and an affine homeomorphism a : K(X,T ) → K,

such that for every invariant measure µ on X and every k,

(fk ◦ a)(µ) = h(µk).

Consequently, various entropy examples are immediate consequences of analytic
examples, the Sex Entropy Theorem and the Entropy Structure Realization Theo-
rem. Here are some instances of this.

Theorem 8.5 (Nonattainment examples).

(1) There is a system (X,T ) such that for every symbolic extension ϕ : (Y, S)→
(X,T ), htop(S) > hsex(T ). Moreover, this can happen even if T satisfies

hsex = h̃.
(2) There is a system (X,T ) such that hsex(T, µ) equals 1 for ergodic µ, but

SUP(hsex(T, ·)) > 1.

Proof. By the Entropy Structure Realization Theorem, there are systems with en-
tropy structures H matching the sequences F in Example 4.7 and Example 4.8.
Now apply the Sex Entropy Theorem.

�

Similarly the examples 2.19, 2.21 and 2.20 extend to entropy structures on Bauer
simplices (see Remark 4.5). We take two relevant superenvelope examples to the
level of concrete dynamical systems at the end of this section.

First, though, we want to exhibit a theorem summarizing equivalent conditions
for asymptotic h-expansiveness, which is a significant condition for smooth as well
as topological dynamics. (A C∞ system must be asymptotically h-expansive, by
Buzzi [Bu], following Yomdin – see [BFF, Theorem 7.8] – but for r < ∞, a Cr

system need not be asymptotically h-expansive, because upper semicontinuity of the
entropy function can fail [M1, N].) The main part of this theorem, the equivalence
below of (1) and (2), is known; but we will see how the asymptotically h-expansive
systems appear very naturally as a distinguished class in the superenvelope/sex
entropy setting.

Theorem 8.6 (Asymptotic h-expansiveness). The following are equivalent for
a system (X,T ) with entropy structure H.

(1) (X,T ) is asymptotically h-expansive.
(2) (X,T ) has a symbolic extension which is a principal extension.
(3) EH = h.
(4) hk converges uniformly to h.

Proof. (2) ⇐⇒ (3) follows from the Sex Entropy Theorem (because h is affine).
(3) ⇐⇒ (4) follows from Proposition 3.2 with F = H.
(1) =⇒ (2) was proved independently in [D2] (in the zero dimensional case)

and [BFF] (in general).
(2) =⇒ (1) follows immediately from Theorem 7.4. �
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Remark 8.7. The proof above for equivalence of (1) and (2) left the framework
of the current paper. In [D3], a generalized approach to entropy structure gives
a very natural proof for the equivalence of (1) and (4), which puts the proof of
Theorem 8.6 entirely into the entropy structure setting.

Remark 8.8. Kifer and Weiss [KiWe] have a “relative” theorem analogous to
(1) =⇒ (2) above. They introduced asymptotic entropy expansive random transfor-
mations, and proved a generator theorem allowing their representation by random
symbolic subshifts.

Remark 8.9. Let H be an entropy structure. We have from Theorem 2.18 that
SUP(EH)−SUP(h) = infG SUP(ΣG)−htop(T ), where G denotes a continuous cover
of H. Because hres(T ) = hsex(T )− htop(T ) = SUP(EH)− htop(T ), we recover for
general X the characterization of hres(X,T ) given for the zero dimensional case
in [D2]: hres(T ) = infG SUP(ΣG) − htop(T ). Note, Theorem 2.18 shows that this
infimum is always achieved by some cover G, so the continuous covers alone cannot
be adequate to detect the nonattainment phenomenon of Theorem 8.5(1).

We now turn to the promised examples. Other constructions of this kind were
presented in [D2], achieving all values for the topological, residual and topolog-
ical conditional entropies consistent with the known constraints. Quite different
methods in [BFF] produced another rich family of examples.

