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EXPANSIVE SUBDYNAMICS

MIKE BOYLE AND DOUGLAS LIND

Abstract. This paper provides a framework for studying the dynamics of
commuting homeomorphisms. Let α be a continuous action of Zd on an infi-
nite compact metric space. For each subspace V of Rd we introduce a notion of
expansiveness for α along V , and show that there are nonexpansive subspaces
in every dimension ≤ d − 1. For each k ≤ d the set Ek(α) of expansive k-
dimensional subspaces is open in the Grassmann manifold of all k-dimensional
subspaces of Rd. Various dynamical properties of α are constant, or vary nicely,
within a connected component of Ek(α), but change abruptly when passing
from one expansive component to another. We give several examples of this
sort of “phase transition,” including the topological and measure-theoretic di-
rectional entropies studied by Milnor, zeta functions, and dimension groups.
For d = 2 we show that, except for one unresolved case, every open set of
directions whose complement is nonempty can arise as an E1(α). The unre-
solved case is that of the complement of a single irrational direction. Algebraic
examples using commuting automorphisms of compact abelian groups are an
important source of phenomena, and we study several instances in detail. We
conclude with a set of problems and research directions suggested by our anal-
ysis.
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1. Introduction

Expansiveness is a multifaceted dynamical condition which, in particular, plays
an important role in the exploitation of hyperbolicity in smooth dynamical systems
[Man2]. A homeomorphism T of a compact metric space (X, ρ) to itself is called
expansive if there is a δ > 0 such that if ρ(Tnx, Tny) ≤ δ for all n ∈ Z, then x = y.
In other words, T is expansive if, for each pair of distinct points, some iterate of T
separates them by a definite amount.

Let α denote a continuous action of Zd on (X, ρ). Thus α is generated by
d commuting homeomorphisms. There is an obvious extension of the notion of
expansiveness to such actions (see §2). To avoid trivial exceptions, we will assume
throughout that X is infinite. Such actions occur in the study of smooth dynamics
[KaSp], symbolic dynamics [N2], cellular automata [Mi], and automorphisms of
compact groups [KS1]. It is natural to study α by considering those actions induced
by subgroups of Zd which are expansive. Crucial to this approach is considering
expansiveness (in the sense of Definition 2.2) not just for subgroups of Zd, but for
general subsets of Rd.

We consider the “subdynamics” of an expansive Zd-action α along a subset of
Rd by looking at the action of elements of Zd which lie within a bounded distance
of the subset. This leads to a natural notion of α being expansive along a subset
of Rd (the exact definition is in §2). This notion generalizes the usual one: if the
subset is a subgroup H of Zd, then the action of H induced by α is expansive if
and only if α is expansive along H.

We study especially expansiveness along linear subspaces of Rd. Let Gk denote
the compact Grassmann manifold of k-dimensional subspaces (or k-planes) of Rd,
and let Nk(α) denote the set of k-planes which are nonexpansive for α. In §3 we
prove our main structure theorem, that Nd−1(α) is a nonempty closed subset of
Gd−1 which determines the lower-dimensional expansive subdynamics, as follows:
a k-plane is nonexpansive if and only if it is contained in a nonexpansive (d − 1)-
plane. In §4 we investigate the question of which compact subsets of Gd−1 can arise
as the nonexpansive set of a Zd-action. In particular we show that when d = 2 every
nonempty compact set of lines can be an N1(α), with the sole unresolved possibility
being a singleton set that contains just one irrational line.

Expansiveness can be viewed as a regularity condition on the subdynamics as
the subspace varies. If we consider k-frames (i.e. k-tuples of linearly independent
vectors) spanning k-planes, then sometimes a dynamical property of k-planes is
constant or varies nicely within a connected component of the open set of k-frames
for expansive k-planes, but this property changes abruptly when passing from one
component to another. Heuristically, this is a “phase transition” for the action.
We discuss this point of view in §5 and give several examples. One reason it is
essential to consider the subdynamics along general linear subspaces of Rd is that
the boundaries of these components, though vividly reflected in the parameteriza-
tion of dynamical properties of subactions of Zd, might not contain any nonzero
integral vectors. This point was made explicitly by Katok and Spatzier [KaSp] in
their work on invariant measures for smooth hyperbolic Zd-actions (see §5).

As a specific example of this philosophy, in §6 we extend work of Milnor to show
in Theorem 6.16 that in an expansive component of k-frames, the k-dimensional
measure theoretic directional entropy is given by a k-form. We prove in Theo-
rem 6.13 a variational result for expansive frames, and show that for an expansive
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component of k-frames, the existence of a common measure of maximal entropy
is equivalent to multilinearity of the k-dimensional topological directional entropy
(Theorem 6.25). We describe explicitly in Theorem 6.33 the functions (nice but not
necessarily linear) which can be the topological directional entropy of a Z2-action
on a proper expansive component of 1-frames.

In §7 we investigate the detailed behavior of a class of algebraically defined
examples, and relate the lowest dimension of any expansive subspace to the Krull
dimension of the quotient of a Laurent polynomial ring in several variables.

As another application of our regularity viewpoint, we show in §8 that in a con-
nected component of expansive lines, either all elements have the Markov property
or none do. In the Markov components we prove that the directional entropy varies
linearly, and in the zero-dimensional case we parameterize the zeta functions and
shift equivalence classes. We conclude in §9 with a discussion of open problems.

We began this work in 1989 as a response to a lecture [N1] of Nasu on his analysis
[N2] of automorphisms of shifts as “textile systems.” He studied especially certain
cones of elements of Z2 which acted as expansive homeomorphisms, and without
this influence our paper would not have been written. A crucial influence for us is
Milnor’s “entropy geometry” [Mi], the object of much of our paper and the back-
ground against which it was natural to consider expansiveness for general subsets
of Rd. We also thank Sam Lightwood for his careful reading and helpful comments
on a preliminary version of this paper. About half of this work was written dur-
ing the Fall, 1992, Program in Symbolic Dynamics at the Mathematical Sciences
Research Institute in Berkeley, which provided a rich mathematical environment,
natural beauty, warm and efficient staff, and excellent computer facilities. We are
grateful for the pleasure of working in that ideal place.

2. Definitions and examples

Let (X, ρ) be a compact metric space, which we will always assume is infinite. A
Zd-action α on X is a homomorphism from the additive group Zd to the group of
homeomorphisms of X . For n ∈ Zd, we denote the corresponding homeomorphism
by αn, so that αm ◦αn = αm+n and α0 is the identity on X . For a subset F ⊂ Rd,
put

ρFα (x, y) = sup{ρ(αn(x), αn(y)) : n ∈ F ∩ Zd}.
If F ∩ Zd = ∅, then put ρFα (x, y) = 0.

Definition 2.1. A Zd-action α on X is expansive provided there is a δ > 0 such

that ρR
d

α (x, y) ≤ δ implies that x = y. In this case, δ is called an expansive constant
for α.

Suppose that F is a subset of Rd. Let || · || denote the Euclidean norm on Rd,
and for v ∈ Rd define dist(v, F ) to be inf{||v − w|| : w ∈ F}. For t > 0 put
F t = {v ∈ Rd : dist(v, F ) ≤ t}, so that F t is the result of thickening F by t.

Definition 2.2. Let α be a Zd-action on X , and F be a subset of Rd. Then F is

expansive for α if there are ε > 0 and t > 0 such that ρF
t

α (x, y) ≤ ε implies that
x = y. If F fails to meet this condition, it is called nonexpansive for α.

Every translate of an expansive set is also expansive. This follows from the
observation that for F ⊂ Rd and v ∈ Rd,

F t ⊂ (F + v)t+||v||.
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The following result shows that by additional thickening, we can use the same ε
for all expansive subsets of a given action.

Lemma 2.3. Let α be an expansive Zd-action on X with expansive constant δ.
Then for every expansive subset F of Rd, there is an s > 0 such that ρF

s

α (x, y) ≤ δ
implies that x = y.

Proof. Let F be an expansive subset for α, so there are ε, t > 0 such that ρF
t

α (x, y) ≤
ε implies that x = y. Let B(r) denote {v ∈ Rd : ||v|| ≤ r}. Since α is expansive
with constant δ, a standard compactness argument shows that there is an r such

that ρ
B(r)
α (x, y) ≤ δ implies that ρ(x, y) ≤ ε. Put s = t+ r.

Suppose that x, y ∈ X are such that ρF
s

α (x, y) ≤ δ. If n ∈ F t ∩ Zd, then

n + B(r) ⊂ F s, so that ρ
B(r)
α (αnx, αny) ≤ δ, and hence ρ(αnx, αny) ≤ ε. Thus

ρF
t

α (x, y) ≤ ε, and so x = y.

It is convenient to have a term to describe the situation in the previous lemma.

Definition 2.4. Let α be a Zd-action with expansive constant δ, and let F be a
subset of Rd. A number s > 0 is called an expansive radius for F if ρF

s

α (x, y) ≤ δ
implies that x = y.

In this terminology, Lemma 2.3 says that an expansive set has an expansive
radius. For some actions there is a uniform s which is an expansive radius for every
expansive subset. We do not know if this holds for every action (see Problem 9.13).

From now on we shall only be concerned with subsets that are subspaces of Rd.
In order to discuss sets of subspaces, we recall the Grassmann manifold Gk = Gk,d
of all k-dimensional subspaces (or k-planes) of Rd. See [FR, §3.2.2] for an account
of the properties of Grassmann manifolds used here. The topology of Gk is induced
by the metric for which the distance between two subspaces is the Hausdorff metric
distance between their intersections with the unit sphere in Rd. Then Gk is a
compact manifold of dimension k(d − k). In particular, G1 is real projective (d −
1)-space. Also, a k-dimensional subspace is determined by its (d− k)-dimensional
orthogonal complement, and this correspondence is a homeomorphism between Gk
and Gd−k.

Definition 2.5. For a Zd-action α, define

Ek(α) = {V ∈ Gk : V is expansive for α},
Nk(α) = {V ∈ Gk : V is nonexpansive for α}.

We will show in the next section that Ek(α) is always open in Gk.

Remark 2.6. If V is expansive for α and W is a subspace containing V , then clearly
W is also expansive for α. In particular, if α has an expansive subspace, then α
itself must be expansive. Similarly, any subspace of a nonexpansive subspace is
nonexpansive. If α itself is nonexpansive, then all subspaces of Rd are nonexpansive,
so α has no expansive subdynamics. For this reason we are only interested in
expansive Zd-actions.

Let us consider some instructive examples.

Example 2.7. Let A be a finite alphabet, and put X = AZd , equipped with the
product topology. Thus a point x ∈ X has the form

(
x(n) : n ∈ Zd

)
. To define a
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Figure 1. Coordinates in Ltθ determine those in Lt+sθ .

metric on X , for a, b ∈ A let ν(a, b) = 1 if a 6= b and 0 otherwise. Define ρ on X by

ρ(x, y) =
∑
n∈Zd

2−||n||ν(x(n), y(n)).(2–1)

Two points are close in this metric provided their coordinates agree in a large
neighborhood of the origin, so that ρ induces the product topology on X . Thus we
can recast the definition of expansiveness of α on X , or on any compact α-invariant
subset of X , as follows. A subspace V is expansive if there is a t such that if x and
y agree on V t (i.e., x(n) = y(n) for all n ∈ V t), then x = y.

Define the shift action α of Zd on X by (αnx)(k) = x(n + k). Since ρ(x, y) < 1
implies that x(0) = y(0), it follows that α is expansive. However, no proper
subspace V of Rd can be expansive for α, since, regardless of the size of t, there are
distinct points in X that agree on V t. Thus Nk(α) = Gk for 0 ≤ k ≤ d− 1.

Example 2.8. Using the notation of Example 2.7, take d = 2, A = Z/2Z, and

consider the compact α-invariant subset X of (Z/2Z)Z
2

defined by the condition

x(i, j) + x(i+ 1, j) + x(i, j + 1) ≡ 0 (mod 2)(2–2)

for all i, j ∈ Z. This example is a subsystem of an expansive Z2-action, so is itself
expansive. It is a simplified version of one studied by Ledrappier [Led], who showed
that, as a Haar measure-preserving action, it is mixing but not mixing of higher
orders.

To describe the expansive lines for α, let Lθ denote the line making angle θ with
the positive horizontal axis. Then G1 = {Lθ : 0 ≤ θ < π}. Let ∆ be the triangle
in R2 with vertices 0 = (0, 0), e1 = (1, 0), and e2 = (0, 1). Fix a θ ∈ [0, π) distinct
from 0, π/2, and 3π/4 (these exceptions come from the lines that are parallel to
the faces of ∆). Observe that there is an s = s(θ) > 0 with the following property.
For all large enough t, each lattice point in Lt+sθ \Ltθ is the vertex of a translate of
∆ whose other two vertices lie in Ltθ (see Figure 1). Use of (2–2) then shows that
if x and y agree on Ltθ, then they agree on Lt+sθ . Repeating this observation shows
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Figure 2. Description of the nonexpansive planes in Example 2.9.

that they must also agree on Lt+2s
θ , hence on Lt+3s

θ , and so on, so they must be
equal. Thus Lθ is expansive.

However, if Lθ is parallel to a face of ∆, then for every t > 0 it is easy to construct
a nonzero point that is 0 at all the coordinates in Ltθ. For example, if θ = 0, define
x(m,n) = 0 if n ≥ 0, x(0, n) = 1 if n ≤ −1, and reconstruct the rest of x using
(2–2). Translates of this point suffice to show that L0 is not expansive.

Kitchens and Schmidt [KS2] compute the set of expansive lines for a class of
such examples when d = 2.

Example 2.9. We consider an analogue of Example 2.8 for d = 3. Let X be the

set of points x in (Z/2Z)Z
3

satisfying

x(i, j, k) + x(i+ 1, j, k) + x(i, j + 1, k) + x(i, j, k + 1) ≡ 0 (mod 2)

for all i, j, k ∈ Z, and α be the shift action of Z3 on X . Let ∆ denote the convex
hull in R3 of 0 = (0, 0, 0), e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). For
reasons entirely analogous to the previous example, a plane is nonexpansive for α
exactly when some translate of it is a support plane for ∆ that contains an edge of
∆, so this condition determines N2(α). To describe N1(α), note that every line in
R3 can be translated to intersect an edge of ∆ so that together they span a support
plane. By the previous remark, the plane, hence this line, is nonexpansive. This
shows that every line is nonexpansive, so that N1(α) = G1. In other words, the
union of the lines contained in the planes of N2(α) is all of G1.

Let us try to imagine what N2(α) looks like. We will do this by first using
oriented planes, then dropping the orientation. An oriented plane is determined

by its unit normal, so the space G̃2 of oriented planes is homeomorphic to the

space G̃1 of oriented lines, which is homeomorphic to the 2-sphere S2. The maps

p2 : G̃2 → G2 and p1 : G̃1 → G1 that forget orientation are 2-to-1 covering maps

that intertwine the homeomorphisms G̃2
∼= G̃1 and G2

∼= G1.

Each oriented plane P ∈ G̃2 can be translated to a unique support plane for ∆

with normal directed away from ∆. Let Ñ2(α) denote the set of those P for which
the corresponding support plane contains an edge of ∆. By our previous discussion,

N2(α) = p2(Ñ2(α)), so our task reduces to describing Ñ2(α).
Rotation of a support plane for ∆ about an edge from one face of ∆ to another

generates a curve in Ñ2(α). This is depicted in Figure 2(a), which shows ∆ and the
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rotation of support plane P to support planeQ about the edge e. The corresponding

curve in G̃1
∼= S2 is shown in (b) as the arc of the great circle from the outward unit

normal vP to vQ. We can “walk” a support plane around ∆ by first rotating about
an edge to a face, then rotating about a different edge of that face to another face,

and so on. It follows that Ñ2(α) is the union of six curves, one for each edge of ∆.

The corresponding set in G̃1
∼= S2 is the union of the six great circle arcs shown

in (b). Note that Ñ2(α) is homeomorphic to the 1-skeleton of ∆ (more accurately,
to the 1-skeleton of the dual polytope to ∆, but ∆ is self-dual), so that N2(α) has
topological dimension 1.

Example 2.10. Let T2 = R2/Z2 denote the 2-dimensional torus. The matrices

A =

[
1 1
2 1

]
and B =

[
2 1
3 2

]
in GL(2,Z) induce automorphisms of T2 (which do not commute). The eigenvalues

of A are λ1 = 1 +
√

2 and λ2 = 1 −
√

2, and let E1 and E2 be the corresponding
eigenspaces in R2. Similarly, B has eigenvalues µ1 = 2 +

√
3 and µ2 = 2−

√
3, with

eigenspaces F1 and F2.
Let

C = A⊗ I =


1 1 0 0
2 1 0 0
0 0 1 1
0 0 2 1

 and D = I ⊗B =


2 0 1 0
0 2 0 1
3 0 2 0
0 3 0 2

 .
Both C and D act on R2 ⊗ R2 =

⊕2
i,j=1 Ei ⊗ Fj , and they commute. Hence

they define an action α of Z2 on T4 given by α(m,n) = CmDn = Am ⊗ Bn. The
1-dimensional spaces Ei ⊗ Fj are common eigenspaces for C and D, and α(m,n) on
Ei ⊗ Fj is multiplication by λmi µ

n
j .

