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Definitions

• An automorphism of a continuous map f

is a homeomorphism U commuting with f

(Uf = fU).

• Continuous maps f, F are topologically

conjugate (f ∼ F ) if ∃F ∼ f, G ∼ g with

FG = GF .

• Continuous maps f, g can commute if ∃F ∼
f, G ∼ g with FG = GF .

• σA is the twosided edge shift of finite type

(SFT) defined by the square Z+ matrix A.

• S is SFT if S ∼ σA, for some A.
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Which maps can commute with SFTs? [Nasu]

Which SFTs can commute?

CONJECTURE: Suppose S and T are mix-
ing SFTs. Then for all large i, j, Si and T j

can commute.

If S, T are commuting bijections and ∀n > 0
|Fix(Sn)| < ∞ and |Fix(Tn)| < ∞, then Per(S) =
Per(T ). Thus low-order periodic point obstruc-
tions sometimes imply two maps cannot com-
mute: e.g.,

• if |Fix(σA)| = 1 and |Fix(σB)| = 0, then σA

and σB cannot commute

• σ[2] and σ[3] cannot commute

However, there is no set theoretic periodic point
obstruction to the conjecture.
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Commuting SFTs

from commuting matrices

Note: AB = BA does not guarantee that σA,

σB can commute. (E.g. [A] = 2, B = [3]).

However:

Proposition. Suppose A, B are commuting

Z+ matrices. Then there are homeomorphisms

S, T such that ST = TS and SiT j ∼ σAiBj for

i, j > 0.

The proposition follows from remarks on a con-

struction of Nasu in his 1995 AMS Memoir,

which created an elaborate “textile systems”

apparatus for studying endomorphisms and au-

tomorphisms of an SFT. In this memoir and

successor papers, Nasu achieved major results,

especially on automorphisms of onesided SFTs.

We go on to explain the Proposition.
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Suppose A and B are n× n matrices over Z+,

with AB = BA. View A and B as adjacency

matrices for two directed graphs, with disjoint

edge sets and a common vertex set {1,2, . . . n}.
Say e.g. an ab path from i to j is an A edge

from i to some k followed by a B edge from

that k to j. “AB = BA” means that for each

pair i, j the number of ab paths from i to j

equals the number of ba paths from i to j.

Thus we can build a set W of Wang tiles
a //

b′

��

b

��a′ //

such that each ab path is the top/right of ex-

actly one tile and each ba path is the left/bottom

of exactly one tile. (In the tile pictured, a, a′

are A-edges and b, b′ are B-edges.)
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Thus each Wang tile
a //

b′

��

b

��a′ //

is determined by either of the paths
a //

b

��

or

b′

�� a′ //

Now let the tile sides be unit length and let

W be the space of infinite Wang tilings of the

plane with W, with tile corners on Z2.
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E.g., above is a finite piece of a point in W ,
with edge-name labels suppressed. For v ∈ Z2,
let αv denote the shift map on W in direction
v.
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The bijections cited two slides back show the

dashed-line sides below are determined by the

solid diagonal squares. Thus α(1,−1) is expan-

sive and conjugate to the SFT σAB.

//

��

________

��

________

�
�
�
�
�
�
�
� ________

�
�
�
�
�
�
�
� ________

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

//

�
�
�
�
�
�
�
� //

��

________

��

________

�
�
�
�
�
�
�
� ________

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

________

�
�
�
�
�
�
�
� //

�
�
�
�
�
�
�
� //

��

________

��

________

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

________

�
�
�
�
�
�
�
� ________

�
�
�
�
�
�
�
� //

�
�
�
�
�
�
�
� //

��

________

�� �
�
�
�
�
�
�
�

________

�
�
�
�
�
�
�
� ________

�
�
�
�
�
�
�
� ________

�
�
�
�
�
�
�
� //

�
�
�
�
�
�
�
� //

�� ��________ ________ ________ ________ //

7



Likewise the solid squares below determine the
rest, and α(1,−2) ∼ σAB2.
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Given the commuting matrices A, B we showed

how to embed σAiBj into a commuting fam-

ily of maps when (i, j) = (1,1) or (i, j) =

(1,2). The argument is the same for i > 0, j >

0. The proof also works for onesided SFTs,

for which Nasu has a converse: commuting

onesided SFTs can be presented by commut-

ing Z+ matrices.

