
EXPOSITORY NOTES ON DISTRIBUTION THEORY
AND OTHER TOPICS, FALL 2018

While these notes are under construction, I expect there will be many
typos.

The main reference for this is volume 1 of Hörmander, The analysis
of liner partial differential equations. I have picked a few of the most
useful and concrete highlights. The references are based on the 1989
hardcover second edition.

1. Generalities (from Ch. 2 and 3)

Definition 1.1. Let U be an open set in Rn. A distribution u ∈ D′(U)
is a linear function u : C∞0 (U) → C. One can write u(φ) =< u, φ >
and think of this, informally, as u(φ) =

∫
uφ. It is required that u is

continuous in the following sense:
For every K ⊂ U compact there exist C, k such that

|u(φ)| = | < u, φ > | ≤ C
∑
|α|≤k

sup
x
|∂αφ| (1)

for every φ ∈ C∞0 (U) supported in K.

If one k works for all K, u is of finite order. The smallest such k is
the order of u.

We will need an equivalent formulation of the continuity condition.

Definition 1.2. Let φj, φ ∈ C∞0 (U). The sequence φj → φ in C∞0 (U)
if there exists a compact subset of U which contains the support of all
φj, φ and for every fixed α, supx |∂α (φj(x)− φ(x)) | → 0 as j →∞.

Theorem 1.3. A linear function u : C∞0 (U) → C is a distribution if
and only if u(φj)→ u(φ) for every φj → φ in C∞0 (U).

Proof. To show that if u is a distribution, then u(φj)→ u(φ) for every
φj → φ in C∞0 (U) is clear from the definition. The other half is an easy
exercise in negations. �

Examples:

(1) If ũ is a locally integrable function, u(φ) :=
∫
ũφ. This identifies

the function ũ with a distribution u.
(2) Dirac delta function. δa(φ) = φ(a)

1
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(3) Weak derivatives: If u is a smooth function, and φ ∈ C∞0 is
a test function, α = (α1, · · · , αn) is a multi-index and ∂αu =
∂α1
x1
· · · ∂αnxn u, then

< ∂αu, φ >:=
∫
∂αuφ = (−1)|α|

∫
u∂αφ = (−1)|α| < u, ∂αφ >.

(integration by parts). This motivates the definition of ∂αu
for any distribution u: < ∂αu, φ >= (−1)|α| < u, ∂αφ >.

(4) It takes some work (thm. 4.4.7 in Hörmander) and we will not
prove this, but the above essentially accounts for all possible
distributions:

If u ∈ D′(U) then there exists a locally finite family of con-
tinuous functions fα (each compact subset of U intersects only
finitely many of the supports of the fαs) such that

u =
∑
α

∂αfα

Definition 1.4. A sequence of distributions ui converges to u in D′(U)
(or in the sense of distribution theory) if ui(φ) → u(φ) for every φ ∈
C∞0 (U)

Also, if ui ∈ D′(U) and for each fixed φ ∈ C∞0 (U) the limit ui(φ)
exists and is denoted u(φ), then u is automatically a distribution. See
Theorem 2.1.8. We will not prove this.

Definition 1.5. Let u ∈ D(U) and f ∈ C∞(U). Then the distributions
∂u
∂xk

and fu are defined by(
∂u

∂xk

)
(φ) = −u

(
∂

∂xk

)
(fu) (φ) = u(fφ)

Unlike classical convergence, if ui → u in D′(U), then ∂αui → ∂αu
in D′(U) is trivial.

Example 1: Let H be the Heavyside function. Then H ′ = δ0.
The following will be worked out in class:
If E is the fundamental solution of the Laplace operator, ∇E in the

sense of distributions agrees with the locally integrable function ∇E
defined for x 6= 0, but ∆E in the sense of distributions does not agree
with the locally integrable function ∆E = 0 defined for x 6= 0. In fact
∆E = δ0.