We first observe that if (m,n) 6= 0, then α(m,n) is hyperbolic, hence expansive.
For suppose that |λmi µnj | = 1, so that λmi µ

n
j = ±1. There is an element σ in the

Galois group of Q(
√

2,
√

3) over Q with σ(
√

2) = −
√

2 and σ(
√

3) =
√

3. Hence

λmi µ
n
j = ±1 = σ(±1) = σ(λi)

mµnj , so that
(
λi/σ(λi)

)m
= ±1, implying that

m = 0. Similarly, n = 0. This shows that all lines in G1 with rational slope are
expansive for α, so that E1(α) is dense in G1.

We next show that α has exactly two nonexpansive lines, both with irrational
slope.

For i = 1, 2 let Li be the line in R2 with slope − log |λi|/ log |µ1|, which is nu-
merically about ∓0.66925. (Using µ2 instead of µ1 would give the same lines, since
log |µ2| = − log |µ1|.) For fixed t > 0, consider the strip Lti of width t around Li.
A lattice point (m,n) occurs in Lti exactly when∣∣m log |λi|+ n log |µ1|

∣∣ ≤ t∣∣log |λi|
∣∣ = c,

which is equivalent to
e−c ≤ |λmi µn1 | ≤ ec.

Thus for all (m,n) ∈ Lti, the linear map α(m,n) never spreads points in Ei ⊗ F1 by
a factor more than et logλ1 . Hence distinct points in T4 can remain arbitrarily close
for all iterates in Lti, so that each Li is not expansive.

Suppose now that L is a line distinct from L1 and L2. Choose a unit vector e ∈ L,
and define π : R2 → R by π(x) = x · e. Fix t > 0. Then Lt ∩ Z2 is unbounded in
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both directions, but has bounded gaps in the sense that there is an M > 0 such
that for every p ∈ Lt ∩ Z2 there are q, r ∈ Lt ∩ Z2 for which π(q) < π(p) < π(r),
||p−q|| ≤M , and ||p−r|| ≤M . If L is rational this is trivial since Lt∩Z2 contains
a rank one subgroup of Z2, while if L is irrational this follows from the uniform
distribution of an irrational rotation of the circle. Considering each αn as a linear
operator on R4, put

θ = max{||αn|| : ||n|| ≤M}
and

δ =
1

10 θ2
.

Let v ∈ R4 with v 6= 0 and ||v|| < δ. Then there is at least one eigenspace Ei⊗Fj
for which the coordinate of v is nonzero. Since Lt ∩Z2 is infinite in both directions
and L 6= L1 or L2, it follows that the projection of Lt ∩ Z2 to the horizontal axis
along either L1 or L2 is unbounded, proving that

{m log |λi|+ n log |µj | = log |λmi µnj | : (m,n) ∈ Lt ∩ Z2}

contains arbitrarily large numbers. Hence there is a p ∈ Lt∩Z2 such that ||αpv|| ≥
δθ. Choose such a p with |π(p)| minimal. It follows from the definition of θ that
||p|| > M . Since Lt ∩ Z2 has bounded gaps, there is a q ∈ Lt ∩ Z2 for which
|π(q)| < |π(p)| and ||p− q|| ≤M . Hence ||αqv|| < δθ so that

||αpv|| = ||αp−q(αqv)|| ≤ δθ2 =
1

10
.

Let ρ be the metric on T4 induced by the Euclidean norm on R4. In particular,
the projection map ρ : R4 → T4 is an isometry when restricted to sets in R4 of
diameter< 1/10. The argument above then shows that if x, y ∈ T4 with ρ(x, y) < δ,
then there is a p ∈ Lt ∩ Z2 such that δθ < ρ(αpx, αpy) ≤ 1/10, proving that L is
expansive.

Thus α is a Z2-action for which N1(α) consists of exactly two lines, L1 and L2,
that are both irrational.

Example 2.11. Let X be the compact dual group of Z[1/6]. Since φ(t) = 2t and
ψ(t) = 3t are commuting automorphisms of Z[1/6], we can define a Z2-action α

on X by putting αe1 = φ̂ and αe2 = ψ̂, where φ̂ is the automorphism of X dual
to φ. The inclusion Z ↪→ Z[1/6] dualizes to a quotient homomorphism X → T
under which αe1 transforms to multiplication by 2 on T and αe3 to multiplication
by 3. In this sense the action α on X is the natural extension of the Z2

+-action on
T given by multiplication by 2 and 3.

Duality shows that the kernel K of the quotient map X → T has dual group

Z[1/6]/Z ∼= (Z[1/2]/Z)⊕ (Z[1/3]/Z),

so that K ∼= Z2⊕Z3, where Zp denotes the p-adic integers. Hence locally the group
X splits into a direct product of a real interval, Z2, and Z3. This local picture is
explained in detail in [LW]. In particular, each factor of this direct product acts like
an invariant “subspace,” but with arithmetic expansion or contraction on the Zp
factors replacing the geometric expansion or contraction that occurs, for example,
in toral automorphisms.

Let | · |p denote the p-adic valuation on Zp, and | · |∞ be the usual absolute value
on R. Considerations as in the previous example show that v = (a, b) 6= 0 generates
a nonexpansive line Rv if and only if a log |2|p + b log |3|p = 0 for some p = 2, 3,
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or∞. Since |2|3 = 1 = |3|2, |2|2 = 1/2 and |3|3 = 1/3, the three choices of p lead to
the three nonexpansive lines L1, L2, L3 making angles with the positive horizontal
axis of 0, π/2, and tan−1(− log 2/ log 3), respectively. Hence N1(α) = {L1, L2, L3}
contains two rational lines and one irrational line.

Example 2.12. Let α be a Zd-action on X , and suppose that A : Ze → Zd is a
homomorphism. We define an action αA of Ze on X by the formula (αA)n = αAn.
We say that αA is obtained from α by a map of parameters.

Some useful special cases of this are

(1) e = d and A ∈ GL(d,Z),
(2) e < d and A embeds Ze as a sublattice of Zd, and
(3) e > d and A is surjective, so that the action is “lifted” to a higher dimensional

action.

It is easy to verify that a subspace V of Re is expansive for αA if and only if A(V )
is expansive for α.

3. Nonexpansive subspaces

This section develops coding techniques, and applies them to prove that each
Zd-action α has nonexpansive subspaces of all dimensions ≤ d− 1. More precisely,
we will show that if V is nonexpansive for α and dimV ≤ d−2, then V is contained
in a (d− 1)-dimensional nonexpansive subspace. Consequently, Nk(α) is the set of
all k-dimensional subspaces contained in at least one of the subspaces in Nd−1(α),
so that Nd−1(α) determines the other Nk(α).

If a Zd-action α is not expansive, then all subspaces of Rd are nonexpansive,
and our results are trivially true. Therefore we will assume throughout this section
that α is a fixed expansive Zd-action on (X, ρ), and also that δ is a fixed expansive
constant for α.

Definition 3.1. Let E and F be subsets of Rd. Say that E codes F provided that,
for every v ∈ Rd, if ρE+v

α (x, y) ≤ δ then ρF+v
α (x, y) ≤ δ.

For example, a subspace V of Rd is expansive if and only if V t codes Rd for all
large t. Observe that the coding relation is transitive: if E codes F and F codes G,
then E codes G. The definition of coding builds in translation invariance, so that
if E codes F , then E + v codes F + v for every v ∈ Rd.

For a subspace V of Rd, let πV denote orthogonal projection to V along its
orthogonal complement V ⊥, so that πV + πV ⊥ = I. Then clearly V t = {v ∈ Rd :
||πV ⊥(v)|| ≤ t}. We define

V t(r) = {v ∈ Rd : ||πV (v)|| ≤ r and ||πV ⊥(v)|| ≤ t}.
For example, if d = 3 and dimV =2, then V t(r) is a disc of radius r and thickness 2t.
Observe that

V s(q) + V t(r) = V s+t(q + r)(3–1)

for all s, t, q, r ≥ 0.
The following gives a “finite” version of expansiveness which is an analogue of

the sliding block codes of symbolic dynamics.

Lemma 3.2. Let V be an expansive subspace for α. There is a t > 0 with the
property that for every s > 0 there is an r > 0 such that V t(r) codes V s(0). Hence
V t(r + a) codes V s(a) for all a > 0.
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Figure 3. V t(r) codes V s(0), so V t(r + a) codes V s(a).

Proof. By Lemma 2.3, V has an expansive radius u > 0, so that ρV
u

α (x, y) ≤ δ
implies that x = y. Put t = u+ d.

To show that t has the required property, fix an s > 0. Since α acts by contin-

uous maps, there is a γ > 0 such that if ρ(x, y) ≤ γ, then ρ
B(s+d)
α (x, y) ≤ δ. A

compactness argument shows that there is an r > d such that ρ
V u(r−d)
α (x, y) ≤ δ

implies that ρ(x, y) ≤ γ.
We will use these choices of t and r to show that V t(r) codes V s(0). Let v ∈ Rd,

and suppose that ρ
V t(r)+v
α (x, y) ≤ δ. Choose n ∈ Zd with ||v − n|| < d. Then

V t(r)+v ⊃ V u(r−d)+n, so that ρ
V u(r−d)
α (αnx, αny) ≤ δ. Hence ρ(αnx, αny) ≤ γ,

so ρ
B(s+d)+n
α (x, y) ≤ δ. But V s(0)+v ⊂ B(s+d)+n, proving that ρ

V s(0)+v
α (x, y) ≤

δ, and that V t(r) codes V s(0).
Next, observe that if G ⊂ Rd and if E codes F , then E+G codes F +G. Apply

this observation with E = V t(r), F = V s(0), and G = V 0(a), and use (3–1), to
obtain the final statement (see Figure 3, where in each drawing the solid rectangle
codes the dotted region).

The preceding lemma has a converse, which captures the idea behind Exam-
ples 2.8 and 2.9.

Lemma 3.3. Suppose that V is a subspace, and that r, t, and ε are positive num-
bers for which V t(r) codes V t+ε(0). Then V is expansive.

Proof. If V t(r) codes V t+ε(0), then use of (3–1) shows that V t(r+a) codes V t+ε(a)
for all a > 0. Hence V t codes V t+ε, and so codes V t+2ε, and so on. This shows
that V t codes Rd, i.e., that V is expansive.

The next result shows that expansiveness is an open condition.

Lemma 3.4. Let V be an expansive k-plane for α. Then there are r = rV , t = tV ,
and a neighborhood NV of V in Gk such that, for every W ∈ NV , we have that
W t(r) codes W t+1(0). Hence each W ∈ NV is expansive, and so Ek(α) is open in
Gk.

Proof. By Lemma 3.2, there are s and u so that V u(s) codes V u+3(1). Put r = s+1
and t = u+ 1. For W sufficiently close to V , W t(r) = Wu+1(s+ 1) contains V u(s),
which codes V u+3(1), which contains Wu+2(0) = W t+1(0). Figure 4 illustrates
these relations. Lemma 3.3 now shows that each W sufficiently close to V is ex-
pansive, hence that Ek(α) is open.
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Figure 4. Coding relations which show that expansiveness is an
open condition.

The next result shows that the coding in Lemma 3.4 can be made uniform on
compact subsets of expansive subspaces.

Lemma 3.5. Let K be a compact subset of Ek(α). Then there are r > 0 and t > 0
such that W t(r) codes W t+1(0) for every W ∈ K.

Proof. By Lemma 3.4, for each V ∈ K there are rV > 0, tV > 0, and a neighborhood
NV of V in Gk such that W tV (rV ) codes W tV +1(0) for all W ∈ NV . Since K is
compact, it is covered by some finite collection NV1 , . . . ,NVm . Observe that if
Wu(s) codes Wu+1(0), then WU (S) codes WU+1(0) for all U ≥ u and S ≥ s.
Therefore r = max1≤j≤m{rVj} and t = max1≤j≤m{tVj} satisfy the conclusion.

We are now ready for the main result of this section.

Theorem 3.6. Suppose that V is a nonexpansive subspace for α with dimension
≤ d− 2. Then V is contained in a (d− 1)-dimensional nonexpansive subspace.

Proof. Fix V ∈ Nk(α), where k ≤ d − 2. Let K = {W ∈ Gd−1 : W ⊃ V },
which is a compact submanifold of Gd−1. Suppose that every subspace in K is
expansive. Then by Lemma 3.5, there are r, t > 0 such that W t(r) codes W t+1(0)
for all W ∈ K. It follows that there is an R0 > 0 so that for all R ≥ R0 the
boundary of V R is sufficiently “flat” so that the following holds. For all R ≥ R0

and all v ∈ V R+1/2, there is a W ∈ K and u ∈ Rd such that W t(r) + u ⊂ V R

and v ∈ W t+1(0) + u. Figure 5 depicts this situation when d = 2 and V = {0},
corresponding to the assumption that every line is expansive. Hence V R codes
V R+1/2 for all R ≥ R0. But repeated application of this implies that V R0 codes
all of Rd, contradicting nonexpansiveness of V . Hence K must contain at least one
nonexpansive subspace.

Figure 5. A large ball codes a bigger ball.
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Figure 6. A strip codes a convex hull.

This result leads to our description of the expansive subdynamics of a general
Zd-action.

Theorem 3.7. Let α be an arbitrary Zd-action on an infinite compact metric
space. For each k with 0 ≤ k ≤ d − 1, the set Nk(α) of nonexpansive subspaces of
dimension k is a nonempty compact set in Gk. A subspace is nonexpansive if and
only if it is contained in some subspace in Nd−1(α), so that Nd−1(α) determines all
the other Nk(α).

Proof. Since X is infinite, the zero subspace {0} is nonexpansive. By Theorem 3.6,
this subspace is contained in a nonexpansive (d − 1)-dimensional subspace, all of
whose subspaces are also nonexpansive (see Remark 2.6). Thus all the Nk(α) are
nonempty for 0 ≤ k ≤ d− 1, and they are compact by Proposition 3.4. The second
part follows directly from Theorem 3.6 and Remark 2.6.

We record now an easy consequence of Lemma 3.5 which we will need in §6 and
in §8.

Proposition 3.8. Let K be a compact subset of Ek(α). Then there are r > 0 and
t > 0 such that, for every W ∈ K and n ∈ N, W t((n + 1)r) codes the convex hull
of W t+n(0) and W t(nr).

Proof. Choose r and t as in Lemma 3.5. We may clearly assume that t ≥ 1. Suppose
W ∈ K. Then W t((n + 1)r) codes W t+1(nr), which codes W t ((n− 1) r), and so
on. Thus W t(nr) codes W t+j((n − j)r) for 0 ≤ j ≤ n. Hence the union of these
sets contains the required convex hull (see Figure 6).

In his Ph.D. thesis, Sol Schwartzman proved that there are no “one-sided expan-
sive” homeomorphisms, except on finite spaces.

Theorem 3.9 (Schwartzman). If T is a homeomorphism of an infinite compact
metric space (X, ρ) and δ > 0, then there are distinct points x, y in X such that
ρ(Tnx, Tny) ≤ δ for all n ≥ 0.

Schwartzman never published this result, but it is reported in [GH, 10.30]. King
gives a direct proof [Ki, Thm. 2.1] (attributed to Boyle, Geller and Propp), and also
shows that x and y can be found in different orbits [Ki, Thm. 2.6]. Schwartzman’s
result is also a quick corollary of [AKM, p. 316]. This result was a key ingredient
in our original, more intricate, proof of Theorem 3.6. It has also guided us in
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certain constructions (see Theorem 6.33) as well as providing obstructions in other
situations.

One can prove Schwartzman’s result for an expansive homeomorphism in two
steps: first, show that if [0,∞) codes (−∞, 0], then for some N the bounded interval
[0, N ] codes (−∞, 0]; second, check that this implies the space is finite (we thank Jim
Propp and Will Geller for helping us understand this). The first step generalizes to
higher dimensional actions as follows. The proof is a compactness argument similar
to previous ones, and is omitted.

Proposition 3.10. Let W be an expansive k-plane for α, and V be a (k−1)-plane
contained in W . Denote by W+ and W− the two closed half-spaces of W with
boundary V . If W+ codes W−, then there is a bounded neighborhood of V that also
codes W−.

Remark 3.11. The last proposition, Example 2.9, and the “causal cones” of Milnor
[Mi] suggest an oriented notion of expansiveness for codimension 1 subspaces. This
will be useful in describing the algebraic examples of §7.

Let G̃d−1 denote the compact space of all oriented (d−1)-dimensional subspaces

of Rd. The map pd−1 : G̃d−1 → Gd−1 which forgets orientation is a 2-to-1 covering
map (we used p2 in Example 2.9). If V ∈ Gd−1 and p−1

d−1(V ) = {V +, V −}, then

each V ± determines a half-space H±V with boundary V . Say that V ± is a causal
plane (with respect to an action α) if some bounded thickening of V codes H±V .
Equivalently, by compactness, V ± is a causal plane if and only if H∓V is an expansive
set for α. Clearly a (d− 1)-plane V is expansive if and only if both V + and V − are
causal planes.