Now we turn to algebraic invariants which can

be realized by such commuting A, B, modulo

passing to higher powers.

For a k × k Z+-matrix A, set GA = lim−→
A

Zk .

Regard GA as an ordered group, with the nat-

ural order: GA is the dimension group of A.
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Proposition. Suppose σA is a mixing SFT and

φ : GA → GA is an isomorphism commuting

with Â all of whose eigenvalues are algebraic

integers. There is a Z matrix B presenting

the action of φ such that BA = AB. Suppose

the spectral radius λB is a simple root of χB;

λB > 1; and λB is the number by which B

multiplies the Perron eigenvector of A. Then

for all large i, Bi is positive, commutes with A.

The proof is routine dimensiongroupology and

generalizes to finitely many commuting φj. This

gives many families of commuting SFTs.

When commuting matrices produce commut-

ing SFTs, their dimension groups are the same;

so, modulo determination of lower powers which

commute, we won’t get further commuting

SFTs directly from commuting matrices.
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SFTs σA and σB can commute without being
algebraically related in any way I see:

EXAMPLE (Nasu 95): σAT = TσA, T ∼ σB,

• A =

(
2 1
1 1

)

• χB(x) = (x + 1)2(x3 − 2x2 + x + 1).

(σA and T do not even have the same measure
of maximal entropy.)

Nasu gave a complicated algorithm which, given
an automorphism U of an irreducible SFT, will
find a matrix B such that σB ∼ U , *IF* U is
SFT. The example above came from applying
the algorithm to a particular automorphism.

It would be interesting to see any systematic
construction of commuting SFTs which need
not be algebraically related.
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Question (Nasu 1989). Must an expan-

sive automorphism of an irreducible SFT

be itself SFT?

EXAMPLE (D. Fiebig, 1996) A reducible

SFT S with an expansive automorphism U which

is not SFT.

Here, S consists of two fixed points p, q and

two connecting orbits from p to q. Concretely,

the fixed points and connecting orbits are

p = . . .000 . . . , . . .0002111 . . . ,

q = . . .111 . . . , . . .0003111 . . . .

U = S, except that U = S−1 on one of the

connecting orbits. U is expansive and totally

chain transitive but not SFT. D.F. (easily) also

elaborated this example to positive entropy.

We have a result which at least, after all this

time, addresses a meaningful case of the ques-

tion.
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THEOREM (B. 2004) A strictly sofic AFT

(almost finite type) shift S cannot commute

with a mixing SFT T .

Above, “mixing” can be replaced by “chain

recurrent”. A sofic shift is AFT if it a fac-

tor of an irreducible SFT by a biclosing map.

(Krieger showed this map is canonical). The

AFT sofic shifts enjoy various properties and

seem to be the one big, natural class of nice

sofic shifts.

We’ll outline the proof of the theorem. Let

S and T be as above. Notation: a map f is

totally P if fn has property P for all n > 0.
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Step 1: LEMMA A.

An expansive automorphism of a mixing SFT

is totally chain transitive.

(A subshift is totally chain transitive iff for all

n > 0 the SFT built from its allowed words of

length n is mixing.)

Step 2: setup with canonical cover.

We suppose S is strictly sofic AFT and ST =

TS. Lemma A then implies S is mixing. Let

π : S̃ → S be the canonical biclosing cover of

S by a mixing SFT. By “canonical”, T lifts to

an automorphism T̃ of S̃.

Step 3: T̃ is expansive.