Definition 1.6. A distribution u is defined to be 0 in an open set
V ⊂ U if u(φ) = 0 for every φ ∈ C∞0 (V ). The union of all such subsets
V is the largest open set where u is 0, and the complement of that is
defined to be the support of u.
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Thus the support of a distribution u ∈ D(U) is always (relatively)
closed in U. If the support of u is compact, u is called compactly sup-
ported. The set of compactly supported distributions in U is denoted
by E ′(U)

Recall the support of a function φ is the closure of the set {φ(x) 6= 0}.
If u ∈ D′(Rn) and φ ∈ C∞0 (Rn), and the support of φ and u are disjoint,
then u(φ) = 0. However, if φ is zero on the support of u, it does not
follow that u(φ) = 0. Example: δ′(x).

If u ∈ E ′(U), u(φ) is well defined for φ ∈ C∞: Let K be the support
of u, K ⊂ V ⊂ U with V open. There exists a smooth cut-off function
ζ ∈ C∞0 (U), and ζ = 1 in V . Then u(ζφ) is well-defined, and is
independent of the choice of ζ. Define u(φ) = u(ζφ) for ζ as above.

Definition 1.7. A distribution u is defined to be smooth in an open
set V ⊂ U if there exists ũ ∈ C∞(V ) such that u(φ) =

∫
ũ(x)φ(x)dx

for all φ ∈ C∞0 (V ) The union of all such subsets V is the largest open
set where u is smooth, and the complement of that is defined to be the
singular support of u.

2. Distributions supported at one point

Theorem 2.1. If u ∈ D′(Rn) is supported at a point, say 0, then u is
a finite linear combination

u =
∑

cα∂
αδ

Proof. Assume u is of order k (and prove: any compactly supported
distribution is of finite order). Pick a test function φ and write φ(x) =
T (x) + R(x) the kth order Taylor polynomial plus remainder. u(T ) is
what we want (check!), and the point is to show that u(R) = 0 where
R is the remainder. We know |R(x)| ≤ C|x|k+1 for |x| ≤ 1 and in fact
|∂αR(x)| ≤ C|x|k+1−|α| for all |α| ≤ k. Let ε > 0, and let χ be a cut-off
function, identically 1 in a neighborhood of 0.
Then |u(R)| = |u(χ

(
x
ε
)R
)
≤ C

∑
|α|≤k supx |∂α(χ(x

ε
)R)| ≤ Cε. Now

let ε→ 0. �

Application to PDE: Let E = 1
|x|n−2 (n ≥ 3). Then ∆E = 0 for x

away from 0 by calculation, thus ∆E is a distribution supported at 0.
It is a finite linear combination of the delta function and its derivatives.
An additional homogeneity argument shows ∆E = cδ.

If u is a locally integrable function in Rn − {0}, u is homogeneous
of degree α if u(tx) = tαu(x) for all t > 0 and x 6= 0. Denoting
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φt(x) = tnφ(tx) this is equivalent to∫
uφ = tα

∫
uφt

and the definition of a homogeneous distribution in Rn (or Rn − {0})
is

u(φ) = tαu(φt)

for every φ ∈ C∞0 (Rn) or C∞0 (Rn − {0}).

3. Convolutions (Chapter 4 in Hörmander’s book)

The major goal of this section is to prove
1) If f ∈ E ′(Rn), then there exists u ∈ D′(Rn) such that ∆u = f .
2) If u, f are as above, and f ∈ C∞(V ) for some open set V , then

u ∈ C∞(V ).
Both of these goals follow from the properties of the convolution of

a distribution with a compactly supported distribution. Part 1 follows
by writing u = E ∗ f , ∆u = (∆E) ∗ f = δ ∗ f = f , but we have to
assign rigorous meaning to this. Part 2 follows from the fact that the
fundamental solution E is C∞ away from 0. The exact same results
hold for ∂

∂t
−∆ but not ∂2

∂t2
−∆.