Denote by Cα the set of all causal planes for α. Then Cα is an open subset of

G̃d−1 for reasons similar to the proof of Lemma 3.4. Let

D : Gd−1 → G̃d−1 × G̃d−1

be defined by D(V ) = (V +, V −). The last remark in the previous paragraph shows
that

Ed−1(α) = D−1(Cα × Cα).

Consequently

Nd−1(α) = pd−1(G̃d−1 \ Cα),

which we used in Example 2.9.

4. Realization

Let α be a Zd-action. Theorem 3.7 shows that the structure of the nonexpansive
sets Nk(α) for 1 ≤ k ≤ d−1 is completely determined by Nd−1(α). Which compact
sets in Gd−1 can occur as Nd−1(α) for some Zd-action α?

When d = 2 we can give a nearly complete answer: if L ⊂ G1 is a compact
set of lines that is not a singleton set containing one irrational line, then we will
construct a Z2-action α for which N1(α) = L (Theorem 4.3). For d > 2, our results
are less complete (see Problem 9.1). Our basic method is contained in the following
construction.

Proposition 4.1. Let d = 2, and suppose that L is a compact set of lines in G1

such that |L| ≥ 2 and L contains an isolated line. Then there is a Z2-action α for
which N1(α) = L.
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Proof. Recall from Example 2.7 that the Z2-shift on {0, 1}Z2

is expansive. We will

construct a shift-invariant compact subset X ⊂ {0, 1}Z2

, put α to be the restriction
of the Z2-shift to X , and show that N1(α) = L.

Let K be a fixed, isolated line in L (we use the topology induced from G1). Then
there is a connected neighborhood N of K in G1 for which N ∩ L = {K}.

For any line L ∈ G1, define an L-strip in Z2 to be any subset S ⊂ Z2 such that
there is a vector v ∈ R2 for which

{n ∈ Z2 : dist(n, L+ v) < 2} ⊂ S ⊂ {n ∈ Z2 : dist(n, L+ v) ≤ 2}.

Thus an L-strip is the set of lattice points lying at distance < 2 from a translate
of L, plus possibly some lattice points at distance exactly 2.

Since K is isolated in L, there are p,q ∈ Z2 such that

1. The lines generated by p and by q are both in N ,
2. K intersects the positive cone generated by p and q, and
3. for every L ∈ L \ {K} and every L-strip S,

dist(S, S + q) ≥ 10 dist(S, S + p) ≥ 100.

Thus for each L ∈ L \ {K}, L-strips are separated by at least 10 when translated
by p, and by at least 100 when translated by q.

Let πK⊥ denote orthogonal projection in R2 to K⊥ along K. Define a translation
sequence to be a bi-infinite sequence T = {. . . ,k−1,k0,k1, . . . } of lattice points
kj ∈ Z2 such that

(i) kj+1 − kj = p or q,
(ii) diam{πK⊥(kj − ki) : i, j ∈ Z} ≤ 2 max{||πK⊥(p)||, ||πK⊥(q)||}.

Observe that if T = {kj} is a translation sequence, then so is T + n = {kj + n}
for every n ∈ Z2.

We now define X ⊂ {0, 1}Z2

. For every line L ∈ L \ {K}, every L-strip S, and

every translation sequence T = {kj}, define a point xS,T in {0, 1}Z2

by

xS,T (m) =

1 if m ∈
⋃
j∈Z

(S + kj),

0 otherwise.

Note that the translates S + kj are mutually separated by at least 10, and that
the separations dist(S + kj , S + kj+1) assume just two values, a small one when
kj+1−kj = p and a large one when the difference is q. Let X denote the set of all
such xS,T . We will show that X is compact, Z2-shift invariant, and that N1(α) = L.

Since the property of being an L-strip or of being a translation sequence is
preserved under translating by a lattice point, X is Z2-shift invariant.

Next, suppose that a sequence {xSn,Tn} in X converges to a point x ∈ {0, 1}Z2

.
Each Sn is an Ln-strip for some Ln, and the lines Ln must clearly converge to a
line L, which is also in L\{K} since L\{K} is compact. By translating if necessary,
we may assume that each Tn = {kj,n} has 0th term k0,n = 0. Since the separations
(“small” or “large”) between adjacent strips determine the corresponding differ-
ences in translation vectors, it follows that for every J > 0 there is an nJ such that
kj+1,n−kj,n are all equal for n ≥ nJ and |j| ≤ J . Our normalization k0,n = 0 then
shows that limn→∞ kj,n exists. If kj denotes its value, then T = {kj} is clearly also
a translation sequence. The normalization k0,n = 0 also shows that the Ln-strips
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Sn converge to an L-strip S, in the sense that for every r > 0, if B(r) denotes the
ball of radius r in R2, then Sn ∩B(r) eventually equals S ∩B(r). Hence⋃

j∈Z
(Sn + kj,n) converges to

⋃
j∈Z

(S + kj)

in the same sense. Thus xSn,Tn → xS,T in {0, 1}Z2

, so that x = xS,T . This shows
that X is compact.

Finally, we show that N1(α) = L. First, let L ∈ L \ {K} and suppose that
u > 0. The condition (ii) allows sufficient freedom that we can easily find distinct
translation sequences T = {kj} and T ′ = {k′j}, normalized so that k0 = k′0 = 0,
whose intersections with B(u+ 2) agree. If S is any L-strip, and we put x = xS,T
and y = xS,T ′ , then x and y agree on Lu, but x 6= y. Thus L ∈ N1(α), so that

L\{K} ⊂ N1(α). Also, K is nonexpansive, but for a different reason. Let u > 0, and
fix a translation sequence T . Then there is an n ∈ Z2 such that Ku∩ (T + n) = ∅.
Let L ∈ L\{K}, and let S, S′ be L-strips whose symmetric difference is {n}. Then
xS,T and xS′,T are distinct, but agree on Ku. This proves that K ∈ N1(α). Hence
L ⊂ N1(α).

To establish the reverse inclusion, let M ∈ G1\L. There is a u > 0 such that, for
every x = xS,T ∈ X , the configuration {x(n) : n ∈Mu} determines the separations
of adjacent strips. Hence, if we normalize so that T = {kj} has k0 = 0, then
{x(n) : n ∈ Mu} determines T . Let S be an L-strip, where L ∈ L \ {K}. We can
assume that u is large enough so that

S ⊂
⋃
j∈Z
{(S + kj) ∩Mu − kj},

i.e., {x(n) : n ∈ Mu} determines x. This shows that M is expansive, completing
the proof.

If α and β are Zd-actions on (X, ρX) and (Y, ρY ), respectively, define their prod-
uct action α× β on X × Y by (α× β)n = αn × βn. We use the metric

ρX×Y
(
(x, y), (x′, y′)

)
= max{ρX(x, x′), ρY (y, y′)}.

The nonexpansive set is “additive” over products.

Lemma 4.2. Let α and β be Zd-actions. For 1 ≤ k ≤ d, we have that

Nk(α× β) = Nk(α) ∪ Nk(β).

Proof. Let V ∈ Nk(α). Then for every δ > 0 and t > 0, there are x 6= x′ in X such

that ρV
t

α (x, x′) ≤ δ. For each y ∈ Y we therefore have

ρV
t

α×β
(
(x, y), (x′, y)

)
≤ δ,

proving that V ∈ Nk(α × β). Thus Nk(α) ⊂ Nk(α × β), and similarly Nk(β) ⊂
Nk(α × β).

The reverse inclusion Nk(α× β) ⊂ Nk(α) ∪ Nk(β) follows from the definition of
ρX×Y .

Theorem 4.3. Let d = 2, and L be a compact set in G1 that is not a singleton
containing just one irrational line. Then there is a Z2-action α with N1(α) = L.
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Proof. First suppose that L = {L}, with L rational. Let T be an expansive home-
omorphism of a space X , and define the Z2-action β on X by β(m,n) = Tn. Clearly
N1(β) is just the horizontal axis, say {K}. Then there is an A ∈ GL(2,Z) for
which A(K) = L. Use the map of parameters α = βA (see Example 2.12) to obtain
N1(α) = {L}.

Next, suppose that |L| ≥ 2. Pick K 6= L in L. There are disjoint open neighbor-
hoodsM of K and N of L in G1. Then L1 = {K}∪(L\M) and L2 = {L}∪(L\N )
are compact, contain at least two elements each, and L = L1∪L2. Then L1 and L2

each satisfy the hypotheses of Proposition 4.1, so there are Z2-actions α1 and α2

with N1(α1) = L1 and N1(α2) = L2. By Lemma 4.2, N1(α1×α2) = L1∪L2 = L.

Recall thatGd−1 is homeomorphic to G1 by mapping a (d−1)-plane to its normal
line. We can therefore think of subsets of Gd−1 as being subsets of the sphere Sd−1

that are invariant under the antipodal map. With this understanding, we define
a great sphere in Gd−1 to be the intersection of Sd−1 with a (d − 1)-dimensional
subspace of Rd.

Proposition 4.4. Suppose K is a compact subset of Gd−1 which properly contains
an isolated great sphere. Then there is a Zd-action α with Nd−1(α) = K.

Proof. This is a straightforward adaptation of the proof of Proposition 4.1. Let Q
be the isolated great sphere, and let K be the line perpendicular to the subspace
spanned by Q. Thus the set of (d− 1)-planes represented by Q is precisely the set
of those (d− 1)-planes which contain K. For each (d− 1)-plane V in the nonempty
closed set K \ Q, we define a V -strip just as before, after replacing Z2 with Zd.
Similarly, use K to define allowed sequences of translation vectors. This yields an
action whose nonexpansive (d−1)-planes are precisely those in K\Q together with
those containing K. We leave the straightforward details to the reader.

Remark 4.5. By Lemma 4.2, we can realize finite unions of the sets K described in
Proposition 4.4. One can also strengthen (and complicate) Lemma 4.4 by consid-
ering how the construction adapts given rationality constraints on (d − 1)-planes
in K. For example, we can apply a map of parameters (Example 2.12) to the non-
expansive sets constructed in Theorem 4.3 and Proposition 4.4 to produce further
nonexpansive sets.

Remark 4.6. Note that for d > 2, Proposition 4.4 provides many examples in which
the connected components of Ed−1(α) are topologically nontrivial. In contrast,
Theorem 3.7 implies that components of E1(α) are always contractible, as they are
intersections of open hemispheres, which are geodesically convex.

5. Regularity

Although we cannot do justice to the extensive literature on expansiveness, we
will indicate several ways in which it has appeared as a significant dynamical con-
dition. We recommend [H2] for an extensive review. Below, by “homeomorphism”
we will mean a homeomorphism of a compact metric space to itself.

Expansiveness is transparently a geometric condition, and one precise aspect
of this is that expansive homeomorphisms admit hyperbolic metrics [Fr1, R]. Ex-
pansiveness is also a topological condition: various topological spaces [H2, Ka], for
example the 2-sphere, admit no expansive homeomorphism [Lew, H1], and the do-
main of an expansive homeomorphism must be zero-dimensional if it is minimal
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[Man1] or has zero entropy [Fa]. Expansiveness is a finiteness condition: an expan-
sive homeomorphism can only be defined on a finite dimensional space [Man1]; an
expansive homeomorphism of a compact surface must be pseudo-Anosov [Lew, H1];
any expansive system is a quotient of a subshift X by a map whose equivalence
relation is the intersection of X ×X with a shift of finite type [Fr4]; an expansive
system has finite entropy [W, Cor. 7.4.1] and only countably many automorphisms;
an expansive homeomorphism has at least one measure of maximal entropy [W,
Thm. 8.2], and it has a zeta function which under modest conditions must be ra-
tional [Fr3]. Expansiveness is an important algebraic condition in the study of the
dynamics of automorphisms of compact groups [AM, La], or of actions generated
by commuting automorphisms of compact groups [KS1].

What we want to emphasize now is that the expansiveness of a Zd-action along
k-planes can be viewed as a strong regularity condition on the variation of dynamical
properties and objects associated to the planes.

In order to make this more precise, we need to specify bases for the subspaces in
Gk. Let us call a k-tuple of linearly independent vectors in Rd a k-frame. Denote
by Fk the set of all k-frames. There is a natural covering map sk : Fk → Gk taking
a k-frame to the k-plane it spans. The fiber of sk is isomorphic to GL(k,R). For
a Zd-action α, let C be a connected component of s−1

k (Ek(α)). We will say that

C is a expansive component of k-frames . Note that s−1
k (sk(C)) consists of just two

components, namely C itself and the set of k-frames in C with reversed orientation.
If k = 1, then an expansive component C of 1-frames is an open cone in Rd, and
furthermore C ∩ (−C) = ∅ since any path in Rd \ {0} from v ∈ C to −v must
intersect a nonexpansive (d− 1)-plane.

As we will see below, certain dynamical invariants attached to k-frames vary
nicely within C, but can or must deteriorate at the boundary of C, for example
losing continuity, smoothness, or uniqueness. This abrupt change in passing from
one expansive component to another is roughly like a “phase transition.” Let us
give some examples of this phenomenon.

Example 5.1 (Automorphisms of shifts of finite type). Let σ : X → X be a shift
of finite type. An automorphism of σ is a homeomorphism of X commuting with σ.
See [BLR] for an extensive discussion of the group of such automorphisms. Their
study has deepened recently, and has led to a counterexample to the reducible case
of the shift equivalence conjecture [KRW, KR].

Consider the Z2-action α generated by an automorphism φ of a shift of finite
type σ, so that α(1,0) = σ and α(0,1) = φ. Let C be the expansive component
of 1-frames containing (1, 0). As we show in §8, there are positive real algebraic
numbers θ and ξ such that for every (m,n) ∈ C ∩ Z2 the topological entropy of
α(m,n) is given by

h(α(m,n)) = h(σmφn) = m log θ + n log ξ(5–1)

Moreover, there is an r and (θ1, . . . , θr), (ξ1, . . . , ξr) ∈ Cr such that for every
(m,n) ∈ C ∩ Z2 the zeta function of α(m,n) is

ζα(m,n)(z) =
1∏r

j=1(1− θmj ξnj z)
.(5–2)

Even the shift equivalence classes of the shifts of finite type corresponding to these
α(m,n) can be nicely parameterized (Theorem 8.6, after [BK]). Observe that al-
though the above formulas vary nicely in C, they cannot possibly extend to all
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1-frames, since, for example, (5–1) would give negative entropies for some values of
m and n.

Nasu [N2] developed elaborate matrix techniques for studying such Z2-actions,
especially the subdynamics of their Markov and expansive elements. One example
[N2, Chap. 10, Example 1] is of particular interest here. This example constructs
an automorphism φ of a shift σ of finite type for which φ itself is a shift of finite
type. Nasu shows that there are at least four nonexpansive lines for the resulting
Z2-action, but the complete description of the nonexpansive set is not known. Let
C be the expansive component containing σ and D be the one containing φ. For
m ∈ C∩Z2 the maps αm are all mixing shifts of finite type with a common measure
µC of maximal entropy, and similarly for D. However, the measures µC and µD are
quite different, one having a quadratic Perron eigenvalue while the other has a cubic
Perron eigenvalue. Furthermore, the dimension groups associated to C and to D
(see Theorem 8.6) are not isomorphic, one having rank two while the other has
rank five.

Example 5.2 (Toral automorphisms). Let A and B be commuting (algebraic) ex-
pansive automorphisms of Tn, and define a Z2-action α be α(1,0) = A and α(0,1) =
B. The nonexpansive lines for α are those whose slope s satisfies the condition
that A and B have a common eigenspace with respective eigenvalues θ and ξ such
that |θ||ξ|s = 1. Let C be a connected component of expansive 1-frames. For each
common eigenspace of A and B, it follows that for all (m,n) ∈ C ∩Z2 the modulus
of the corresponding eigenvalue of AmBn = α(m,n) is either always < 1 or always
> 1. We can then apply the standard formulas for entropy [W, Thm. 8.15] and zeta
functions [Sma, Prop. 4.15] of toral automorphisms to obtain analogues of (5–1)
and (5–2), valid for all (m,n) ∈ C ∩ Z2. For example, the θ and ξ in (5–1) will be
products of certain eigenvalues of A and B, respectively, depending on C. Other
instances of this phenomenon are described in Examples 6.4 and 6.5. For more
advanced examples of this sort, see [KaSp] and [Sma].

Using the Pesin theory of characteristic exponents [Pe], this analysis extends to
a smooth Zd-action on a compact manifold preserving a measure that is absolutely
continuous with respect to Lebesgue measure, showing that measure-theoretic en-
tropy is linear on expansive components (this is described by Fried [Fr2], who
attributes it to Ornstein).

