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Considering the emphasis of last week, I’ll mostly

neglect the dramatic recursion theoretic con-

structive advances of Hochman, Meyerovitch

and others.

One theme in that work is the consideration

of what subshifts can occur as dynamics of a

single directional shift in a Zd SFT or sofic

shift, for d ≥ 3 (Hochman) or d ≥ 2 (Durand,

Romaschenko and Shen; Aubrn and Sablik).

In this first talk we’ll consider aspects of how

the one dimensional subactions vary within a

Z2 SFT, in the case of a Z2 SFT generated

by an automorphism of a mixing Z SFT.

There is an elaboration of this introduction in

my “Open problems in symbolic dynamics”,

with references.

1



Outline

1. Some Definitions

2. Expansiveness and the regularity of subdy-

namics

3. Constructing commuting Z-SFTs from com-

muting matrices

4. Commuting Z-SFTs without commuting ma-

trices

5. Nasu’s textile systems: a graphical calculus

for Wang tilings

2



I. Some Definitions

• An automorphism of a continuous map f

is a homeomorphism U commuting with f

(Uf = fU).

• Continuous maps f, F are topologically

conjugate (f ∼ F ) if there exists a homeo-

morphism h such that hF = fh.

• Continuous maps f, g can commute if ∃F ∼
f,G ∼ g with FG = GF .

• σA is the twosided edge shift of finite type

(SFT) defined by the square Z+ matrix A.

• “S is SFT” means S ∼ σA, for some A.
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If φ is a continuous map commuting with the

shift map σ on some subshift X, then to x in X

we can associate the Z2 array x̂ which assigns

to (i, j) in Z2 the symbol (φj(x))i.

The set Xφ of all x̂ is a Z2 subshift. Row j+1

of the array is the image under φ of row j. The

map x 7→ x̂ defines a topological conjugacy of

σ to σ1,0 and φ to σ0,1.

If the Z shift X is a Z SFT, then Xφ is a Z2

SFT.
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II. Expansiveness and the regularity of

subdynamics

A Zd action by homeomorphisms αv, v ∈ Zd,

on a compact metric space X is expansive if

there exists ε > 0 such that for every pair of

distinct points x, y in X there exists v ∈ Zd such

that dist(αvx, αvy) > ε.

For example, every Zd subshift is expansive.

An expansive action of Zd on a zero dimen-

sional compact metrizable space is topologi-

cally conjugate to a subshift.

Expansiveness arises in various ways in dynam-

ics. Here we will see it as a regularity condi-

tion. We’ll consider Z2 subshifts. This is a

case of a more general theory for Zd actions

on compact metric spaces (B-Lind Expansive

Subdynamics).
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Let X be a Z2 subshift. A configuration x in

X is a function which assigns to each u in Z2

an element x[u] from a given finite alphabet.

An element v in Zd acts by the directional shift

σv, where (σvx)[u] = x[u+ v].

Say ` is an expansive line, or expansive direc-

tion, for X if there exists M > 0 such that

distinct points in X must have distinct restric-

tions to U(`,M) ∩ Z2.

In words: a configuration in X is determined

by its restriction to the lattice points in the

strip U(`,M).

For example, if X = Xφ for an automorphism

φ of a Z-subshift, then the horizontal direction

is expansive.

More generally, if ` has rational slope, then

`∩Z2 6= {(0,0)}. In this case, ` is an expansive
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line iff σv is an expansive homeomorphism for
any/every nonzero v in ` ∩ Z2.

The space of directions is topologized as PS1:
two lines through the origin are close if their
two-point intersections with the unit circle are
close.

FACTS.

• For a Z2 subshift X, its set EX of expansive
directions is open.

• If X is a finite set (trivial case), then every
direction is expansive.

• If X is infinite, then the set of nonexpan-
sive directions can be any nonempty closed
subset of directions (by [B-Lind 1997] +
[Hochman to appear]).

Why care?



For an infinite Z2 subshift X, set E1(X) = {v ∈
R2 : Rv is an expansive line for X}, the set of

“expansive vectors” of X. Suppose E1(X) is

nonempty.

Let C be a connected component of E1(X) (an

open cone or an open half-space).

**The meta principle**:

As v varies in E1(X) ∩ Z2, qualitative dynam-

ical properties of σv tend to be constant, and

qualitative properties tend to vary regularly.

Heuristically, the dynamics of {σv} comes in

oceans of regularity (the components C) sepa-

rated by ... something.
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Example. Suppose for some v ∈ C ∩ Z2 that

σv is MSFT. Then

• For every u ∈ C ∩ Z2, σu is MSFT

• There are numbers α, β such that for u =

(i, j) ∈ C ∩ Z2, h(σu) = αi+ βj

• There are integral matrices A,B such that

for u = (i, j) ∈ C ∩ Z2, the shift equiva-

lence class of the mixing SFT σ(i,j) is given

by AiBj. (This class determines a mix-

ing SFT up to topological conjugacy of all

large powers.)