Definition 3.1. If u ∈ D′ (Rn) and φ ∈ C∞0 (Rn),

u ∗ φ(x) =< u, φ(x− ·) > (where · stands for y, and u acts in the y variable)

Check u ∗φ ∈ C∞, ∂α(u ∗φ)(x) = (∂αu) ∗φ = u ∗ (∂αφ)(x): We have

φ(x− y + εei)− φ(x− y) = ε
∂

∂xi
φ(x− y) +R(x− y, ε)

where

R(x− y, ε) =

∫ 1

0

d2

dt2
(φ(x− y + tεei)) (1− t)dt

= ε2
∫ 1

0

(
∂2φ

∂x2i

)
(x− y + tεei)(1− t)dt

Fix x. R(x− y, ε) is in C∞0 , and supy |∂αyR(x− y, ε)| ≤ Cαε
2. Using the

continuity condition (1) we see

lim
ε→0

〈
u,
R(x− ·, ε)

ε

〉
= 0
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and

lim
ε→0

u (φ(x− ·+ εei))− u (φ(x− ·))
ε

= u(
∂

∂xi
φ(x− ·)) =

∂u

∂xi
(φ(x− ·)

Check support(u ∗ φ) ⊂ support u + support φ: Fix x. If φ(x − ·)
is supported in the complement of support u, then u(φ(x − ·) = 0 by
the definition of support u. If u(φ(x − ·) 6= 0, then ∃ y ∈ support u
and y ∈ support φ(x − ·). Thus y = lim yi with φ(x − yi) 6= 0, and
x− y ∈ support φ.

Finally, if x ∈ supportu ∗ φ, there exist xi → x with u ∗ φ(xi) 6= 0
and

xi ∈ support φ+ support u

x ∈ support φ+ support u = support φ+ support u

because support u is compact.
We also have

Theorem 3.2. Let u ∈ D′ (Rn), and φ, ψ ∈ C∞0 (Rn). Then (u∗φ)∗ψ =
u ∗ (φ ∗ ψ).

Proof. Before starting the proof, review Definition (1.2). u ∗ φ ∈ C∞.
Fix x.

(u ∗ φ) ∗ ψ(x) =

∫
(u ∗ φ)(x− y)ψ(y)dy

= lim
h→0+

∑
k∈Zn

(u ∗ φ)(x− kh)ψ(kh)hn

= lim
h→0+

u

(∑
k∈Zn

φ(x− kh− ·)ψ(kh)hn

)

= u

(∫
φ(x− y − ·)ψ(y)dy

)
In the last line, we used the (obvious) fact that, for x fixed,∑

k∈Zn
φ(x− kh− z)ψ(kh)hn →

∫
φ(x− y − z)ψ(y)dy

uniformly in z, and the same is true for after differentiating with respect
to z an arbitrary number of times. Also, both LHS and RHS are
supported in a fixed compact set. In other words, LHS → RHS in
C∞0 . �

This implies the important theorem on approximating distributions
by C∞ functions.
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Theorem 3.3. Let u ∈ D′ (Rn), and let ηε be the standard mollifier.
Then u ∗ ηε ∈ C∞ (Rn) and u ∗ ηε → u in the sense of distribution
theory (as ε→ 0).

Proof. We have to check

(u ∗ ηε)(φ)→ u(φ)

for every φ ∈ C∞0 (Rn). The proof is based on the observation that
u(φ) = u ∗φ−(0) where φ−(x) = φ(−x). So it suffices to show (u ∗ ηε) ∗
φ(0)→ u ∗ φ(0). But

(u ∗ ηε) ∗ φ(0) = u ∗ (ηε ∗ φ)(0)→ u ∗ φ(0)

since ηε ∗ φ→ φ in C∞0 . �

Now we define the convolution of two distribution u1, u2, one
of which is compactly supported.

This is defined so that the formula

(u1 ∗ u2) ∗ φ = u1 ∗ (u2 ∗ φ)

holds for all φ ∈ C∞0 (Rn). For simplicity, let’s assume u2 is compactly
supported. Instead of defining < u1 ∗ u2, φ > it suffices to define
(u1 ∗ u2) ∗ φ(0). This is done in the obvious way:

(u1 ∗ u2) ∗ φ(0) = u1 ∗ (u2 ∗ φ)(0)

We have to check that u1 ∗ u2 satisfies the continuity condition. Let
φj → 0 in C∞0 (Rn) (see Definition (1.2)). Then so does u2 ∗ φj, and
u1 ∗ (u2 ∗ φj)(0)→ 0.