Example 5.3 (Smooth hyperbolic actions). Katok and Spatzier [KaSp] studied
the invariant measures of certain smooth hyperbolic actions of Zd (and Rd and
Nd) which include the systems described in Example 5.2. A crucial step in their
analysis was the introduction of Lyapunov hyperplanes and Weyl chambers, which
for the systems of Example 5.2 are what we call the nonexpansive (d − 1)-planes
and the expansive components of 1-frames. They pointed out quite explicitly the
importance of the Lyapunov hyperplanes in regulating the Zd dynamics and the
necessity of considering planes not spanned by integral points. A key aspect of this
is a regularity condition: the action’s stable and unstable distributions are constant
on a Weyl chamber. We refer the reader to [KaSp] for a discussion of these ideas
and their context.

Example 5.4 (Directional entropy). Let α be a Zd-action on a compact metric
space. Milnor [Mi] defined both the topological and the measure-theoretic (for
a given α-invariant probability measure) directional entropies for k-planes in Rd.
His main interest was the Zd-action obtained from the time evolution of a (d −
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1)-dimensional cellular automaton mapping. Here the (d − 1)-dimensional direc-
tional entropies give a quantitative measure of “information flow” in the automaton.
Even in this case, the (d− 1)-dimensional directional entropy is not always a con-
tinuous function of the (d − 1)-frame [Mi, Smi]. However, Milnor showed that it
is continuous on “space-like” (d − 1) planes, from which it follows immediately
that it is continuous on expansive components in Ed−1(α). The measure-theoretic
(d− 1)-dimensional directional entropy is actually linear within expansive compo-
nents (see [Mi, Thm. 4]). We devote §6 to extending these results.

Example 5.5 (Asymptotic foliations). Let α be a Zd-action on (X, ρ), and v, w ∈
Zd lie in the same expansive component of 1-frames. Then for all x and y in X , as
either n→∞ or n→ −∞, it turns out that

lim
n→∞

ρ
(
αnv(x), αnv(y)

)
= 0 ⇐⇒ lim

n→∞
ρ
(
αnw(x), αnw(y)

)
= 0.

We can describe this situation by saying that αv and αw have the same stable
foliation. This fact is exactly what underlies the regularity of the zeta function in
an expansive component that we described in Example 5.1 [BK, Lemma 2.13] and
Example 5.2 [Sma, Prop. 4.14]. It is also a significant ingredient in the work of
Katok and Spatzier [KaSp].

6. Entropy

Let α be a Zd-action, and 1 ≤ k ≤ d. Milnor [Mi] introduced a k-dimensional
topological entropy function ηk. For each α-invariant measure µ he also introduced
a k-dimensional measure-theoretic entropy function ηµk . These functions are de-
fined for all compact sets in Rd, and provide a rich class of invariants for α. The
expansive subdynamics of α constrains these lower dimensional entropy functions,
and conversely.

Recall from the previous section that a k-frame is a k-tuple of linearly indepen-
dent vectors in Rd. Denote the line segment in Rd with endpoints v,w by [v,w].
For each k-frame Φ = (v1, . . . ,vk), we let QΦ = [0,v1] ⊕ · · · ⊕ [0,vk] denote the
parallelepiped spanned by Φ. Then the function hk(Φ) = ηk(QΦ) can be thought of
as a k-dimensional “directional entropy” on the space Fk of k-frames. This function
is not always continuous on Fk (see Example 6.6).

Let C be an expansive component of α in Fk, as defined in the previous section.
Extending work of Milnor, we show that hk is Lipschitz continuous for Φ ∈ C
(Theorem 6.9), and that for every α-invariant measure µ the function hµk(Φ) =
ηµk (QΦ) is the restriction to C of a k-form on Rd (Theorem 6.16). Using this, we
show that there is an α-invariant measure that has maximal entropy for all k-frames
in C if and only if the topological directional entropy function hk is multilinear on C
(Theorem 6.25).

We conclude the section with an essentially complete description of the possible
1-dimensional topological entropy functions on expansive components of 1-frames
for Z2-actions.

We start with the k-dimensional topological entropy function. The reader should
consult [Mi] for additional motivation and examples.

Fix a Zd-action α on (X, ρ). For a compact set E ⊂ Rd and ε > 0, define
Nα(E, ε) to be the cardinality of the smallest finite subset Y ⊂ X such that for
every x ∈ X there is a y ∈ Y with ρEα (x, y) < ε. Recall that Et denotes the set
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of all vectors in Rd within distance t of E. We use the notation sE to denote
{sv : v ∈ E}.

Definition 6.1. Let E be a compact subset of Rd and ε > 0. Put

ηk(E, ε) = sup
t>0

lim
s→∞

logNα
(
(sE)t, ε

)
sk

.

Define the k-dimensional topological entropy (with respect to α) of E to be

ηk(E) = lim
ε→0

ηk(E, ε).

For a k-frame Φ ∈ Fk, let QΦ be the parallelepiped spanned by Φ. Define the
k-dimensional topological directional entropy of Φ to be

hk(Φ) = ηk(QΦ).

The following summarizes some basic properties of ηk.

Theorem 6.2 (Milnor). The k-dimensional topological entropy function ηk is
monotone, subadditive, translation-invariant, and k-homogeneous; that is,

(1) ηk(E) ≤ ηk(F ) if E ⊂ F are compact sets,
(2) ηk(E ∪ F ) ≤ ηk(E) + ηk(F ) for all compact sets E and F ,
(3) ηk(E + v) = ηk(E) for all compact sets E and all v ∈ Rd, and
(4) ηk(sE) = skηk(E) for all compact sets E and all s > 0.

Proof. The proofs are straightforward, and are discussed in [Mi, Thm. 1]. The only
novelty is the possibility that ηk is infinite, a case which is easily handled.

More can be said about ηk when α has an expansive k-plane. This situation
is closer to the spirit of Milnor’s use of these notions to describe the subdynam-
ics of cellular automata. In what follows, for each k-plane V we let λV denote
k-dimensional Lebesgue measure on V , normalized so that the unit cube in V
(with respect to the inner product on V inherited from Rd) has λV -measure one.
A subset of Rd is called polyhedral if it is a finite union of polyhedra.

Theorem 6.3 (Milnor). Suppose that α has an expansive k-plane. Then

(1) There is a constant c such that ηk(E) ≤ c(diamE)k for every compact set
E ⊂ Rd. In particular, ηk(E) <∞ for all compact sets E.

(2) For every k-plane V there is a number hk(V ) such that ηk(E) = hk(V )λV (E)
for all compact sets E ⊂ V for which λV (∂E) = 0.

(3) The numbers hk(V ) are uniformly bounded from above as V varies over all
k-planes.

(4) If there is an expansive k-plane V for which hk(V ) = 0, then hk(W ) = 0 for
all k-planes W .

(5) For a compact polyhedral subset E of a k-plane,

ηk(E, ε) = sup
t>0

lim
s→∞

logNα
(
(sE)t, ε

)
sk

.

Proof. The arguments from [Mi, Thm. 2] prove (2) and (5). Let δ be an expansive
constant for α. It follows easily from Proposition 3.8 that there is a constant c such
that for every S ⊂ Zd with |S| ≥ 2, we have that

logNα(S, δ) ≤ c (diamS)k.
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Figure 7. Expansive strips to compute directional entropy.

In the terminology of [Mi], this means that the set function S 7→ logNα(S, δ) has
growth degree at most k. It is also easy to verify that ηk(E, ε) = ηk(E, δ) for all
ε ≤ δ. This completes the proof of (1). Now (3) follows from (1) and the observation

that unit cubes in k-planes all have diameter
√
k. The argument for [Mi, Cor. 3]

then applies to yield (4). Part (4) can also be proved by adapting arguments from
[Sh].

Example 6.4. Let α be the Z2-action on X discussed in Example 2.8. For θ ∈
[0, π) let Lθ be the line making angle θ with the horizontal axis. We showed in Ex-
ample 2.8 that E1(α) has three components, C1, C2, and C3, corresponding respec-
tively to θ-ranges of (0, π/2), (π/2, 3π/4), and (3π/4, π). Recall that s1 : F1 → G1

is the map from 1-frames (i.e., nonzero vectors) to the lines they generate. Then
each s−1

1 (Cj) has two connected components, one in the upper half plane and one
in the lower. We let Cj ⊂ F1 be the expansive component whose vectors are in the
upper half-plane. We compute h1(v) = η1([0,v]) on these expansive components
Cj of 1-frames.

Fix a vector v = (a, b) in C1 ∪ C2 ∪ C3. Define strips

S′(v) = [0, e1)⊕ [0,v], S′′(v) = (0, e2]⊕ [0,v],

and

S(v) =


S′(v) ∪ S′′(v) for v ∈ C1,

S′(v) for v ∈ C2,

S′′(v) for v ∈ C3.

Then for each v the infinite extension S̃(v) of S(v) is a half-open strip in direction
v just wide enough to accommodate the unit simplex ∆ (see Figure 7).

Now the coordinates of a point in X can be chosen independently for all lattice

points in S̃(v) ∩ Z2, and all other coordinates are determined once this choice is
made (see Figure 1). Since end effects become negligible, we see that

1

log 2
h1(v) = lim

t→∞

|S(tv) ∩ Z2|
t

.

Each horizontal line whose height is an integer between 0 and tb intersects S′(tv)
in exactly one lattice point, so that

|S′(tv) ∩ Z2| = [tb] + 1.

Similarly,

|S′′(tv) ∩ Z2| = [t|a|] + 1.
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It follows that

1

log 2
h1(v) =

1

log 2
h1

(
(a, b)

)
=


a+ b for v ∈ C1,

b for v ∈ C2,

−a for v ∈ C3.

Observe that here h1 is linear on each expansive component of 1-frames, but
that this linear behavior changes abruptly (but continuously) when passing from
one component to another. This calculation is given, for integral vectors, in [KS2].

Example 6.5. Let α be the Z2-action on the compact group X described in Exam-
ple 2.11, and use the same notations as there. Recall that α is the natural extension
of multiplication by 2 and 3 on T, and that locally X looks like the direct product
of a real interval, the 2-adic integers Z2, and the 3-adic integers Z3. The entropy
of automorphisms of such groups was computed in [LW], where the use of “p-adic
entropy” plays a role analogous to entropy for toral automorphisms. A consequence
of this computation is that for (m,n) ∈ Z2,

h(α(m,n)) = log+ |2m3n|2 + log+ |2m3n|3 + log+ |2m3n|∞,(6–1)

where log+ t = max{0, log t} and | · |p is the p-adic valuation. Here log+ |2m3n|p
measures the growth rate of α(m,n) in the p-adic component (or the real interval if
p =∞).

Recall that N1(α) consists of exactly three lines, making angles 0, π/2, and
θ0 = tan−1(− log 2/ log 3) with the positive horizontal axis. As in the previous ex-
ample, this gives three expansive components C1, C2, and C3 in the upper half-plane
corresponding to θ-ranges (0, π/2), (π/2, θ0), and (θ0, π). It is easy to compute from
(6–1) that for (m,n) ∈ Z2 we have that

h1

(
(m,n)

)
=

 m log 2 + n log 3 for (m,n) ∈ C1,
m log 3 for (m,n) ∈ C2,
−n log 2 for (m,n) ∈ C3.

(6–2)

In Theorem 6.9 we show that h1 is continuous on expansive components, from which
it follows that (6–2) is valid for all (not necessarily integral) vectors (m,n). We are
grateful to Tom Ward for pointing out this example.

The following example shows that directional entropy need not be continuous.

Example 6.6. Let T : X → X be an expansive homeomorphism with h(T ) > 0.
There is a natural Z2-action α on X × Z given by

α(m,n)
(
(x, j)

)
= (Tmx, j + n).

Let Y = (X × Z) ∪ {∞} be the one-point compactification of X × Z. There is a
metric on Y compatible with this topology, and α extends to a continuous Z2-action
on Y that we still call α, having ∞ as a fixed point. Since T is expansive, so is α.
However, E1(α) = ∅.

Fix v = (a, b). If b 6= 0, then iterates of α in a strip in direction v converge
to the point ∞, and it follows that h1(v) = 0. If b = 0, then we are measuring
the entropy of disjoint copies of T , so that h1((a, 0)) = |a|h(T ) > 0. Thus h1 is
discontinuous at the horizontal direction.

Milnor [Mi] gives more examples where h1 is discontinuous, and where it is
continuous but not convex (see also [Smi]).
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We begin our investigation of the continuity properties of hk on expansive com-
ponents of k-frames. From now on in this section we will assume that α is expansive
with expansive constant δ.

Definition 6.7. Let E and F be compact subsets of Rd. Say that E shades F if,
for every t > 0, there exists a T > 0 such that (sE)T codes (sF )t for every s > 0.

In Milnor’s terminology, E shades F if F is contained in the “umbra” of E with
respect to some causal cone [Mi, Lemma 4]. In Example 2.8, the base segment
E = [0, e1] shades the whole simplex F = ∆, since the coordinates in sE of a
point, plus a bounded amount of additional information to account for end effects,
determine those in sF .

Proposition 6.8. Suppose that E and F are compact subsets of Rd, and that E
shades F . Then ηk(E ∪ F ) = ηk(E), and in particular ηk(F ) ≤ ηk(E).

Proof. Since ηk is monotone, ηk(E) ≤ ηk(E ∪ F ).
To prove the reverse inequality, fix ε > 0 and t > 0. Since α is assumed expansive,

there is a t1 > t such that if ρ
B(t1)
α (x, y) < δ then ρ

B(t)
α (x, y) < ε. By the definition

of shading, there is a T > t1 such that (sE)T codes (sF )t1 for all s > 0. Hence if

ρ
(sE)T

α (x, y) < δ, then ρ
(sF )t1
α (x, y) < δ, so that ρ

(sF )t

α (x, y) < ε. If follows that

Nα
(
(sE)T , δ

)
≥ Nα

(
(s(E ∪ F ))t, ε

)
,

and so ηk(E) ≥ ηk(E ∪ F ). The last statement now follows using monotonicity of
ηk.

Using shading, we can now extend some basic inequalities and arguments due
to Milnor for the case k = d − 1 and Zd-actions generated by cellular automata.
Recall that if Φ = (v1, . . . ,vk) ∈ Fk, we define hk(Φ) = ηk(QΦ). We also define
||Φ|| = maxj ||vj ||.

Theorem 6.9. Let C be an expansive component of k-frames for a Zd-action α.

(1) If (v1, . . . ,vj + w, . . . ,vk) ∈ C, then

hk(v1, . . . ,vj + w, . . . ,vk) ≤ hk(v1, . . . ,vj , . . . ,vk) + hk(v1, . . . ,w, . . . ,vk).

(2) If (v1, . . . ,vj , . . . ,vk) ∈ C, then

hk(v1, . . . ,vj + w, . . . ,vk) ≤ hk(v1, . . . ,vj , . . . ,vk) + 2hk(v1, . . . ,w, . . . ,vk).

(3) If the linear span of v1, . . . , vk, w contains an expansive k-plane, then

hk(v1, . . . ,vj + w, . . . ,vk) ≤ 2hk(v1, . . . ,vj , . . . ,vk) + 2hk(v1, . . . ,w, . . . ,vk).

(4) The restriction of hk to C is Lipschitz. If k = 1 or k = d − 1, then the
restriction of hk to the closure of C is Lipschitz. In both cases, a Lipschitz
constant for hk at a frame Φ can be chosen to be a function of ||Φ|| only.

Proof. When proving (1)–(3) we may assume that j = 1. They are proved by
finding appropriate shading relations on sets. First suppose that k = 1, so that
(1) becomes h1(v + w) ≤ h1(v) + h1(w) provided that v + w ∈ C. We claim that
[0,v] ∪ [v,v + w] shades [0,v + w] (see Figure 8(a)). Let L be the line through
v + w, and suppose r > 0. By Lemma 3.2, there are positive t and r0 such that
Lt(r0) codes Lt+r(0). Let T =

√
2 max{t, r0, r} and E denote the triangle with

vertices 0, v, and v + w. For any s > 0, we can inductively work from the vertex
sv of sE to show that ([s0, sv]∪ [sv, sv+sw])T successively codes larger and larger
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Figure 8. Shading relations for entropy inequalities.

parts of (sE)r , stopping only when all of (sE)r is coded. This proves our shading
claim. Then by Proposition 6.8 and Theorem 6.2(2),(3),

h1(v + w) = η1([0,v + w]) ≤ η1([0,v] ∪ [v,v + w])

≤ η1([0,v]) + η1([0,w]) = h1(v) + h1(w).

We will now prove (1) when k > 1 (and j = 1). Let Ψ = (v2, . . . ,vk) and QΨ

denote [0,v2]⊕ · · · ⊕ [0,vk] as usual. Then (1) becomes

ηk(Qv+w ⊕QΨ) ≤ ηk(Qv ⊕QΨ) + ηk(Qw ⊕QΨ)(6–3)

provided that (v+w,Ψ) ∈ C. To prove (6–3), consider the direct sum of Figure 8(a)
with QΨ, and let E denote the triangle with vertices 0, v, and v + w. The same
inductive argument as before shows that Qv+w ⊕QΨ is shaded by

(Qv ⊕QΨ) ∪ (v +Qw ⊕QΨ) ∪ (E ⊕ ∂QΨ).