Example 8.10. This is a very simple example with nonzero residual entropy. The
strategy is simply to construct a system with H = F as in Example 2.19.

Let (X0, S) denote a strictly ergodic {0-1}-subshift with invariant measure µ0

and entropy 1. Let Bk (k ≥ 2) be a sequence of blocks occurring in X0 of lengths
increasing with k and such that µBk

→ µ0. Let X denote the set of all {0-1}-valued
matrices x = (xk,n)k∈N,n∈Z satisfying the following conditions.

(1) The first row x1 of x either belongs toX0 or has the form xBk
= . . . BkBkBk . . .

for some k ≥ 2. By taking closure we must also admit that x1 may have
the form y1(−∞,m]y2[m+ 1,∞) for some y1, y2 ∈ X0, m ∈ Z.

(2) If the first row is xBk
, then the kth row of x is an element of X0.

(3) All other rows are filled with zeros.

The set of matrices so constructed is closed and invariant under the horizontal shift
Sxk,n = xk,n+1. The structure of invariant measures is as follows: there is one

measure µ(1) supported by matrices having nonperiodic first row and all other rows
filled with zeros; this measure is isomorphic to µ0, its entropy is 1 and hk(µ

(1)) = 1
for k ≥ 1. Moreover, for each k > 1, there are finitely many measures µ(k,i)

supported by matrices having nonzero kth row and periodic first row. Again, each
of these measures has entropy 1, with hn(µ

(k,i)) = 1 for n ≥ k and hn(µ
(k,i)) = 0

for n < k. All measures µ(k,i) accumulate at µ(1). The entropy function h is 1 on
all measures, so htop(T ) = 1, while EH = 1 + 1aff

{µ(1)}
, hence hsex(X,S) = 2.

Example 8.11. In this example, htop(S) > hsex(T ) for every symbolic extension

S of T . (Moreover, EH = h̃, in particular hres(T ) = 0.) The idea is to obtain a
system for which the entropy sequence behaves as in the abstract Example 4.7.

Let X0 and Bk be as in the previous example. Let Ck (k ≥ 2) be a block of the
following structure:

Ck = B2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B2B3 . . . . . . . . . . . . B3 · · · Bk . . . Bk,
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where the repetitions of Bi+1 (numerous even for i = k) occupy roughly 2−i of
the length of Ck, and the precision of these proportions improves with k (the
number of repetitions for each i increases with k). It is now seen that the measures
µCk

carried by the periodic orbits of xCk
= . . . CkCkCk . . . converge weakly* to∑∞

k=1 2−kµBk+1
. Let X be the set of all {0-1}-valued matrices x = (xk,n)k∈N,n∈Z

satisfying the following conditions.

(1) The first row x1 of x either belongs to X0 or it has the form xBk
for

some k ∈ N, or it is xCk
for some k ≥ 2. By taking closure we must

additionaly admit the forms y1(−∞,m]y2[m + 1,∞) with y1, y2 ∈ X0, or
xBk

(−∞,m]xBk+1
[m+ 1,∞) and also y1(−∞,m]xB2

[m+ 1,∞).
(2) If the first row is xCk

, then the kth row of x is an element of X0.
(3) All other rows are filled with zeros.

The structure of invariant measures is now the following: the measure µ(1) is as in
the previous example, and h1 is the (affine extension of) the characteristic function
at µ(1). This measure is approached by periodic measures µ(k) supported by ma-
trices with xBk

in the first row (this time there is only one such measure for each
k ≥ 2, so the index i can be dropped; moreover, these measures now have entropy
zero). In addition, for each k ≥ 2, we have finitely many measures ν(k,j) supported
by matrices with xCk

in the first row and a nonperiodic kth row. Then hk is the
(affine extension of) characteristic function of the set of measures ν(k,j). With in-
creasing k, these latest measures approach the combination

∑∞
k=1 2−kµ(k+1). The

behaviour of H of Example 4.7 is hence copied.
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