Also, it τh denotes a translation, (τhφ)(x) = φ(x+h), then τh(u∗φ) =
u ∗ (τhφ) and

(u1 ∗ u2) ∗ φ(h) = τh ((u1 ∗ u2) ∗ φ) (0) = ((u1 ∗ u2) ∗ τhφ) (0)

= u1 ∗ (u2 ∗ τhφ)(0) = u1 ∗ (τh(u2 ∗ φ)) (0)

= u1 ∗ (u2 ∗ φ) (h)

Proposition 3.4. Let u1, u2 ∈ D′ (Rn), one of which is compactly
supported. Then

support (u1 ∗ u2) ⊂ support u1 + support u2

Proof. Let ηε be a standard mollifier supported in a ball or radius ε. It
suffices to show

support (u1 ∗ u2) ⊂ support u1 + support u2 + support ηε0
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for all ε0 > 0. We do know

support (u1 ∗ u2 ∗ ηε) ⊂ support u1 + support u2 + support ηε

⊂ support u1 + support u2 + support ηε0

for all 0 < ε < ε0. Also remark that if A is closed and u is a distribution
such that support u ∗ ηε ⊂ A for all ε0 > ε > 0, then support u ⊂ A.
This amounts to showing that if u ∗ ηε = 0 in Ac, then u = 0 in Ac,
which follows from u ∗ ηε → u in the sense of distributions. �

Theorem 3.5. Let u1, u2, u3 distributions in Rn, two of which are com-
pactly supported. Then

(u1 ∗ u2) ∗ u3 = u1 ∗ (u2 ∗ u3)

Proof. The proof follows by noticing it suffices to check
((u1 ∗ u2) ∗ u3) ∗ φ = (u1 ∗ (u2 ∗ u3)) ∗ φ for every φ ∈ C∞0 (Rn) which
follows easily from the defining property of Theorem (3.2). �

Theorem 3.6. Let u1, u2 ∈ D′ (Rn), one of which is compactly sup-
ported. Then

u1 ∗ u2 = u2 ∗ u1

Proof. The strategy is to show that (u1∗u2)∗(φ∗ψ) = (u2∗u1)∗(φ∗ψ)
for all test functions φ, ψ. This is done using the associativity property
Theorem (3.2) together with the fact that convolutions of functions is
commutative. We will not prove this �

Theorem 3.7. Let u1, u2 ∈ D′ (Rn), one of which is compactly sup-
ported. Then

∂α(u1 ∗ u2) = (∂αu1) ∗ u2 = u1 ∗ ∂αu2 (2)

Proof. We already know ∂α(u ∗ φ) = (∂αu) ∗ φ = u ∗ (∂αφ), so the
theorem is proved by convolving (2) with φ. �

Theorem 3.8. Let u1, u2 ∈ D′ (Rn), one of which is compactly sup-
ported. Then

sing support (u1 ∗ u2) ⊂ sing support u1 + sing support u2

Proof. The proof is based on the fact that if one of u1, u2 is smooth, so is
u1∗u2. Let χ1, χ2 be supported in small neighborhoods of sing support u1,
sing support u2, so that (1− χ1)u1 and (1− χ2)u2 are smooth. Then

sing support (u1 ∗ u2) ⊂ sing support (χ1u1) ∗ (χ2u2) ⊂ support χ1u1 + support χ2u2

�
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Now we come back to PDEs. Let P (D) be a constant coefficient dif-
ferential operator. A distribution E ∈ D′ (Rn) is called a fundamental
solution if P (D)E = δ. We already know formulas for (the) funda-
mental solution of the Laplace and heat operators. We will write down
later several fundamental solutions of the wave operator.

Theorem 3.9. If sing support (E) = {0}, U is open and u ∈ D′(U) is
such that P (D)u ∈ C∞(U), then u ∈ C∞(U)

Proof. Let V ⊂⊂ U an arbitrary open subset. It suffices to show
u ∈ C∞(V ). Let ζ ∈ C∞0 (U), ζ = 1 on V . Then P (D)(ζu) = P (D)u
in V , and in particular is C∞ there. Finally,

ζu = ζu ∗ δ = ζu ∗ P (D)(E) = (P (D)(ζu)) ∗ E

and therefore

sing support (ζu) ⊂ sing support (P (D)(ζu)) + {0} = sing support (P (D)(ζu))

But we know that sing support (P (D)(ζu)) is disjoint from V , so sing support (ζu)
is also disjoint from V , in other words ζu, which equals u in V , is
smooth there. �

4. The Fourier transform

Definition 4.1. The space of Schwartz functions S is defined by the
requirement that all semi-norms

sup
x
|xα∂βf |

be finite. Convergence in this space means

sup
x
|xα∂β(fn − f)| → 0

for all α, β.