To handle the boundary term E ⊕ ∂QΨ, replace Ψ by sΨ for large s > 0. Since ηk
is proportional to Lebesgue measure on sets in a (k− 1)-plane having measure zero
boundary, it follows that

sk−1ηk(Qv+w ⊕QΨ) ≤ sk−1ηk(Qv⊕QΨ) + sk−1ηk(Qw ⊕QΨ) + sk−2ηk(E ⊕ ∂QΨ).

Dividing by sk−1 and letting s→∞ proves (6–3).
The proofs of (2) and (3) are similar, using the shading relations depicted in

Figure 8(b),(c).
To prove (4), first observe that by Theorem 6.3(2), γ = sup{hk(V ) : V ∈ Gk} <

∞. Hence if Ω = (w1, . . .wk) is a k-frame spanning a k-plane W , then

hk(Ω) ≤ γ λW (QΩ) ≤ γ ||w1|| . . . ||wk||.
Throughout the rest of this proof we may assume that there is an R > 0

such that all frames considered have entries with norm ≤ R. Suppose that Φ =
(v1, . . . ,vj . . . ,vk) ∈ C, and let Ψ = (v1, . . . ,vj + w, . . . ,vk). Then by part (1),

hk(Φ) ≤ hk(Ψ) + hk(v1, . . . ,−w, . . . ,vk) ≤ hk(Ψ) + γ Rk−1||w||,
(6–4)

while by part (2)

hk(Φ) ≥ hk(Ψ)− 2hk(v1, . . . ,w, . . . ,vk) ≥ hk(Ψ)− 2γ Rk−1||w||.
(6–5)

We conclude that if Φ ∈ C, and Ψ differs from Φ in only one coordinate by a vector
w, then |hk(Φ)− hk(Ψ)| ≤ 2γRk−1||w||.

Thus if Φ ∈ C and ||Ψ − Φ|| is small enough, then by changing Φ into Ψ one
coordinate at a time we remain within C, and our arguments apply to show that

|hk(Ψ)− hk(Φ)| ≤ 2kγRk−1||Ψ− Φ||.
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This proves that hk is Lipschitz at Φ, and that the Lipschitz constant depends only
on ||Φ||.

Suppose next that k = 1, u ∈ ∂C, and v ∈ C is close to u. Then the estimates
(6–4) and (6–5) reduce to

|h1(u)− h1(v)| ≤ 2γ ||u− v||,
proving that h1 is Lipschitz on C.

Finally, suppose that k = d − 1. Let Ψ ∈ ∂C, and Φ ∈ C be close to Ψ.
Since the (d − 1)-planes spanned by Φ and Ψ must intersect in a subspace of
dimension at least d − 2, there are (d − 1)-frames Φ′ = (v1,v2, . . . ,vk) and Ψ′ =
(v1 + w,v2, . . . ,vk) such that Φ and Φ′ span the same (d − 1)-plane, Ψ and Ψ′

span the same (d − 1)-plane, hd−1(Φ′) = hd−1(Φ), hd−1(Ψ′) = hd−1(Ψ), and ||w||
is bounded by a constant times ||Φ − Ψ||. It then follows from (6–4) and (6–5)
that |hd−1(Φ) − hd−1(Ψ)| is bounded by a constant times ||Φ − Ψ||, and that this
constant depends only on ||Ψ||.

Remark 6.10. (a) We know of no example with an expansive k-plane for which hk
is not Lipschitz.

(b) Consider Example 6.6. Let v = (1, 1) and w = (1,−1). Then h1(v+w) > 0,
while h1(v) = h1(w) = 0. This shows that some assumption is needed for the
inequality in part (3).

Incidentally, this provides a simple example of a pair φ = αv, ψ = αw of com-
muting homeomorphisms for which h(φ◦ψ) > h(φ)+h(ψ), showing that topological
entropy is not in general subadditive. The first example of this phenomenon was
discovered by Goodwyn [Go] and is more complicated.

We next turn to measure-theoretic k-dimensional entropy. Let µ be an α-
invariant Borel probability measure on X . Let P = {P1, . . . , Pm} denote a finite,
measurable partition of X . Define

Hµ(P) =
m∑
j=1

−µ(Pj) logµ(Pj).

For a compact set E ⊂ Rd, put

Hµ(E,P) = Hµ

( ∨
n∈E∩Zd

α−nP
)
,

where
∨

denotes the common refinement of partitions.

Definition 6.11. Let µ be an α-invariant probability measure, and E ⊂ Rd be
compact. Let

ηµk (E,P) = sup
t>0

lim
s→∞

Hµ

(
(sE)t,P

)
sk

.

Define the k-dimensional measure-theoretic entropy of E (with respect to α and µ)
as

ηµk (E) = sup
P

ηµk (E,P),

where the supremum is over all finite measurable partitions P of X . Define the
k-dimensional measure-theoretic directional entropy of a k-frame Φ to be

hµk(Φ) = ηµk (QΦ).
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Remark 6.12. It is important to point out that the usual argument for the conti-
nuity of ηµk (E,P) as a function of P requires the growth condition

sup
t>0

lim
s→∞

|(sE)t ∩ Zd|
sk

<∞.

For example, let k < d, E be the d-dimensional unit cube, and P be a partition of
X with Hµ(P) < ε. Then clearly

Hµ((sE)t,P)

sk
≤ |(sE)t ∩ Zd|

sk
Hµ(P) ≤ ε sd−k,

but this tells us nothing about ηµk (E,P). Indeed, we cannot rule out examples where
ηµk (E,P) > ηk(E). We avoid these issues since our interest here is in ηµk (E,P) where
E is a k-dimensional polyhedral set. In the setting of [Mi] this issue does not arise
since there ηµk (E) is defined as ηµk (E,P0), where P0 is the time-zero partition of X .

The proof of Theorem 6.16 requires several prelinary results. The first of these
consists of measure-theoretic analogues of some earlier results for topological direc-
tional entropy.

Theorem 6.13. Let µ be an α-invariant measure. Then properties (1) to (4) in
Theorem 6.2 and properties (2) and (5) in Theorem 6.3 hold, with ηk replaced by
ηµk and hk replaced by hµk .

Proof. The proofs for the analogues of (1) to (4) in Theorem 6.2 are straightforward.
The proof of [Mi, Thm. 2] works for the analogues of (2) and (5). The only novelty
is the possibility hµk = ∞, which is an easy separate case. (Later we will see this
case actually does not arise, and the analogues of (3) and (4) in Theorem 6.3 do
hold.)

The compact sets we are interested in are described as follows.

Definition 6.14. A subset of Rd is called k-polyhedral if it is a finite union of
polyhedra each of which has dimension at most k.

Proposition 6.15. Let α be an expansive Zd-action on X. Suppose that D ⊂ Rd
is k-polyhedral and that {Pj} is an increasing sequence of measurable partitions
which converges to the Borel σ-algebra on X. Then

ηµk (D) = lim
j→∞

ηµk (D,Pj).

If t > 0 is such that {α−nP : n ∈ (RD)t ∩ Zd} generates the Borel σ-algebra
on X, then

ηµk (D) = lim
s→∞

Hµ

(
(sD)t,P

)
sk

.

Proof. Let L = limj η
µ
k (D,Pj). We first prove L = ηµk (D). Clearly L ≤ ηµk (D), so

without loss of generality we may assume L is finite.
Since D is k-polyhedral, for every t > 0 there is a constant ct such that∣∣(sD)t ∩ Zd

∣∣ ≤ ct sk for all s ≥ 1.
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Suppose ε > 0 and Q is a finite measurable partition. Because {Pj} generates
the Borel σ-algebra, we may pick j ≥ j0 such that ctHµ(Q|Pj) < ε. Observe that

Hµ

(
(sD)t,Q

)
≤ Hµ

(
(sD)t,Q∨ Pj

)
≤ Hµ

(
(sD)t,Pj

)
+
∣∣(sD)t ∩ Zd

∣∣Hµ(Q|Pj)
≤ Hµ

(
(sD)t,Pj

)
+ ct s

kHµ(Q|Pj).

Divide by sk, take the lim sup as s→∞, and take the sup over t > 0 to obtain

ηµk (D,Q) ≤ ηµk (D,Pj) + ε.

Now let ηµk (D,Pj) increase to L, let ε go to zero, and take the sup over Q to deduce
ηµk (D) ≤ L. This proves ηµk (D) = L.

The last claim is now routine.

A k-form on Rd is a k-multilinear skew-symmetric function from (Rd)k to R. Our
next goal is to show that on each expansive component hµk is given by a k-form.

Theorem 6.16. Let C be an expansive component of k-frames for α and µ be an
α-invariant measure. Then there is a k-form ω on Rd such that hµk and ω agree
on C.

The following measure version of Proposition 6.8 is at the heart of our results
on measure theoretic directional entropy.

Proposition 6.17. Let α be an expansive Zd-action. Suppose that E and F are
k-polyhedral sets in Rd and that E shades F . Then

ηµk (E ∪ F ) = ηµk (E).

Proof. It is easy to construct an increasing sequence {Pj} of partitions of X with
maxP∈Pj diam(P )→ 0 as j →∞ and with

µ
( ⋃
P∈Pj

∂P
)

= 0 for all j

(see [W, Thm. 8.3]). It follows that the Pj increase to the Borel σ-algebra.
Let us fix one such partition P = {P1, . . . , Pm} for which maxi diam(Pi) < δ,

the expansive constant for α. Given ξ > 0, let

P ′i = {x ∈ Pi : dist(x, ∂Pi) ≤ ξ},
P ′0 = X \

⋃m
i=1 P

′
i , and P ′ξ = {P ′0, P ′1, . . . , P ′m}. Then µ(P ′0) → 1 as ξ → 0, so that

Hµ(P ′ξ)→ 0 as ξ → 0. Fix ε > 0. Since F is k-polyhedral, for every t > 0 there is
a constant ct such that∣∣(sF )t ∩ Zd

∣∣ ≤ ct sk for all s ≥ 1.

Now suppose t > 0. Choose ξ > 0 small enough that Hµ(P ′ξ) < ctε. Since E shades
F and α is expansive, there is a T > t such that

ρ(sE)T

α (x, y) < δ implies that ρ(sF )t

α (x, y) < ξ.

It follows that( ∨
n∈(sE∪sF )t∩Zd

α−nP
)
≤
( ∨

n∈(sE)T∩Zd
α−nP

)
∨
( ∨

n∈(sF )t∩Zd
α−nP ′ξ

)
.
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Apply Hµ, divide by sk, take the lim sup as s → ∞, and take the sup over t > 0
to obtain

ηµk (E ∪ F,P) ≤ ηµk (E,P) + ε.

Letting ε→ 0 shows that

ηµk (E ∪ F,P) ≤ ηµk (E,P).

Replace P by Pj , let j →∞, and apply the previous remarks to show that

ηµk (E ∪ F ) = lim
j→∞

ηµk (E ∪ F,Pj) ≤ lim
j→∞

ηµk (E,Pj) = ηµk (E),

completing the proof.

Remark 6.18. Suppose that Φ = (v1, . . . ,vk) is an expansive k-frame for α in
which each vector is rational. Note that such a frame exists if α has any expansive
k-frames since the set of expansive k-frames is open. For an integer M > 0, observe
that Φ is expansive if and only if MΦ = (Mv1, . . . ,Mvk) is expansive. Hence we
may assume that Φ consists of integral vectors. Then define a Zk-action αΦ by

α
(n1,...,nk)
Φ = αn1v1+···+nkvk .

It is easy to check that hk(Φ) and hµk(Φ) coincide with the usual k-dimensional
topological and measure-theoretical entropies h(αΦ) and hµ(αΦ). In particular, the
variational principle for Zk-actions [Mis] shows that hk(Φ) = supµ h

µ
k(αΦ), where

the supremum is over all αΦ-invariant (but not necessarily α-invariant) probability
measures µ. The k-homogeneity of k-dimensional directional entropy shows that
this remains valid for rational expansive k-frames.

Theorem 6.19. Let α be a Zd-action having an expansive k-plane.

(1) If hµk is zero at one expansive k-frame, then it is zero at every k-frame.
(2) The numbers hµk(V ) are uniformly bounded as V ranges over all k-planes and

µ ranges over all α-invariant Borel probability measures.
(3) Suppose µ is an α-invariant Borel probability. Then the statements of Theo-

rem 6.9 are true with hk replaced by hµk .

Proof. Let Φ = (v1, . . . ,vk) be an expansive k-frame. Suppose W is a k-plane and
µ is an α-invariant probability measure. For some c > 0, the parallelepiped cQΦ

shades a ball in Rd of radius
√
k, and therefore shades a cube with edge lengths 1

in W . Thus
hµk(W ) ≤ ckhµk(Φ).

With hµk(Φ) = 0, this proves (1). If Φ is a k-frame of rational vectors, then
ckhµk(Φ) ≤ ckhk(Φ). This gives an upper bound independent of µ and proves
(2). The proof of (3) proceeds as in 6.9, with appeal to the the measure shading
inequality 6.17 and boundedness result (2) above.

We define ηµk (E|F ) to be ηµk (E ∪F )− ηµk (F ). The next proposition is essentially
copied from Milnor [Mi, Cor. 2].

Proposition 6.20. Let E and F be k-polyhedral sets in Rd. If E∩F is a polyhedral
subset of a k-plane, then

ηµk (E ∪ F ) ≤ ηµk (E) + ηµk (F )− ηµk (E ∩ F )

Similarly, if F0 ⊂ F is a polyhedral subset of a k-plane, then

ηµk (E|F ) ≤ ηµk (E|F0).(6–6)



EXPANSIVE SUBDYNAMICS 83

Proof. The inequality (6–6) can also be written as

ηµk (E ∪ F ) ≤ ηµk (F ) + ηµk (E ∪ F0)− ηµk (F0).

On account of the subadditivity of the measure-theoretic conditional entropy of
finite partitions, we have for all t > 0 and s > 0 that the corresponding inequality

Hµ((sE ∪ sF )t) ≤ Hµ((sF )t) +Hµ((sE ∪ sF0)t)−Hµ((sF0)t)

is indeed satisfied. Hence we can divide by sk, take lim s→∞, and then take the
supremum over t > 0. Since the last term has a negative sign, to complete the
argument we appeal to the analogue of (5) in 6.13 to replace the lim with lim .

Remark 6.21. Note that the “entropy-correlation” of E and F , defined by

ηµk (E) + ηµk (F )− ηµk (E ∪ F ) = ηµk (E)− ηµk (E|F ) ≥ 0,

is symmetric in E and F . Thus by (6–6), for k-polyhedral sets E and F the
entropy-correlation can only decrease if either is replaced by a subset which is a
polyhedral subset of a k-plane.

The next result shows that ηµk is “locally multi-additive” on an expansive com-
ponent. By a cone, we mean a convex set closed under multiplication by positive
scalars.

Lemma 6.22. Let µ be an α-invariant measure, and Φ be an expansive k-frame
for α. Then Φ has as a neighborhood in Fk an open cone N on which hµk is
multi-additive wherever defined. That is, if

(v1, . . . ,vj , . . . ,vk), (v1, . . . ,w, . . . ,vk), (v1, . . . ,vj + w, . . . ,vk) ∈ N
(6–7)

then

hµk(v1, . . . ,vj + w, . . . ,vk) = hµk(v1, . . . ,vj , . . . ,vk) + hµk(v1, . . . ,w, . . . ,vk).

(6–8)

Proof. For brevity we shorten hµk to h and ηµk to η. We first consider the case k = 1.
We can choose an open cone N containing Φ such that for any vectors (1-frames)

v and w in N , the set [0,v] ∪ [v,v + w] shades [0,v + w], and vice versa. (This
follows from Proposition 8.1.) Thus by the measurable shading result,

η([0,v+w]) = η([0,v]∪ [v,v+w]) ≤ η([0,v])+η([v,v+w]) = η([0,v])+η([0,w])

and by translation invariance of η it suffices to prove η([−v,0]∪ [0,w]) = η([−v,0])
+ η([0,w]). Now for some c > 0, [−cw,0] shades [−v,0], so that η([−cw,0]) =
η([−cw,0] ∪ [−v,0]). Since the entropy correlation of the sets [−cw,0] and [0,w]
is zero, so is the entropy correlation of the sets [−cw,0]∪ [−v,0] and [0,w]. By the
previous proposition, the entropy correlation cannot increase on replacing [−cw,0]∪
[−v,0] with [−v,0]. Thus it remains zero, i.e. η([−v,0] ∪ [0,w]) = η([−v,0]) +
η([0,w]).

The extension of the proof to k > 1 is obtained by arguments similar to those of
Theorem 6.9.

Our final preparation shows that a “local form” is the restriction of a k-form.
We let GL+(k,R) denote the group of k× k matrices with positive determinant. A
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matrix A = [aij ] ∈ GL+(k,R) acts on (Rd)k by

A(v1, . . . ,vk) =
( k∑
j=1

a1jvj , . . . ,
k∑
j=1

akjvj
)
.