Fibers of π are uniformly separated, because T

is expansive. Points within fibers are uniformly

separated because π is biclosing.
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STEP 4: T̃ is a mixing SFT.
Because T̃ is an expansive automorphism of
the mixing SFT S̃, Lemma A implies that T̃

is totally chain transitive. Now π : T̃ → T

is a closing factor map from a totally chain
transitive subshift onto a mixing SFT. A sofic
argument of Kitchens adapts to this situation
to show T̃ must be a mixing SFT.
(That argument. Suppose T̃ is not SFT. Then
for some mixing SFT U containing T̃ to T̃ , π

extends to a closing factor map U → T . Then
h(U) > h(T ) because U is mixing SFT and T is
a proper subsystem; and h(U) = h(T ) because
closing maps are finite to one. Contradiction.)

STEP 5: the contradiction.
Now π : T̃ → T is a biclosing map of mixing
SFTs, hence constant-to-one. But π : S̃ → S

is 1-1 a.e. (as the canonical cover) but not
everywhere (since S is strictly sofic). QED

The heart of the proof of Lemma A is the
following lemma (surprisingly difficult ?).
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Lemma. Suppose T is mixing SFT; S is an

expansive automorphism of T ; B is a closed

open set; and SB = B. Then B is trivial.

Proof sketch. Let µ be the measure of max.

entropy for T ; it is S-invariant. Choose k large

enough that S′ = SkT and S lie in the same

expansive component of the Z2 action, and

therefore have the same Pinsker algebra with

respect to µ, by a directional coding argument

from B-Lind [Expansive subdynamics].

Now suppose the partition B = {B, B′} is non-

trivial. Then the following list gives us the

desired contradiction.
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• h(S′, µ,B) = 0.

This holds because h(S, µ,B) = 0 (since

SB = B) and S and S′ have the same

Pinsker algebra w.r.t. µ.

• h(S′, µ,B) = h(T, µ,B).

This holds since SB = B implies for n > 0

that
n∨

i=0

(S′)iB =
n∨

i=0

(TSk)iB =
n∨

i=0

T iB .

• h(T, µ,B) > 0.

This holds since µ is a K-automorphism.

QED
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Periodic points of onto cellular automata.

A bonus section in the spirit of unanswered

questions ...

Let f denote a surjective endomorphism of a

full shift σ[N ], i.e., an onto one-dimensional

cellular automata.

Question.

Are the periodic points of f dense?

The answer is yes if f is right or left closing

(B-Kitchens) or if f has a point of equiconti-

nuity (Blanchard-Tisseur). Otherwise nothing

is known.

The sequel follows experimental mathematics

with Bryant Lee [in preparation], looking at

periodic and preperiodic data for the action of

f on points of given σN period.
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(Martin, Odlyzko and Wolfram [1984] explained

the pattern of jointly periodic points when f is

a group endomorphism.)

Definition.

νk(f, σN) = |{x ∈ Fix(σN)k : x is f − periodic}|,
and

ν(f, σN) = limk νk(f, σN)1/k.

Note, νk(f, σN) does not change if f is re-

placed by fσm, for any m. Looking at a fairly

large sample (including all span 4 onto au-

tomorphisms of the 2-shift), out to shift or-

bit periods of 19 to 26, we see no obvious

difference between maps which are closing or

not, or permutative or not. There are some

rigorous arguments in certain classes to show

ν(f, σN) > 1, or ν(f, σN) = N . We have no

method for showing lower bounds to ν(f, σN)

for any example.
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Question.
Is ν(f, σN) > 1 for every onto c.a. f?

Question.
Is ν(f, σN) ≥

√
N for every onto c.a. f?

For all large primes p, an onto c.a. f maps the
set of points of period p into itself. So, the
last question reflects a random maps heuris-
tic: if a pattern doesn’t force more periodicity,
then we see i.o. at least about the periodic-
ity we’d expect of a random map. An answer
yes is consistent with our data, which are sug-
gestive but (with the bound 26) certainly not
compelling.

Conjecture.
There exist f such that ν(f, σN) < N .