The Fourier transform F(f) = f̂ is defined by

f̂(ξ) =

∫
Rn
e−ix·ξf(x)dx

The following are elementary properties which will be checked in
class:

Lemma 4.2. Let f ∈ S, denote fλ(x) = f(λx) (λ > 0), τyf(x) =

f(x + y) (y ∈ Rn ) and Dj = 1
i
∂
∂xj

. Then f̂ ∈ S and f → f̂ is
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continuous in the topology of S. Also,

f̂λ(ξ) =
1

λn
f̂(
ξ

λ
)

F(τyf)(ξ) = eiy·ξf̂(ξ)

F(Djf)(ξ) = ξj f̂(ξ)

F(xjf)(ξ) = −Dj f̂(ξ)

F
(
e−
|x|2
2

)
(ξ) = (2π)n/2e−

|ξ|2
2∫

fĥ =

∫
f̂ g for all f̂ , ĥ ∈ S

F (f ∗ g) = f̂ ĝ

These easily imply the inversion formula and Plancherel formulas ,
which will be proved in class.

Theorem 4.3. Let f ∈ S. Then

f(x) =
1

(2π)n

∫
Rn
eix·ξf̂(ξ)dξ

Also, ∫
Rn
f(x)g(x)dx =

1

(2π)n

∫
Rn
f̂(ξ)ĝ(ξ)dξ

Definition 4.4. The space of continuous linear functionals u : S → C
is the space of tempered distributions S ′. u ∈ S ′ if and only if there
exists N and C such that

| < u, φ > | ≤ C
∑

|α|,|β|≤N

sup
x
|xα∂β(f)|

for all φ ∈ S. If u ∈ S ′, then û ∈ S ′ is defined by

< û, φ >=< u, φ̂ >

for all φ ∈ S.

Example: The constant function 1 ∈ S and 1̂ = (2π)nδ.
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5. Integrating functions on a k-dimensional hypersurface
in Rn

This section uses geometric notation: coodinates are written xi.

Let S be a compact C1 k-dimensional hypersurface in Rn.
We will integrate f : S → R, continuous.
Each point in S has a neighborhood (a ball B ) such that S ∩B can

be parametrized:
There exists

P : C → S ∩B ⊂ Rn

where C is open in Rk and P is one-to-one and onto. We assume P is
C1 and the n vectors ∇Pi are linearly independent. This insures S is a
C1 hypersurface. S can be covered by finitely many such balls Bri(xi).

Before anything else, we break up f as a finite sum of continuous
functions fi, each supported in one such B.

For convenience and without loss of generality, we assume f has been
extended as a continuous function to Rn, and is supported in the union
of the Bri(xi).

Theorem 5.1. Let f : Rn → R be a C l function supported in a finite
union of k balls ∪ki=1Bri(xi). Then there exist C l functions fi supported
in Bri(xi) such that f =

∑
fi.

Proof. First we argue that there are si < ri such that the support of
f is covered by ∪Bsi(xi). Indeed, the infinite union ∪si<riBsi(xi) cover
the compact support of f , so finitely many also do.

Let χi be C l functions supported in Bri(xi), χi = 1 on Bsi(xi). (It
is easy to construct such functions). Write

0 = f(x)(1− χ1(x))(1− χ2(x)) · · · (1− χk(x))

so

f(x) = f(x)χ1(x) + f(x)(1− χ1(x))χ2(x) + f(x)(1− χ1(x))(1− χ2(x))χ3(x)

+ · · · f(x)(1− χ1(x))(1− χ2(x)) · · ·χk(x)

=: f1(x) + f2(x) + · · · fk(x)

�

We proceed to integrate one of the fis, written as f from now on.
The Euclidean metric in Rn induces a Riemannian metric on S. With

respect to there coordinates, gij(x) is defined as the Euclidean inner
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product of the push-forward of the usual basis vectors in Rk:

gij(x) =
∂P (x)

∂xi
· ∂P (x)