Proposition 6.23. Suppose that C is a connected open subset of Fk that is invari-
ant under GL+(k,R), and that f : C → R satisfies

(1) f(AΦ) = (detA)f(Φ) for all A ∈ GL+(k,R) and all Φ ∈ C,
(2) for every Φ ∈ C there exists a neighborhood N of Φ in C on which f is

multi-additive wherever defined, in the sense of Lemma 6.22.

Then there is a unique k-form ω on (Rd)k whose restriction to C is f .

Proof. For Φ = (v1, . . . ,vk) ∈ C, define ωΦ : (Rd)k → R by

ωΦ(x1, . . . ,xk) = lim
t→∞

∑
Λ⊂{1,...,k}

(−1)k−|Λ|f(tv1 + χΛ(1)x1, . . . , tvk + χΛ(k)xk),

where χΛ is the indicator function of Λ. The sum in the limit is the same for all
large t, so the limit is well-defined. Our assumptions on f show that ωΦ is locally
constant in Φ, hence all the ωΦ are equal, say to ω, since C is open and connected.
It is easy to verify from its definition that ω is multilinear and restricts to f on C.
Skew-symmetry follows from (1); e.g., when k = 2, use A =

[
1 1
0 1

]
to obtain that

ω(x,x) = 2ω(x,x).

Proof of Theorem 6.16. Let C be an expansive component of k-frames. By Theorem
6.13, ηµk is proportional to k-dimensional Lebesgue measure on subsets of a given
k-plane having boundary of measure zero. It follows that for all A ∈ GL+(k,R),

hµk(AΦ) = (detA)hµk(Φ).

Lemma 6.22 shows that hµk is locally multi-additive. Also, C is GL+(k,R)-invariant.
For if Φ ∈ C and A ∈ GL+(k,R), then there is a path π : [0, 1] → GL+(k,R) with
π(0) = I, π(1) = A, and detπ(t) > 0 for 0 ≤ t ≤ 1. Then π(t)Φ is expansive for
all t (they span the same expansive k-plane), so that π(1)Φ = AΦ ∈ C. We can
therefore apply Proposition 6.23 to complete the proof.

Let C be an expansive component of k-frames for α. Our next goal is to find a
criterion for the existence of an α-invariant measure that is simultaneously maximal
for all frames in C. For this we need the following variational result.

Proposition 6.24. Let Φ be an expansive k-frame for a Zd-action α. Then there
is an α-invariant measure µ such that hµk(Φ) = hk(Φ).

Proof. First suppose that Φ = (v1, . . . ,vk) is rational, i.e., each vj has rational
coordinates. For purposes of entropy, we can assume that the vj are integral. Let
αΦ denote the Zk-action generated by the αvj . Let M be the set of αΦ-invariant
probability measures µ for which hµk(Φ) = hk(Φ). Because αΦ is expansive, the
map µ 7→ hµk(Φ) is upper semicontinuous. It follows from the variational principle
for commuting maps [Mis] that M is compact and nonempty. By linearity of
µ 7→ hµk(Φ), we see that M is also convex. Furthermore, M is clearly α-invariant.
By the Kakutani Fixed Point Theorem, there is a µ ∈M fixed by α, and this µ is
the required measure.
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Now suppose that Φ is not rational. Let {Φn} be a sequence of rational expan-
sive k-frames converging to Φ. By the previous paragraph, there are α-invariant
measures µn such that hµnk (Φn) = hk(Φn) for n ≥ 1. By passing to a subsequence
if necessary, we may assume that {µn} converges weakly to a measure µ, which
is therefore also α-invariant. Since α is expansive, it has a topological generator.
Then a slight modification of the standard argument for upper semicontinuity shows
that

lim
n→∞

hµnk (Φn) ≤ hµk(Φ).

By continuity of hk on C,
hµnk (Φn) = hk(Φn)→ hk(Φ),

so that hk(Φ) ≤ hµk(Φ). The reverse inequality is always true (Theorem 6.13).

The Z2-action α from Example 6.6 shows that this result can fail without the
expansiveness assumption. For there h1(e1) > 0, while the only α-invariant measure
µ is the point mass at ∞, and for this measure hµ1 (e1) = 0. In [Mi, Example 6.3]
Milnor gives an example of a cellular automaton Z2-action for which the conclusion
of Proposition 6.24 fails.

Theorem 6.25. Let C be an expansive component of k-frames for α. Then there
is an α-invariant measure µ such that hµk(Φ) = hk(Φ) for all Φ ∈ C if and only if
hk is multilinear on C.

Proof. The “if” part follows from Theorem 6.16. For the “only if” part, suppose
that hk is multilinear on C. Since ηk is a multiple of k-dimensional Lebesgue
measure for subsets of a fixed k-plane with measure zero boundary, it follows that
hk is always skew-symmetric. Hence hk agrees with a k-form ω on C. Fix Φ0 ∈ C.
By Proposition 6.24, there is an α-invariant measure µ such that hµk(Φ0) = hk(Φ0).
By Theorem 6.16, hµk agrees with a k-form ωµ on C. Now ωµ(Ψ) ≤ ω(Ψ) for all
Ψ ∈ C by Theorem 6.13, and ωµ(Φ0) = ω(Φ0). One can verify that if two k-forms
on Rd agree at a point in an open set U , and one dominates the other in U , then
the forms must be equal. This establishes the result.

Here is another consequence of the variational result in Proposition 6.24.

Corollary 6.26. Let C be an expansive component of k-frames for α. Suppose that
hk is not identically zero. If Φ ∈ C and A ∈ GL(k,R) with detA < 0, then AΦ /∈ C.

Proof. By Theorem 6.3(3), hk cannot vanish on C. Let Φ ∈ C and A ∈ GL(k,R)
with detA < 0. Proposition 6.24 shows that there is an α-invariant measure µ such
that hµk(Φ) = hk(Φ) > 0. If AΦ were also in C, then since hµk agrees with a k-form
on C we would have that

hµk(AΦ) = (detA)hµk(Φ) < 0,

contradicting nonnegativity of hµk .

As pointed out previously, hk need not be continuous on Fk. We do not know
whether existence of an expansive k-plane forces continuity of hk, or of hµk for
an α-invariant measure µ. The results of Sinai [Si1] and Park [P] show that for
Z2-actions generated by cellular automata, hµ1 is upper semicontinuous, but this
appears to be the most that is known.
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Figure 9. Coding most of a triangle.

We complete this section by determining the possible behaviors of h1 on an
expansive component C of 1-frames for a Z2-action. Note that C is open by The-
orem 3.7, and convex by Theorem 6.9, so that C is an open cone in R2. Call C a
proper cone if C is not an open half-plane. We first show that when C is a half-plane
then h1 is linear on C.

Proposition 6.27. Suppose that α is a Z2-action having a single nonexpansive
direction L. Then there is a linear functional f on R2 whose kernel contains L,
and for which h1(v) = |f(v)| for all v ∈ R2.

Proof. Let C be one of the two half-planes in R2 with boundary L, so that C is an
expansive component of 1-frames. Let µ be any α-invariant measure. By Theorem
6.16, there is a linear functional fµ such that hµ1 (v) = fµ(v) for every v ∈ C. Since
h1 ≥ 0 on C, it follows that L ⊂ ker fµ. Consequently, f = supµ fµ, where the
supremum is taken over all α-invariant measures µ, is a linear functional whose
kernel contains L. By Proposition 6.24, h1(v) = f(v) for all v ∈ C. Clearly
h1(−v) = h1(v) = |f(−v)| for all v ∈ C. The inequality (3) in Theorem 6.9 now
shows that h1(u) = 0 for all u ∈ L, completing the proof.

If f is a linear functional on R2 whose kernel is a rational line L it is easy
to construct using a map of parameters (Example 2.12) a Z2-action α for which
h1(v) = |f(v)|, and whose expansive components are the two open half-planes
bounded by L. Thus Proposition 6.27 completely characterizes the possible be-
havior of h1 on an expansive component that is a half-plane whose boundary is
rational. We do not know whether an expansive half-plane can have an irrational
boundary (see Problem 9.2).

We now turn to the case of proper cones. For a vector v ∈ R2 we let Qv denote
[0,v], the “parallelepiped” spanned by the 1-frame

v.

Lemma 6.28. Let C be an expansive component of 1-frames for a Z2-action. If
v ∈ C and w ∈ C ∩ (v − C), then Qv shades Qw.

Proof. For x,y ∈ R2 let ∆(x,y) denote the triangle (including interior) with ver-
tices 0, x, and y. Suppose that v ∈ C and w ∈ C ∩ (v − C). We may assume that
w is not a multiple of v. Since C is open, there is a u ∈ C ∩ (v − C) such that the
interior of ∆(u,v) contains w.

By Proposition 3.8, for every x ∈ C there is a τ > 0 such that [0, τx] shades every
unit vector in some open cone containing x. Since [u,v] is compact, we can choose
a τ such that [0, τv] shades [0,u]. Because −v is in the expansive component −C,
and u− v ∈ −C, we can also require that [0,−τv] shades [0,u− v].
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Consider t � τ , and the triangle ∆(tu, tv). The side [0, tv] shades the convex
hull of {0, tv,u, tv + (u − v)} (see Figure 9). The segment [u, tv + (u − v)] then
shades the convex hull of {u, tv+(u−v), 2u, tv+2(u−v)}. Continuing this process,
and using transitivity of the shading relation, we see that the side [0, tv] = Qtv
shades all of ∆(tu, tv) except for a τ -neighborhood of tu. For large enough t the
segment Qtw is shaded. Hence Qv shades Qw.

The next proposition extends [Mi, Lem. 8].

Proposition 6.29. Let C be an expansive component of 1-frames for a Z2-action
α, and assume that h1 is not identically zero. If v ∈ C and w ∈ C, then

0 < h1(v) ≤ h1(v + w),

and the second inequality is strict if w ∈ C.

Proof. We may assume that w 6= 0. Theorem 6.3(3) shows that h1 does not vanish
on any expansive 1-frame, establishing the first inequality. If w ∈ C, then the open
set C ∩ (v +w−C) contains (1 + ε)v for some ε > 0. By Lemma 6.28, Qv+w shades
Q(1+ε)v. Hence

h1(v + w) ≥ h1((1 + ε)v) = (1 + ε)h1(v) > h1(v).

Finally, if w ∈ C, choose wn ∈ C converging to w. By Theorem 6.9(4) and the
above,

h1(v + w) = lim
n→∞

h1(v + wn) ≥ h1(v).(6–9)

It is convenient to name the inequality behavior from the previous proposition.

Definition 6.30. Let C be an open cone in R2. A function φ : C → R is strictly
increasing if whenever v,w ∈ C, then φ(v) < φ(v + w). The function φ is homoge-
neous if φ(tv) = tφ(v) for all v ∈ C and all t > 0.

The following elementary proposition, whose proof is straightforward, describes
the class of functions we will use.

Proposition 6.31. Let C be a proper open cone in R2, and φ : C → R be strictly
positive, convex, and homogeneous. Let D = {u ∈ C : φ(u) < 1}. Then φ is strictly
increasing if and only if there are linearly independent vectors v,w ∈ ∂C such that
either

(1) D = {sv + tw : s > 0 and 0 < t < 1}, or
(2) D is the interior of a compact convex subset of [0,v] ⊕ [0w] which contains

0, v, and w.

The point of this proposition is that when φ is strictly increasing, the set D looks
like Figure 10(a), not like (b).

We next introduce some notation needed for the next lemma. Let x = (xn) ∈ RZ.
For i ∈ Z and n ≥ 1, define

Si,n(x) = xi + xi+1 + · · ·+ xi+n−1,

osci,n(x) = max
1≤k≤n

Si,k(x)− min
1≤k≤n

Si,k(x),

osc(x) = sup
i,n

osci,n(x).

We call osc(x) the oscillation of x.
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Figure 10. Unit balls for (a) strictly increasing and (b) not
strictly increasing functions.

Lemma 6.32. Let a and b be real numbers such that a/b is negative and irrational.
Let X be the subshift of {a, b}Z consisting of all x with osc(x) ≤ |a|+ |b|. Then the
shift on X has entropy zero.

Proof. It is easy to check that X is closed, nonempty, and invariant under the
shift σ. By normalizing, we may assume that b is irrational, that b > 0, and that
|a| + |b| = b − a = 1. Hence the sequence {(nb) : n ≥ 1} of fractional parts
is uniformly distributed in [0, 1). Fix ε > 0. We can then find N > 0 so that
{(kb) : 1 ≤ k ≤ N} is ε-dense in [0, 1). Abbreviate S1,k to Sk. For x ∈ X put

m = m(x) = min
1≤k≤N

Sk(x) and M = M(x) = max
1≤k≤N

Sk(x).

Since (kb) ≡ Sk(x) (mod 1), the choice of N shows that M −m ≥ 1 − 2ε. Since
osc(x) ≤ 1, it follows that

M − 1 ≤ Sn+1(x) ≤ m+ 1 for n ≥ N.
If xn+1 = b > 0, then Sn+1(x) = Sn(x) + b ≤ m+ 1, so that

Sn(x) ≤ m+ 1− b.
Similarly, if xn+1 = a = b− 1, then

Sn(x) ≥M − b.
If both xn+1 = a and xn+1 = b are possible, then Sn(x) must lie in the interval
[M − b,m+ 1− b], which has length m+ 1−M ≤ 2ε. It follows that once x1 . . . xN
is fixed, each successive xn+1 is determined by x1 . . . xn except for a set of n’s with
frequency at most 2ε. Since there are only finitely many N -blocks, we can conclude
that

lim sup
n→∞

1

n
log |{x1 . . . xn : x ∈ X}| ≤ (2ε) log 2.

Since ε was arbitrary, it follows that h(σ) = 0.

We remark that the shift space X in this lemma is actually the orbit closure of
a Sturmian sequence, giving an alternative proof for zero entropy.

We now come to the characterization of h1 on proper expansive cones.

Theorem 6.33. Let C be a proper open cone in R2, and φ : C → R. The following
conditions are equivalent.

(1) φ is strictly positive, strictly increasing, convex, and homogeneous.
(2) There exists a Z2-action on a compact metric space for which h1 is not iden-

tically zero, and with C an expansive component of 1-frames such that φ and
h1 agree on C.
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Proof. (2) ⇒ (1): Since h1 is not identically zero, Proposition 6.29 shows that h1

is strictly positive and strictly increasing. Theorem 6.9(1) shows that h1 is convex,
and Theorem 6.3(2) shows that h1 is homogeneous.

(1) ⇒ (2): Let D = {u ∈ C : φ(u) < 1}, and first suppose that D satisfies
condition (2) in Proposition 6.31. Let B = ∂D \ ([0,v) ∪ [0,w)). By a map of
parameters (Example 2.12), we may assume that v is in the second quadrant and
w is in the fourth.

Since D is convex, we can find a family {Lt : 0 ≤ t ≤ 1} of support lines for B
given by the equations atx+ bty = 1 such that

(i) L0 contains v and is parallel to w,
(ii) L1 contains w and is parallel to v,
(iii) at is an increasing continuous nonnegative function, and
(iv) bt is a decreasing continuous nonnegative function.

Then D is the intersection of the half-planes defined by Rv, Rw, and the Lt.
For our construction we use the family of β-shifts [IT]. For each real number

β > 1 there is a subshift Yβ with alphabet {0, 1, . . . , [β]} such that the entropy of
the shift on Yβ is log β, and with Yβ1 ⊂ Yβ2 whenever β1 ≤ β2. The β-shifts are
usually defined as one-sided shifts, but we use their two-sided natural extensions.

Choose an interval I = [a, b] that does not contain the slope of any vector
in C. For each u ∈ I we construct an action α′u on a space X ′u by modifying
the construction in Proposition 4.1 as follows. The isolated nonexpansive line K
of that construction is Rv. The only other nonexpansive line is the line L of
slope u. Choose the vectors p, q used to define translation sequences such that
the ratio ||πK⊥(p)||/||πK⊥(q)|| is irrational. In condition (ii) of the definition of
translation sequence, replace the right side with ||πK⊥(p)||+ ||πK⊥(q)||. It follows
from Lemma 6.32 that the subshift of translation sequences has zero entropy. Let
t(u) = (u− a)/(b− a), so that t(u) runs through [0, 1] as u runs through I. Given

u, choose β so that logβ = at(u). Now define X ′u ⊂ {∗, 0, 1, . . . , [β]}Z2

as follows.
Given an L-strip S, a translation sequence T = {kj}, and a point y ∈ Yβ , define

xS,T ,y(m) =

ym1 if m ∈
⋃
j∈Z

(S + kj),

∗ otherwise.

LetX ′u denote the union of all such points xS,T ,y. Because the translation sequences
are a subshift, it is easy to verify that X ′u is closed and Z2-invariant. Let α′u denote
the restriction of the Z2-shift to X ′u.