• All the σu, u ∈ C ∩Z2, have the same mea-

sure of maximal entropy.
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There is a dynamical relation which underlies

this regularity. Suppose X is a Z2 subshift

and C is a connected component of E1(X).

Suppose u, v are in C ∩ Z2, and x, y are in X.

Then

lim
n→+∞

dist(σux, σuy) = 0

if and only if

lim
n→+∞

dist(σvx, σvy) = 0 .

I.e., the stable relation is the same for all σu
with u ∈ C. (So is the unstable relation.)
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Example. Suppose φ is an automorphism of a

Z-subshift X. Choose k such that for all x in X,

x[−k, k] determines (φx)[0] and (φ−1x)[0]. In

R2, let ` be the line of slope 1/(k+1) through

the origin, and let V be the strip of points

whose horizontal distance to ` is at most k.

On each integer row of a point in Xφ, V sees

a configuration which codes a symbol in coor-

dinates directly above and below. Taking the

union of these, we see that the configuration

in V codes symbols one unit to the right and

one unit to the left. Continuing this forever,

we see the configuration in V determines the

entire configuration.

Similarly, every line with slope between −1/(k+

1) and 1/(k+ 1) is also expansive.
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Note: in the example, x[−k,∞) determines the

configuration on the cone bounded by the half

lies with slopes −1/(k + 1) and 1/(k + 1)].

Likewise, any half line in this cone lies in a

strip which together with a finite configuration

around the origin. In particular, the stable rela-

tion is the same for all the σv with v a nonzero

lattice point in this cone.
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Problems

We still know very little about the possible sets

of expansive components in the key case:

Problem [B-Lind 1997]. Suppose φ is an auto-

morphism of a mixing SFT. Can E1(Xφ) have

infinitely many components? Can the bound-

ary of a component be a ray of irrational slope?

With the idea of seeing islands of regularity in

the subdynamics, we naturally focus on what

islands of regularity can coexist. The most

fundamental question is over 20 years old.

Problem [Nasu 1989] If φ is an expansive au-

tomorphism of an irreducible SFT, must φ be

SFT?
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Nasu’s “textile systems” theory gives an algo-

rithm which, if an expansive automorphism φ is

SFT, will eventually produce a matrix A such

that φ ∼ σA.

We can at least say something:

THEOREM (B. 2004) A strictly sofic AFT

(almost finite type) shift S cannot commute

with a mixing SFT T .

A sofic shift is AFT if it a factor of an ir-

reducible SFT by a biclosing map. (Krieger

showed this map is canonical). The AFT sofic

shifts enjoy various properties and seem to be

the one big, natural class of nice sofic shifts.

We consider next when two SFTs can com-

mute.
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III. Constructing Commuting Z-SFTs

from commuting matrices

Note: AB = BA does not guarantee that σA,

σB can commute. (E.g. for [A] = 2, B = [3],

an examination of low order periodic points

shows σA and σB cannot commute.) However:

Proposition. Suppose A,B are commuting

Z+ matrices. Then there are homeomorphisms

S, T such that ST = TS and SiT j ∼ σAiBj for

i, j > 0.

The proof is a simple and elegant construction

of Nasu (constructing an “LR textile system”).

It is next.
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Suppose A and B are n× n matrices over Z+,

with AB = BA. View A and B as adjacency

matrices for two directed graphs, with disjoint

edge sets and a common vertex set {1,2, . . . n}.
Say e.g. an ab path from i to j is an A edge

from i to some k followed by a B edge from

that k to j. “AB = BA” means that for each

pair i, j the number of ab paths from i to j

equals the number of ba paths from i to j.

Thus we can build a set W of Wang tiles
a //

b′

��

b

��a′ //

such that each ab path is the top/right of ex-

actly one tile and each ba path is the left/bottom

of exactly one tile. (In the tile pictured, a, a′

are A-edges and b, b′ are B-edges.)
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Thus each Wang tile
a //

b′

��

b

��a′ //

is determined by either of the paths
a //

b

��

or

b′

�� a′ //

Now let the tile sides be unit length and let

XA,B be the space of infinite Wang tilings of

the plane with W, with tile corners on Z2. The

space depends on A,B and the bijection of ab

paths and ba paths used to define the tiles.
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E.g., above is a finite piece of a point in XA,B,

with edge-name labels suppressed.
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For v ∈ Z2, let σv denote the shift map on

XA,B in direction v. I’ll draw with coordinates

increasing downward and to the right.

We will see that for i > 0 and j > 0, the map

σ(i,j) on XA,B is topologically conjugate to the

edge SFT σAiBj.