From our data, it seems obvious that the con-
jectured inequality is typical. (Equality holds
in the algebraic case and some other classes.)
But we can’t give a proof for any example.
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We know four ways to demonstrate ν(f, SN) is

large:

1. find a large shift fixed by f (or more gen-

erally by a power of f)

2. let f be a group endomorphism

3. use the algebra of a polynomial presenting

f in very special cases [F.Rhodes, 1988]

4. finding equicontinuity points.

In all but the first case we have ν(f, σN) = N .

The first trick can be used with some general-

ity:
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Proposition. Given the surjective c.a. f on

σN and ε > 0, there is an invertible c.a. φ such

that log(ν(φf, SN) > h(SN)− ε.

The proposition’s proof appeals to extension

theorems from symbolic dynamics [B-Krieger].

Now, some experimental results from Bryant’s

program. In row k, P denotes the number of

points of shift-period k which are also periodic

under the c.a. map, and L denotes the longest

c.a.-period of a point of shift period k.



Frac.

k Per. P1/k L1/k P L

9 0.50 1.85 1.58 256 63

10 0.25 1.74 1.40 256 30

11 0.50 1.87 1.69 1,024 341

12 0.06 1.58 1.23 256 12

13 0.50 1.89 1.67 4,096 819

14 0.25 1.81 1.20 4,096 14

15 0.50 1.90 1.19 16,384 15

16 0.00 1.00 1.00 1 1

17 0.50 1.92 1.38 65,536 255

18 0.25 1.85 1.30 65,536 126

19 0.50 1.92 1.62 262,144 9,709

20 0.06 1.74 1.22 65,536 60

21 0.50 1.93 1.21 1,048,576 63

22 0.25 1.87 1.34 1,048,576 682

23 0.50 1.94 1.39 4,194,304 2,047

Above: x0 + x1 on the 2-shift
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Frac.

k Per. P1/k L1/k P L

9 .48 1.84 1.55 247 54

10 .53 1.87 1.82 548 410

11 .18 1.71 1.60 375 176

12 .17 1.73 1.40 722 60

13 .20 1.76 1.59 1639 416

14 .21 1.79 1.62 3482 882

15 .23 1.81 1.59 7589 1095

16 .11 1.74 1.63 7707 2688

17 .07 1.72 1.60 10354 3230

18 .07 1.73 1.37 20565 324

19 .06 1.72 1.64 32320 13471

20 .06 1.74 1.64 68996 21240

21 .03 1.69 1.56 68835 11865

22 .02 1.67 1.60 89609 32428

23 .01 1.64 1.48 94324 9108

x0 + x1x2 on the 2-shift:
degree 1, linear in the left variable
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Frac.

k Per. P1/k L1/k P L

9 .30 1.75 1.27 157 9

10 .26 1.74 1.49 268 55

11 .38 1.83 1.57 793 143

12 .08 1.63 1.16 362 6

13 .15 1.72 1.63 1236 611

14 .12 1.72 1.51 2068 329

15 .09 1.70 1.50 3014 465

16 .09 1.72 1.50 6043 728

17 .10 1.75 1.68 14145 6783

18 .06 1.71 1.58 15753 4095

19 .07 1.74 1.60 38191 7619

20 .03 1.69 1.54 40396 5780

21 .01 1.65 1.48 37867 4011

22 .01 1.66 1.51 75309 9658

23 .01 1.67 1.57 144096 34477

x0x1 + x2 composed with x0 + x1x2 on σ[2]:
a map neither left nor right closing.
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Frac.

k Per. P1/k L1/k P L

9 .054 1.44 1.22 28 6

10 .176 1.68 1.46 181 45

11 .070 1.57 1.55 144 132

12 .001 1.14 1.12 5 4

13 .055 1.60 1.49 456 182

14 .026 1.54 1.35 428 70

15 .034 1.59 1.45 1121 285

16 .007 1.47 1.47 485 480

17 .016 1.56 1.55 2109 1734

18 .006 1.50 1.41 1594 549

19 .004 1.50 1.45 2452 1197

20 .005 1.54 1.50 6165 3640

21 .001 1.47 1.36 3627 693

22 .003 1.54 1.46 14004 4147

23 .002 1.53 1.53 18746 18538

x0 + x1 followed by x0 + x1x2
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Frac.