By Schwartzman’s Theorem 3.9, the subshift of translation sequences must con-
tain distinct points with the same past. One can then argue as in Proposition 4.1
that N1(α′u) = {K,L}. Because the shift on translation sequences has zero entropy,
the 1-dimensional directional entropy function of α′u is given by (ξ, η) 7→ ξat(u).

Now define X ′ =
⋃
u∈I X

′
u and α′ to be the restriction of the Z2-shift to X ′.

Then X ′ is shift-invariant, and is closed since the functions at and bt are monotone
and the β-shifts are increasing with β. The nonexpansive lines for α′ are Rv and
the lines whose slopes are in I.

Similarly we can define an action α′′ on X ′′ as a union of actions α′′u onX ′′u , where
the nonexpansive lines for α′′ are Rw and the lines whose slopes are in I, and with
the directional entropy function of α′′u given by (ξ, η) 7→ ηbt(u). Let Xu = X ′u×X ′′u ,
and α = α′ × α′′ on

⋃
u∈I Xu. Recall that if T is a homeomorphism of a compact



90 MIKE BOYLE AND DOUGLAS LIND

metric space X , and X =
⋃
u∈I Xu is the union of compact T -invariant sets Xu,

then h(T ) = suph(T |Xu) (see [DGS, p. 139]). It follows that for rational vectors
(ξ, η) ∈ C, the directional entropy function h1 for α is

h1(ξ, η) = sup
0≤t≤1

{atξ + btη}(6–10)

Because h1 is continuous in C and the functions at, bt are continuous, (6–10) holds
for all (ξ, η) ∈ C. Thus D = {w ∈ C : h1(w) < 1}, proving that φ and h1 agree on
C. Also, Rv and Rw are nonexpansive, so that C is an expansive component for α.
This completes the case when D satisfies condition (2) of Proposition 6.31.

If D satisfies the alternative condition (1), we can use actions α′u as above, with
nonexpansive lines Rv and Rw, filling in Rv-strips with symbols from a β-shift of
entropy ||u||, completing this case, and the proof.

Remark 6.34. Given a proper cone C, it is easy to modify the construction of the
last paragraph in the previous proof to obtain an action α for which h1 ≡ 0 and
having C as an expansive component. We have thus completely characterized the
possible behaviors of h1 on expansive components if Z2-actions that are proper
cones.

Remark 6.35. For a Zd-action α preserving a measure µ, Fried [Fr2] introduced
the quantity hµ∗ (α), defined as the reciprocal of the normalized volume of the unit
ball for hµ1 (α) in Rd. His motivation was to find a quantity reflecting entropy that
does not always vanish for smooth actions. The quantity hµ∗ (α) is an “integrated
version” of the 1-dimensional measure-theoretic entropy function hµ1 .

7. Algebraic examples

Examples 2.8 and 2.9 are compact groups under coordinate-wise addition, and
the shift actions are continuous group automorphisms. They are both cases of a
rich class of algebraic examples constructed using commutative algebra, introduced
by Kitchens and Schmidt [KS1] (see [S2] for a comprehensive account of this circle
of ideas). In this section we will sketch this construction, determine completely
the expansive subdynamics in certain cases, and establish a lower bound for the
dimension of an expansive subspace. This bound involves the Krull dimension of
a quotient ring, and estimating it from the number of generators in an associated
ideal uses Krull’s dimension theorem, called by Matsumura the most important
result in the theory of commutative rings [Mt, p. xi].

We begin by describing the algebraic set-up. Let Rd = Z[u±1
1 , . . . , u±1

d ] be the
ring of Laurent polynomials in d commuting variables. Let M be an arbitrary
countableRd-module. ConsideringM as an abelian group, we can form the compact
abelian dual group, which we denote by XM . Countability of M is equivalent to
metrizability of XM . Multiplication by each of the coordinate variables ui is a
group automorphism of M since u−1

i ∈ Rd, and these automorphisms commute.
The corresponding dual automorphisms on XM then provide a Zd-action, denoted
by αM . In this way every countable Rd-module M gives rise to a Zd-action αM on
a compact metric group XM .

This process can be reversed. Suppose that α is a Zd-action on a compact abelian
metrizable group X . Let M be the countable dual group. Then M becomes an
Rd-module by defining multiplication by ui to be the automorphism of M dual
to the ith generating automorphism in α. Thus the study of Zd-actions by group
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automorphisms can be transformed via duality to the study of Rd-modules, and
the interplay of dynamics and commutative algebra gives this point of view its
particular interest. This idea has been explored in a number of papers, e.g. [LSW],
[S1], and [SW]. From this work it has emerged that the prime ideals associated to
M determine much of the dynamics of the Zd-action αM , just as the eigenvalues of
a single toral automorphism determine much of its dynamics.

Let us see how Examples 2.8, 2.9, and 2.10 fit into this set-up. First consider Rd
as an Rd-module over itself. For n = (n1, . . . , nd) ∈ Zd put un = un1

1 un2
2 . . . undd .

Then as an abelian group, Rd is the direct sum of Zun over n ∈ Zd, so its dual group

is the product group TZd . Now let d = 2, and consider the ideal a = 〈2, 1+u1 +u2〉
in Rd. The quotient ring M = Rd/a is an Rd-module, whose dual is the subgroup

of TZ2

annihilated by a. Since 2 ∈ a, each coordinate in a point in XM is annihilated

by multiplication by 2, so that XM ⊂ (Z/2Z)Z
2

. The requirement that each point
is annihilated by 1+u1 +u2 is exactly condition (2–2). Thus αM = αR2/〈2,1+u1+u2〉
is the action discussed in Example 2.8. Similarly, Example 2.9 corresponds to the
module M = R3/〈2, 1 + u1 + u2 + u3〉. It is also easy to verify that Example 2.10
corresponds to

M = R2/〈χA(u1), χB(u2)〉,
where χA and χB are the characteristic polynomials of the matrices A and B in
the example, and Example 2.11 to M = R2/〈u1 − 2, u2 − 3〉.

Mañé [Man1] proved that a compact metric domain of an expansive homeomor-
phism must be finite dimensional. A counterexample to the natural Zd analogue
of this theorem (pointed out to us by Tom Ward) can be described using another
ideal.

Example 7.1. Let d = 2, a = 〈u2
2 − u2 − 1〉, and M = R2/a. Then XM

∼= (T2)Z
2

,

α
(0,1)
M is the shift on XM , and α

(0,1)
M = . . . A×A×A× . . . , where A : T2 → T2 has

matrix

A =

[
0 1
1 1

]
.

It is easy to verify directly that αM is an expansive Z2-action, but the space XM

on which it acts has infinite topological dimension.

To generalize Examples 2.8 and 2.9, let p be a fixed rational prime and f ∈ Rd.
Put M = Rd/〈p, f〉. Our goal is to analyze the expansive subdynamics of αM .

First observe that if f ∈ pRd, then M = Rd/〈p〉. This case was treated in
Example 2.7, where we showed that αM is expansive, but Ek(αM ) = ∅ for 1 ≤ k ≤
d−1. Also, if f ∈ cun +pRd, where c 6≡ 0 (mod p), then 〈p, f〉 = Rd, so in this case
XM is a single point. We will therefore assume from now on that the reduction of
f modulo p contains at least two nonzero terms.

For n ∈ Zd, let cn denote the coefficient of un in f . Define the mod p Newton
polytope ∆(p, f) of f to be the convex hull in Rd of those n ∈ Zd for which cn 6≡ 0
(mod p). This polytope has more than one point by our assumption on f . We will
call ∆(p, f) nondegenerate if it is not contained in a translate of a (d− 1)-plane.

Recall from Remark 3.11 that G̃d−1 denotes the compact space of all oriented

(d − 1)-planes. Then Ṽ ∈ G̃d−1 is determined by its underlying (d − 1)-plane V
together with an outward unit normal vector v. Let HṼ denote the half-space
spanned by V and [0,∞)v.
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A support plane for ∆ = ∆(p, f) is a translate τ(V ) of a (d−1)-plane containing
at least one point of ∆, and with all of ∆ lying to one side of τ(V ). An oriented

support plane for ∆ is a translate τ(Ṽ ) of an oriented (d − 1)-plane Ṽ such that

τ(V ) is a support plane for ∆ and with ∆ contained in τ(HṼ ). For each Ṽ ∈ G̃d−1,

there is a unique translate τ(Ṽ ) that is an oriented support plane for ∆. We let

the bijection τ give the space of oriented support planes the topology of G̃d−1.
The polytope ∆ has a dual polytope ∆∗. A concrete realization of ∆∗ using

polar sets is described in [G, §3.4]. This realization shows that the space of oriented
support planes of ∆ is homeomorphic to the (d− 1)-skeleton of ∆∗.

Let Ṽ ∈ G̃d−1 and τ(Ṽ ) be the corresponding oriented support plane for ∆. We

say that ∆ is Ṽ -exposed if τ(V ) contains exactly one point of ∆, where V is the

underlying plane of Ṽ . In Example 2.8, p = 2, f(u1, u2) = 1 + u1 + u2, ∆ is the

convex hull of (0, 0), (1, 0), and (0, 1), and ∆ is Ṽ -exposed for all but three oriented

lines Ṽ , one for each side of the triangle ∆. In general ∆ is not Ṽ -exposed exactly

when the boundary of τ(Ṽ ) contains a 1-dimensional edge of ∆.

Recall from Remark 3.11 that Ṽ ∈ G̃d−1 is called a causal plane for α if HṼ is
an expansive set for α.

Theorem 7.2. Let p be a rational prime, f be a polynomial in Rd whose reduction
mod p has at least two terms, and ∆ = ∆(p, f) be the mod p Newton polytope of f .

Then Ṽ ∈ G̃d−1 is a causal plane for α = αRd/〈p,f〉 if and only if ∆ is Ṽ -exposed.

If ∆ is nondegenerate, then the space of non-causal planes in G̃d−1 is homeo-
morphic to the (d− 2)-skeleton of the dual polytope ∆∗.

Proof. Let E = {n ∈ Zd : cn 6≡ 0 (mod p)}. Then X = XRd/〈p,f〉 is the set of those

x ∈ (Z/pZ)Z
d

for which ∑
n∈E

cnx(n + k) ≡ 0 (mod p)

for all k ∈ Zd. By definition, ∆ is the convex hull of E, and it contains more than
one point by our assumption on f .

Suppose that Ṽ ∈ G̃d−1, and that ∆ is not Ṽ -exposed. Then τ(Ṽ ) contains at
least two points of E. As in Example 2.8, we can inductively construct a nonzero

point x in X all of whose coordinates in τ(Ṽ ) are 0. This shows that Ṽ is not a
causal plane for α.

Conversely, suppose that Ṽ ∈ G̃d−1 and ∆ is Ṽ -exposed. Let w be the unit

normal to V which does not lie in Ṽ . Choose ε > 0 such that (−ε)w + τ(Ṽ )
contains all points of Zd ∩∆ except the unique point m of ∆ on the boundary of

τ(Ṽ ). Let Ṽt denote Ṽ +tw and suppose k ∈ (Ṽ t+ε\ Ṽ t)∩Zd. Since cm is invertible
(mod p), the condition ∑

n∈E
cnx(n + k−m) ≡ 0 (mod p)

shows we can compute x(k) from the value of the x(n) with n ∈ Vt. This completes

the proof that Ṽ is a causal plane.
Finally, suppose that ∆ is nondegenerate. It is straightforward to use the polar

set realization of ∆∗ given in [G, §3.4] to show that the set of oriented support
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planes of ∆ that contain an edge of ∆ is homeomorphic to the (d − 2)-skeleton
of ∆∗.

For V ∈ Gd−1, we say that ∆ is V -exposed if each support plane parallel to V

contains exactly one point of ∆. Recall that pd−1 : G̃d−1 → Gd−1 is the covering
map that forgets orientation.

Theorem 7.3. Let p be a rational prime, f be a polynomial in Rd whose reduction
mod p has at least two terms, and ∆ = ∆(p, f) be the mod p Newton polytope of f .
Then V ∈ Gd−1 is expansive for α = αRd/〈p,f〉 if and only if ∆ is V -exposed. All

subspaces of Rd with dimension ≤ d− 2 are nonexpansive for α.
If ∆ is nondegenerate, then Nd−1(α) is the image under the covering map pd−1

of a set homeomorphic to the (d− 2)-skeleton of the dual polytope ∆∗.

Proof. Recall from Remark 3.11 that V ∈ Gd−1 is expansive if and only if both its
oriented versions in p−1

d−1(V ) are causal planes. By Theorem 7.2, this is equivalent
to ∆ being V -exposed.

Suppose that U is a subspace with dimension ≤ d−2. Since ∆ contains nontrivial
1-dimensional edges, we can increase U to a (d − 1)-dimensional subspace V that
contains a translate of an edge of ∆. Then ∆ is not V -exposed, so that V , and
hence U , is not expansive for α.

Finally, recall from Remark 3.11 that the nonexpansive (d − 1)-planes are the
image of the non-causal planes under the map pd−1. Then the last claim follows
from Theorem 7.2.

In our previous examples, subspaces stop being expansive when their dimension
is small enough. Let us introduce a quantity to reflect this idea.

Definition 7.4. Let α be a Zd-action on a compact metric space. Define the
expansive rank erk(α) of α to be the smallest k for which there is an expansive
subspace for α with dimension k. If α is not expansive, by convention we put
erk(α) = d+ 1.

For instance, Example 2.7 shows that if M = Rd/〈k〉 for some integer k, then
erk(αM ) = d. The previous theorem provides examples of the form M = Rd/〈p, f〉
for which erk(α) = d − 1. We will show below that, roughly speaking, the more
polynomials needed to generate an ideal a, the smaller is erk(αRd/a).

In order to quantify this idea, recall that the Krull dimension of a ring is the
length of the longest strictly increasing chain of prime ideals in the ring. We denote
the Krull dimension of a ring R by kdimR. For example, in Rd the chain

0 ⊂ 〈2〉 ⊂ 〈2, u1〉 ⊂ 〈2, u1, u2〉 ⊂ · · · ⊂ 〈2, u1, u2, . . . , ud〉
of prime ideals has length d + 1 and it is known that there is no longer chain, so
that kdimRd = d + 1. We use Krull dimension to estimate the expansive rank of
some algebraic examples.

Theorem 7.5. Let a be an ideal in Rd that can be generated by g elements. Then

erk(αRd/a) ≥ kdimRd/a− 1 ≥ d− g.(7–1)

If one of the g generators of a can be chosen to be a rational prime, then

erk(αRd/a) ≥ d− g + 1.(7–2)
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Proof. Call a subspace of Rd rational if it has a basis of integral vectors. The set
of rational k-dimensional subspaces is clearly dense in Gk. Since Ek(α) is open, we
may choose a rational subspace V whose dimension is erk(αRd/a).

Suppose that V ∈ Gk is expansive for αRd/a, and that V is spanned by vectors

n1, . . . ,nk ∈ Zd. Let Rk = Z[v±1
1 , . . . , v±1

k ]. We can consider Rd/a as an Rk-module
by the rule vj(f + a) = unjf + a. Since V is expansive, we must have that Rd/a is
finitely generated as an Rk-module. Elementary dimension theory for commutative
rings then shows that

kdimRd/a ≤ kdimRk = k + 1,

from which we obtain the first inequality in (7–1).
To derive the second inequality in (7–1), start with an arbitrary minimal prime

ideal p over a. Krull’s generalized principal ideal theorem [K, Thm. 152] shows that
a maximal chain of prime ideals from {0} to p has length at most g. This chain can
be extended to one of length d+ 1 [K, p. 114], proving that kdimRd/a ≥ d+ 1− g.
Putting this together, we have

dimV ≥ kdimRd/a− 1 ≥ d− g.
This proves (7–1).

If one of the generators of a is a rational prime p, then we can replace Rk by
(Z/pZ)[v±1

1 , . . . , v±1
k ], which has Krull dimension k rather than k + 1. The same

arguments then give the strengthened inequality (7–2).

Although (7–2) is sharp in the cases considered in Theorem 7.3, in general the
inequalities can be strict. For example, let f ∈ Rd have a zero (z1, . . . , zd) ∈ Cd
with |zj | = 1 for all j. Then by [S1, Thm. 3.9], αRd/〈f〉 is not expansive. Thus
erk(αRd/〈f〉) = d+ 1, while d− g = d− 1.

8. Markov subdynamics

In this section we consider the 1-dimensional subdynamics of a Zd-action, fo-
cusing on those properties involving stable sets. The basic approach is to define a
version of the property for 1-frames (i.e., vectors) v implying the standard version
for αv when v ∈ Zd, and then to show that the general version holds locally.

We first discuss stable foliations for maps. Let us say that two homeomorphisms
S and T of a compact metric space (X, ρ) have the same stable foliation if, for all
x, y ∈ X ,

lim
n→∞

ρ(Snx, Sny) = 0 ⇐⇒ lim
n→∞

ρ(Tnx, Tny) = 0.