To get the basic idea, we consider (i, j) =

(1,1). Edges in the graph with adjacency ma-

trix AB can be identified with ab paths. To

each point x in XA,B, associate the bisequence

y such that yn is the ab path in x from (n, n)

to (n+ 1, n+ 1).
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In the tiling x above, the dark arrows grouped

in pairs define the associated bisequence y.
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The map π : x 7→ y is continuous, and inter-

twines the homeomorphisms σ(1,1) and σAB.

From the bijections cited earlier, one sees the

chosen ab bisequence y determines all of x, so

π is injective.

Again from those bijections, one sees that any

legal biinfinite path of ab edges occurs as y for

some tiling x. So, π is surjective.

Therefore π is a topological conjugacy.
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Similarly we can associate to a point in XA,B a
bisequence of abb paths, and show that α(1,2)
is topologically conjugate to σAB2. Etc.
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Commuting one-sided SFTs arise from

commuting matrices.

Suppose A,B are nonnegative integer matri-
ces with AB = BA. Let X+

A,B by the space of
tilings of Z+×Z+ which are restrictions of the
tilings in XA,B constructed earlier (which de-
pends on a chosen bijection of ab paths and ba

paths). Nasu proved that if commuting maps
S, T on a space Y are topologically conjugate
to onesided SFTs, then there are commuting
matrices A,B and a space of tilings X+

A,B and

a homeomorphism h : Y → X+
A,B which conju-

gates the action of S and T to the the hori-
zontal and vertical shifts on X+A,B.

For this he constructs an associated “textile
system” and shows it can be modified to be
an “LR Textile System” (more later).

Mixing SFTs σA and σB (onesied or twosided)
which can commute using Nasu’s construction
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using AB = BA have severely constrained joint

dynamics. The dimension groups of the SFTs

are isomorphic; their zeta functions are recipro-

cals of polynomials of equal degree; as realized

in the construction, the commuting SFTs have

the same measure of maximal entropy. (There

is yet more structure for onesided SFTs [B-

Fiebig2].) But ...



Commuting Z-SFTs

without commuting matrices

The situation is quite different for twosided

SFTs.

EXAMPLE (Nasu 95): σAT = TσA, T ∼ σB,

• A =

(
2 1
1 1

)

• χB(x) = (x+ 1)2(x3 − 2x2 + x+ 1).

(σA and T cannot even have the same measure

of maximal entropy.)

23



Nasu gave a complicated algorithm which, given

an automorphism U of an irreducible SFT, will

find a matrix B such that σB ∼ U , *IF* U is

SFT. The example above came from applying

the algorithm to a particular automorphism.

It would be very interesting to see any system-

atic construction of commuting SFTs which

need not be algebraically related.

CONJECTURE: Suppose S and T are mix-

ing SFTs. Then for all large i, j, Si and T j

can commute.

The passage to powers in the conjecture ad-

dresses low-order periodic point obstructions

and follows a standard pattern in symbolic dy-

namics. See [B-Open problems].
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Jointly invariant measures.

Here is one reason to be interested in the pre-

vious Conjecture.

There has been intense interest in certain com-

muting actions which have few nonatomic jointly

invariant measures (e.g., the Furstenberg ex-

ample ×2,×3 mod 1 on [0,1)).

We would like a larger supply of Z2 actions

for which we had some understanding of the

jointly invariant measures. As is well know fol-

lowing Rudolph, the nonatomic jointly invari-

ant Borel probabilities for ×2,×3 are in a natu-

ral correspondence with the nonatomic jointly

invariant measures of the 6-shift and a certain

automorphism of it. So, it is natural to con-

sider the symbolic dynamical possibilities.
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For example, in Nasu’s example, the distinct

measures of maximal entropy of the two com-

muting SFTs are jointly invariant ergodic and

positive entropy. In contrast, the Furstenberg

example has just one, Lebesgue measure.

If two commuting MSFTs, with entropies log(α)

and log(β) share the same measure of maximal

entropy, then the number fields Q(α) and Q(β)

must be equal (a rarity).
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V. Nasu’s textile systems:

a graphical calculus for Wang tilings

For the problems we have been considering so

far, many of the sharpest results are due to

Nasu and his theory of textile systems. The

aim here is to give an initial idea of this the-

ory, its consequences and its relation to the

expansive subdynamics. (We do not attempt

a reasonable outline of the theory.)

We will give Nasu’s formal definition of a tex-

tile system later. A textile system will arise

from a set T of Wang tiles of a certain form:

• there are directed graphs GA, GB on a com-

mon vertex set V

• the top and bottom sides of a tile are right-

pointing edges from GA
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• the left and right sides are down-pointing

edges from GB

• initial and terminal vertices of edges are (of

course) required to be consistent at cor-

ners.