k Per. P1/k L1/k P L

9 .148 1.61 1.58 76 63

10 .088 1.57 1.52 91 70

11 .070 1.57 1.46 144 66

12 .057 1.57 1.36 236 42

13 .035 1.54 1.53 287 273

14 .020 1.51 1.39 330 105

15 .012 1.49 1.44 404 255

16 .023 1.58 1.54 1,525 1,008

17 .028 1.62 1.52 3,758 1,377

18 .009 1.54 1.53 2,386 2,250

19 .003 1.49 1.47 2,091 1,672

20 .001 1.44 1.31 1,635 240

21 .004 1.54 1.48 9,650 4,326

22 .001 1.47 1.40 4,896 1,848

23 .002 1.54 1.53 23,461 19,297

x0 + x1 composed with the involution which
flips x0 when x[−2,2] = 10x011.
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Frac.

k Per. P1/k L1/k P L

9 .1796 1.65 1.48 92 36

10 .0263 1.39 1.17 27 5

11 .1782 1.70 1.53 365 110

12 .0122 1.38 1.30 50 24

13 .1049 1.68 1.53 860 260

14 .0056 1.38 1.37 93 84

15 .0340 1.59 1.43 1,117 225

16 .0154 1.54 1.40 1,010 224

17 .0135 1.55 1.45 1,770 612

18 .0037 1.46 1.33 980 180

19 .0078 1.54 1.50 4,125 2,242

20 .0011 1.42 1.32 1,227 280

21 .0008 1.42 1.39 1,731 1,092

22 .0006 1.43 1.27 2,829 220

23 .0008 1.46 1.44 6,833 4,462

x−1 + x0x1 + x2, linear in both end variables
but not a group endomorphism.
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k

9 1.99 1.99 1.86 1.68 1.82 1.99 1.99

10 1.98 1.99 1.76 1.70 1.82 1.99 1.99

11 1.99 1.99 1.70 1.65 1.68 1.99 1.99

12 1.99 1.99 1.51 1.65 1.61 1.99 1.99

13 2.00 2.00 1.70 1.57 1.63 2.00 2.00

14 1.99 1.99 1.74 1.65 1.70 1.99 1.99

15 1.99 1.99 1.71 1.68 1.70 1.99 1.99

16 1.99 1.99 1.74 1.67 1.70 1.99 1.99

17 2.00 2.00 1.67 1.53 1.71 2.00 2.00

18 1.99 1.99 1.71 1.56 1.65 1.99 1.99

19 2.00 2.00 1.73 1.54 1.72 2.00 2.00

νo
k(·, S2) for the first 7 span-4 onto maps of

σ[2]. The other 59 give similar data (except

with fewer automorphisms).

(νo
k counts points of least shift period k.)
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k

9 1.89 1.76 1.74 1.90 1.90 1.91 1.91

10 1.80 1.58 1.25 1.83 1.78 1.81 1.91

11 1.66 1.69 1.75 1.73 1.78 1.85 1.92

12 1.71 1.75 1.78 1.84 1.68 1.85 1.84

13 1.73 1.72 1.79 1.73 1.72 1.87 1.93

14 1.66 1.61 1.73 1.73 1.63 1.81 1.91

15 1.66 1.71 1.60 1.73 1.74 1.85 1.92

16 1.68 1.64 1.74 1.71 1.72 1.79 1.93

17 1.69 1.53 1.73 1.68 1.72 1.84 1.91

18 1.68 1.46 1.69 1.68 1.71 1.83 1.91

19 1.67 1.61 1.68 1.67 1.69 1.81 1.93

νo
k(·, S2) for the first seven sporadic span 5

maps on σ[2] [Hedlund-Appel-Welch, 1963]. The

other 47 give similar data.
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