Recall that B(R) denotes the closed ball in Rd of radius R, and Et is the set of
vectors in Rd within t of E. For v ∈ Rd we let Hv = [0,∞)v denote the half-line
through v. For θ > 0 let Kθ(v) denote the open cone of nonzero vectors making
angle less that θ with v. By an expansive radius for v we mean an expansive radius
for Rv in the sense of Definition 2.4. A uniform expansive radius for a set in Rd is
a number that is simultaneously an expansive radius for every element of the set.

Proposition 8.1. Suppose that C is an expansive component of 1-frames for a
Zd-action α.

(1) Let u ∈ C. Then there are θ > 0, t > 0, and R > 0 such that for all
v,w ∈ Kθ(u), the set Ht

v codes K2θ(w), and the set B(R) ∪Ht
v codes Ht

w.
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(2) Let E be a compact subset of C. Then E has a uniform expansive radius. For
each uniform expansive radius τ for E, there is an R > 0 such that B(R)∪Hτ

v

codes B(R) ∪Hτ
w for all v,w ∈ E.

(3) All the maps αn, n ∈ C ∩ Zd, have the same stable foliation.

Proof. (1) Pick γ small enough so that Kγ(u) ⊂ C, and let K be the corresponding
compact set of lines in G1. For this K, let t > 0 and r > 0 be the numbers provided
by Proposition 3.8, and let β = sin−1(1/r). Then for every v ∈ Kγ(u), the set Ht

v

codes Kβ(v). Thus the first claim in (1) holds with θ = β/3. We can choose R for
the second claim because K2θ(w) contains all but a bounded subset of Ht

w.
(2) If τ and τ ′ are two uniform expansive radii for E, then there is an R such

that for all u ∈ E, B(R)∪Hτ
u codes Hτ ′

u . Hence it suffices to prove (2) for a single
uniform expansive radius for E.

Choose a compact set F with E ⊂ F ⊂ C such that F is the closure of a
connected union of finitely many open balls that cover E. The number t provided
by Proposition 3.8 is a uniform expansive radius for F , hence for E. Thus we need
only prove (2) for F in place of E, and for the uniform expansive radius t.

By our choice of t, we can cover F with open sets Kθi(ui), 1 ≤ i ≤M , satisfying
(1) with numbers Ri and the expansive radius t. Let R = maxiRi. Suppose that
x ∈ Kθi(ui), y ∈ Kθj(uj), and z ∈ Kθi(ui) ∩ Kθj(uj). Then B(R) ∪ Ht

x codes
B(R) ∪Ht

z, and B(R) ∪ Ht
z codes B(R) ∪Ht

y. For arbitrary u,v ∈ F , there is a
finite chain of Kθi(ui) whose first set contains u, whose last set contains v, and for
which each pair of successive sets has nonempty intersection. Repeated application
of the previous argument then gives (2).

(3) Suppose that n ∈ C ∩ Zd. Then x, y ∈ X are in the same stable set for αn if
and only if there is an a > 0 such that

ρ([a,∞)n)t

α (x, y) ≤ δ.
Let θ, t, and R be provided by (1) for u = n. Let m ∈ Kθ(u)∩Zd. Chose b > 0 so
that ([−b, b]n)t codes B(R). Then ([a,∞)n)t = (a+b)n+([−b,∞)n)t, which codes
(a+b)n+B(R). Hence ([a,∞)n)t codes (a+b)n+K2θ(n), which contains all but a
compact subset of Kθ(m). In particular, there is a c > 0 such that ([a,∞)n)t codes
([c,∞)m)t. This proves that the stable foliations of m and n are the same. Thus
the stable foliation is locally constant, hence constant on C since C is connected.

We next define a Markov direction, and this requires some notation. For v ∈ Rd,
let B(t,v⊥) denote the closed ball of radius t in the orthogonal complement of v
in Rd. We put

H+
v (t, r) = [−r,∞)v ⊕B(t,v⊥),

H−v (t, r) = (−∞, r]v ⊕B(t,v⊥),

which are overlapping semi-infinite “tubes” of radius τ surrounding Rv.

Definition 8.2. Let v be an expansive vector, and V = Rv. Then v (or V ) is
Markov if there is an r > 0 and an expansive radius t for V such that whenever

x, y ∈ X with ρ
V t(r)
α (x, y) ≤ δ, then there is a z ∈ X such that

ρ
H−v (t,r)
α (x, z) ≤ δ and ρ

H+
v (t,r)

α (y, z) ≤ δ.

Roughly speaking, this definition says that if two points agree on the overlap
V t(r) on the future H+

v (t, r) and the past H−v (t, r), then the past of one and the
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future of the other can be pasted together to form a new point. When v ∈ Zd, this
definition coincides with the usual one for αv using canonical coordinates.

Proposition 8.3. Let C be an expansive component of 1-frames for a Zd-action.
Then either every vector in C is Markov or no vector in C is Markov.

Proof. Suppose that v,w ∈ C, and that v is Markov. Let r, t be as in Definition 8.2.
Increase t so that it is also an expansive radius for w. Then v is also Markov for
this larger t and all sufficiently large R. Choose R > r satisfying Proposition 8.1(2)
for the set {v,w} and also for {−v,−w}. Let W = Rw. Choose s such that W t(s)

codes B(R). We claim that w is Markov using s and t. For if ρ
W t(s)
α (x, y) ≤ δ, then

ρ
B(R)
α (x, y) ≤ δ, so ρ

V t(r)
α (x, y) ≤ δ. Choose z as in Definition 8.2 for v. The coding

relation from Proposition 8.1(2) shows that this same z also works for w.

Using this proposition, we may define an expansive component of 1-frames to be
Markov provided that some (hence all) of its elements are Markov. If one integral
vector in a Markov component C is mixing, then all elements of C ∩ Zd are also
mixing, since a shift of finite type commuting with a mixing shift of finite type
must be mixing. We will refer to a component that contains a mixing Markov
integral vector as a mixing Markov component.

The next result follows from Corollary 8.7 below, and can also be proved using
results of Nasu [N2]. We give a simple geometric argument adapted from [Mi, p.
383].

Corollary 8.4. If C is a mixing Markov component of 1-frames, then h1 is linear
on C.

Proof. First note that C is open, and convex by Remark 4.6. Since h1 is continuous
on C and rational lines are dense in C, it suffices to prove that h1(v +w) = h1(v) +
h1(w) for all v,w ∈ C ∩ Zd.

Recall that Qv denotes [0,v]. As in the proof of Theorem 6.9, the set Qv ∪
(v +Qw) shades Qv+w. By Lemma 6.28, Qv+w shades Qv, and by symmetry also
v +Qw. Therefore the sets Qv+w and Qv ∪ (v +Qw) shade each other, so that

h1(v + w) = η1(Qv+w) = η1

(
Qv ∪ (v +Qw)

)
.

Thus it is enough to show that

η1

(
Qv ∪ (v +Qw)

)
= η1(Qv) + η1(Qw) = h1(v) = h1(w).

Translating by −v, we may just as well consider η1(Q−v ∪Qw).
Let t be large, and fixR for the set {v,w} as in Proposition 8.1(2). For x ∈ X and

u ∈ Rd, let x[u] be the restriction of x to Ht
u∩Zd, and x(R) be the restriction of x to

B(R). Then x[−u] and x(R) determine x[−v] and x(R), and vice versa. Because
αv is mixing Markov, there is a transition length N such that for every y ∈ X
there is a z ∈ X such that z(R) = x(R), z[−w] = x[−w], and z(n) = y(n) for all
n ∈ ([N,∞)w)t. Hence every configuration in Ht

−v occurs with every configuration
in Nw +Ht

w. Thus η1(Q−v ∪Qw) = η1(Q−v) + η1(Qw), as required.

The independence of configurations resulting from the Markov properties lies a
the heart of this proof. This independence fails in the construction of examples
with nonlinear h1 from Theorem 6.33.

Corollary 8.5. Let C be a mixing Markov component of 1-frames, and m,n ∈
C ∩ Zd. Then αm and αn have the same unique measure of maximal entropy.



EXPANSIVE SUBDYNAMICS 97

Proof. By Corollary 8.4, h1 is linear on C. Then Theorem 6.25 shows that αm and
αn have a common measure of maximal entropy. Since both αm and αn are mixing
Markov, this measure is unique.

The next result deals with the dimension group of a Markov shift, and assumes
familiarity with, say, [BMT]. For an n× n integral matrix A, let

∆A = {v ∈ An(Qn) : Akv ∈ Zd for all large k},

and δA denote the automorphism of ∆A induced by restriction of A. Then (∆A, δA)
is called the dimension pair of A. If two mixing Markov shifts are defined by
matrices A and B, then they are shift equivalent if and only if they have isomorphic
dimension pairs, i.e., there is an isomorphism θ : ∆A → ∆B such that θδa = δBθ.
The group ∆A is a presentation of the dimension group of A, which was defined
intrinsically by Krieger (see [Kr1], [Kr2], [BK], [BMT]). Dimension groups are
ordered, and when A is mixing the order is easily determined from the dominant
(or Perron) eigenvalue and its Perron eigenline.

In the following, if a = (a1, . . . , ad) is a d-tuple of complex numbers and n ∈ Zd,
put an = an1

1 an2
2 . . . andd . Similarly, if B = (B1, . . . , Bd) is a d-tuple of matrices, put

Bn = Bn1
1 Bn2

2 . . . Bndd .

Theorem 8.6. Let C be a mixing Markov component of 1-frames for α. Then there
is a group ∆ and a d-tuple B = (B1, . . . , Bd) of nonsingular commuting rational
matrices such that for all n ∈ C ∩Zd the dimension pair of αn is (∆,Bn). The Bn

for n ∈ C ∩ Zd all have a common Perron eigenline.

Proof. By Proposition 8.1, all αn with n ∈ C ∩ Zd have the same stable foliation.
Then the argument in [BK, Thm. 2.17] shows that they have the same ordered
dimension group (∆,∆+), and give rise to a commuting system of order-preserving
automorphisms, which can clearly be realized by rational matrices. Because the
ordered group does not change, these matrices must have the same Perron eigenline.

We do not know whether we can arrange that the matrices Bn in this theorem
are integral.

Corollary 8.7. Let C be a mixing Markov component of 1-frames for a Zd-action
α. Then there are d-tuples Θ1 = (θ11, . . . , θ1d), . . . , Θr = (θr1, . . . , θrd) of algebraic
numbers such that for all n ∈ C ∩ Zd the zeta function ζn(z) of αn is given by

ζn(z) =
1∏r

j=1(1−Θn
j z)

.

Proof. If the dimension automorphism of αn is induced by a matrix B with eigen-
values λ1, . . . , λr, then ζn(z) = 1/

∏r
j=1(1 − λjz). The result now follows from

Theorem 8.6.

Remark 8.8. For Zd-actions on a zero-dimensional space, one can give an analogue
of Definition 8.2 for the sofic property in a direction v using follower sets, such that
if v ∈ Zd this is the same as αv being a sofic homeomorphism. The analogue of
Proposition 8.3 holds, so that in an expansive component either all elements are
sofic or none are.
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Remark 8.9. For a rational Markov or sofic direction of a Z2-action, the local anal-
ysis of this section could be done using Nasu’s textile system machinery [N2]. This
provides finer detail and constructive matrix tools. The difficulty is that without
defining properties on a completed space of directions, it is difficult to show how
the local analysis gives results valid over an entire expansive component.

Remark 8.10. There is an analogous definition of Markov for k-planes. Let V be
an expansive k-plane, and L be a (k − 1)-dimensional subspace of V . Let V +

and V − denote the two half-planes determined by L. Say that V is L-Markov if
there are R > 0 and an expansive radius t to V such that whenever x, y ∈ X with

ρL
R

α (x, y) ≤ δ, then there is a z ∈ X such that

ρ(V −)t

α (x, z) ≤ δ and ρ(V +)t

α (y, z) ≤ δ.
Then the higher dimensional analogue of Proposition 8.1 is true. This can be used
to prove that for a fixed (k−1)-plane L, within a connected component of expansive
k-planes containing L, either all are L-Markov or none are.

9. Problems

Our analysis of expansive subdynamics provides a framework for investigating
Zd-actions, and suggests a number of further problems and research directions.

Structure. By Theorem 3.7, Nd−1(α) determines all the other Nk(α). We do not
know a complete description of what Nd−1(α) can look like.

Problem 9.1. Which closed sets of Gd−1 are Nd−1(α) for some Zd-action α on a
compact metric space? Does the answer change if we require α to be topologically
mixing?

Theorem 4.3 provides a nearly complete answer when d = 2. However, it leaves
open one case that has resisted strenuous efforts.

Problem 9.2. Given an irrational line L in R2, is there a Z2-action α for which
N1(α) = {L}?

There is what appears to be a related question about when N1(α) consists of a
single rational line.

Problem 9.3. Suppose that α is a Z2-action for which N1(α) = {L}, where L is a
rational line through n ∈ Z2. Must there be a k ≥ 1 for which αkn is the identity
map?

With Markov assumptions, these sorts of problems take on a different flavor.

Problem 9.4. Which closed sets in Gd−1 are Nd−1(α) for a Markov Zd-action α?

Note that there are only countably many possibilities for Markov Zd-actions (up
to conjugacy), so the class of closed sets here is much more restricted.

Problem 9.5. If α is a Z2-action with a Markov direction, must E1(α) be a finite
union of intervals with rational endpoints?

Compatibility of component subdynamics. How does certain dynamical behavior
in one expansive component influence behavior in other components?

Problem 9.6. If one expansive component of E1(α) is Markov, must all other
expansive components be Markov?
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This can be recast as the following problem due to Nasu [N2], which arises when
deciding whether certain algorithms in [N2] terminate.

Problem 9.7. If an expansive homeomorphism commutes with a shift of finite
type, must it also be of finite type?

Theorem 8.6 shows that associated to each Markov component is a dimension
group. Work of Nasu [N2] shows that the dimension groups of different Markov
components need not be isomorphic.

Problem 9.8. Which pairs of groups can arise as the dimension groups of different
Markov components of a Z2-action?

The next problem asks whether a pair of mixing shifts of finite type can be
embedded in a Z2-action.

Problem 9.9. Given two mixing shifts of finite type S and T , is there a Z2-action
α for which αe1 is topologically conjugate to S and αe2 is topologically conjugate
to T ?

Observe that for this problem there are some obstructions involving periodic
point counts, since the set of points with S-period n is T -invariant.

Entropy. There are a number of unresolved problems concerning the “entropy
geometry” of actions and directional entropy. The first is about the information
function ηk, defined for all compact subsets of Rd.

Problem 9.10. Let α be an algebraic action (see §7) having expansive rank k.
Compute ηk(E) for all compact sets E ⊂ Rd. In particular, if V is a k-plane, is
ηk(E) = hk(V )λV (E) for all compact E ⊂ V ? Note that according to Theorem 6.3,
this is true for all E with λV (∂E) = 0.

Problem 9.11. Understand the shading relation among compact sets (see Defi-
nition 6.7), and its relation to expansiveness. For which compact sets E is there
a unique maximal closed set shaded by E (which would naturally be called the
“shadow” of E)?

Continuity properties of directional entropy are still obscure. Work of Sinai
[Si1], which contains an inaccuracy corrected by Park [P], shows that if α is a
Z2-action on a zero-dimensional space containing a Markov direction, then hµ1 is
upper semicontinuous. A detailed account of this is given in Lecture 8 of [Si2].

Problem 9.12. Suppose that α is a Zd-action having an expansive 1-dimensional
line. Must h1 be continuous? Must hµ1 be continuous for every α-invariant mea-
sure µ?

Regularity on components. How regular is dynamical behavior on an expansive
component?

Problem 9.13. Is there always a uniform expansive radius for an expansive com-
ponent?

Problem 9.14. If m and n are integral vectors in the same expansive component
for α, and if αm is mixing, must αn also be mixing?

Transitional subdynamics. We know very little that constrains the subdynamics
of an action in the nonexpansive directions. Here is a sample problem.
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Problem 9.15. Suppose that α is a Z2-action having a Markov direction. Must
h1 be piecewise linear on a closed interval of nonexpansive directions separating a
pair of expansive components?

One can check using skew products and topological pressure that this is true for
the class of Z2-actions generated by automorphisms of a shift of finite type studied
in [L].

Other parameter groups. In our study of the subdynamics of Zd-actions, “com-
pleting” the space of directions plays a crucial role. A further step is to “complete”
the acting group Zd by taking the Rd constant-time suspension, so that now every
direction corresponds to an element of the acting group. Katok and Spatzier [KaSp]
did exactly this in their fruitful analysis of jointly invariant measures for certain
geometric Zd-actions.

An open problem is to develop a topological dynamical theory of “expansive
subdynamics” for an expansive Rd-action on a compact metric space. One require-
ment of such a theory is that theorems about the subdynamics of Zd-actions should
correspond to theorems about the subdynamics of their Rd-suspensions. Some care
is needed when defining expansiveness for a subaction (see [BW]). To make this
development worth the effort, there should be adequate motivating examples of
expansive Rd-actions that are not suspensions of Zd-actions.

Finally, we have been considering the lattice Zd in Rd, and considering the
subdynamics of closed subgroups in Rd. What generalizes to lattices in Lie groups?
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