So, the color of a Wang tile side is an edge in

a directed graph. Any Wang tile can be viewed

in this way by taking V to be a singleton.

There is another directed graph here, G(T ).

The edges of G(T ) are the tiles t in T . The

initial vertex of t is its left side and the terminal

vertex is its right side.

A doubly infinite horizontal sequence z of legal

(adjacent sides match) Wang tiles is now a

point in an SFT, X(T ).



Let p be the map which sends a tile to its

top edge. This induces a map, called ξ, which

sends z ∈ X(T ) to a point ξ(z) in the SFT XA.

Likewise, let q be the map which sends a tile

to its bottom edge, and determining η(z) in

the SFT XA.

So: for a horizontal bisequence z of Wang tiles,

ξ(z) is the bisequence of its top edges and η(z)

is the bisequence of its bottom edges.

So what? Given an endomorphism φ of an

SFT XA, Nasu constructs tiles such that ξ is

a topological conjugacy, and the map φ is ξ−1

followed by η. That is, a point x in XA will

be the top of a unique bisequence z of Wang

tiles, and the bottom of z will be the image

φ(x). The block code defining φ has been put

into the Wang tiles. The subshift Xφ is given

by the horizontal side sequences in the Wang

tiling space.



Nasu’s definition of a textile system.

A textile system is a pair of directed graphs

Γ, G together with a pair p, q of graph homo-

morphisms from Γ to G.

Nasu’s textile system gives the Wang tiles sim-

ply by setting the edges of GB to be the ver-

tices of Γ.

There is an obvious dual textile system ob-

tained by interchanging the roles of top, bot-

tom, horizontal with left, right, vertical. This

is an important ingredient in Nasu’s work.

The textile systems are as general as Wang

tiles. To study problems of endomorphisms

and automorphisms of an SFT, Nasu consid-

ers various resolving conditions on the graph

homomorphisms p, q.

28



A graph homomorphism h is right resolving if,
whenever it sends a vertex i to the initial ver-
tex of an edge e, there exists a unique edge e′

beginning with i which is sent to e. The left
resolving maps are defined analogously using
terminal vertices. These resolving maps and
the block codes they define play a fundamen-
tal role in the coding theory of Z SFTs and Z

sofic shifts. (Caveat: the definition of “resolv-
ing” varies a bit by author and context–this is
Nasu’s use for the textile systems.)

A textile system is LR if p is left resolving,
q is right resolving and the map z 7→ ξ(z) is
one to one. The LR textile systems are ex-
actly those arising as XA,B earlier from com-
muting Z+ matrices A and B. Here the resolv-
ing conditions are a translation of the require-
ment that the Wang tile be determined by the
top+right sides and also by the left+bottom
sides, as in the earlier construction with com-
muting matrices. The LR textile sytems are
important in Nasu’s theory.
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An automorphism φ of an SFT σA is an LR

automorphism of σA if there is an LR textile

system, with ξ invertible, such that φ is ξ−1

followed by β.

NOTE: given the automorphism φ of the SFT

σA, there is AT MOST ONE LR textile system

(up to graphical isomorphism) for which φ can

be presented as an LR automorphism of σA.

In particular, the transition matrix B is unique.

This suggests some unexpected power of the

textile system formulation.

A map ψ is an essentially LR (ELR) automor-

phism of an SFT S if there exists an LR auto-

morphism φ of an SFT σA and a homeomor-

phism h such that h−1Sh = σA and h−1ψh = φ.

Nasu has a theory of “ELR cones” quite in-

dependent of the connected components C of

E1(X). However, he related the viewpoints by
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showing the following: if in a Z2 subshift σv is

SFT, then the interior of the ELR cone con-

taining v is equal to C. So, up to conjugacy

and a choice of generators of Z2, every Z2 SFT

occurs as an LR textile system.



The foundation of the textile systems theory

is Nasu’s 1995 memoir. He has a number of

significant results since then, for example

Theorem. An expansive automorphism of a

onesided SFT must be a twosided SFT.

Theorem. If an expansive automorphism of

an SFT is conjugate to an automorphism with

no memory, then it is SFT.
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Nasu’s theory can be easily used to show that

for an automorphism φ of a mixing SFT σA
there is an integer k and a computable positive

number γ and a matrix B determined by the

(well understood and computable) action of φ

on the dimension group of σA such that for

all (i, j) in Z2 with i > 0 and |j/i| < γ, the

action of the directional shift σv is topologically

conjugate to σAiBj.

So within an open cone we get well understood

individual directional dynamics.

It is important to appreciate that these individ-

ual dynamics in an open cone can be put to-

gether in quite different ways, and by no means

determine the joint dynamics of the Z2 action,

or the topological conjugacy classes of σv out-

side the component in E1 containing (1,0).
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