∂xj

In matrix notation,

(gij(x)) = (DP (x))T DP (x)

The standard Riemannian geometry definition of
∫
S
fd V ol is∫

S

fd V ol =

∫
C

f (P (x))
√
| det(gij(x))|dx1 · · · dxk

An explicit calculation shows this is independent of the parametriza-
tion. It agrees with familiar formulas in low dimensions:

Example 1: k = 1 (curves in Rn). Here P : (a, b) → Rn, P ′(x) 6= 0
for all x, and g11(x) = |P ′(x)|2, so∫

S

fds =

∫ b

a

f(P (x)|F ′(x)|dx

Example 2: k = 2, n = 3 (surfaces in R3).
Here DP (x) has two columns, ∂P

∂x1
and ∂P

∂x2
.

Exercise (using a suitable rotation)

| det(gij)| =
∣∣∣∣ ∂P∂x1 × ∂P

∂x2

∣∣∣∣2
so this is consistent with the Math 241 formula∫

S

fdS =

∫
C

f(P (x))

∣∣∣∣ ∂P∂x1 × ∂P

∂x2

∣∣∣∣dx1dx2
Example 3: k = n.
Here (gij) = (DP (x))T DP (x), det(gij) = det(DP )2 so we get the

change-of-variables formula∫
S

fdx =

∫
C

f(P (x))| detDP (x)|dx

Example 4 (what we need to prove the divergence theorem)
Let k = n− 1 and S given (locally) as the graph of a function r:

P (x1, · · ·xn−1) = (x1, · · ·xn−1, r(x1, · · ·xn−1))
Then
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(gij(x)) =

 1 0 · · · ∂r
∂x1

· · · · · · · · · · · ·
0 · · · 1 ∂r

∂xn−1




1 0 · · · 0
0 1 · · · 0
0 0 · · · 1
∂r
∂x1

∂r
∂x2

· · · ∂r
∂xn−1



= I(n−1)×(n−1) +


∂r
∂x1
∂r
∂x2

· · ·
∂r

∂xn−1

( ∂r∂x1 ∂r
∂x2
· · · ∂r

∂xn−1

)

Exercise: det(gij) = 1 + |∇r|2.
So

∫
S

fdS =

∫
C

f(x1, · · · , r(x1, · · ·xn−1))
√

1 + |∇r|2dx1 · · · dxn−1

5.2. The length of a curve and the equation for geodesics as
an Euler-Lagrange equation. In the same set-up as before, let
x : [a, b] → C ⊂ Rk ( C open) be a parametrized C2 curve, P : C →
S ⊂ Rn the parametrization of (a subset of) the surface S (P is C2,
DP (x) has maximal rank for all x). The length of the parametrized
curve on S given by γ(s) = P ◦ x(s) is∫ b

a

|(P ◦ x(s))′|ds =

∫ b

a

√
< (DP (x(s))x′(s), (DP (x(s))x′(s) >ds

=

∫ b

a

√∑
gij(x(s)ẋi(s)ẋj(s)ds (3)

We can forget P and S, and, given a Riemannian metric gij(x) on C
(that is, the matrix gij(x) is positive definite for every x, and C1, we
can define the length of a parametrized curve x(s) by (3).

We will prove the following:

Theorem 5.3. If x(s) is parametrized by arc-length (that is,
∑
gij(x(s)ẋi(s)ẋj(s) =

1), and if x(s) is the shortest path from A = x(a) to B = x(b), (A,B
fixed) then it satisfies the geodesic equation

ẍi(s) + Γijk(x(s))ẋj(s)ẋk(s) = 0 (4)
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where the Christoffel symbols Γijk are defined by

Γijk(x) =
∑

gil(x)Γljk(x)

where(
gil(x)

)
=
(
gil(x)

)−1
matrix inverse

Γljk =
1

2

(
∂glj
∂xk

+
∂glk
∂xj
− ∂gjk

∂xl

)
Proof. The proof follows section 31.2 of volume 1 of the books by
Dubrovin, Fomenko and Novikov. Let L1(ẋ, x) be the Lagrangian den-

sity L1(ẋ, x) =
√∑

gij(x(s)ẋi(s)ẋj(s), and L2(ẋ, x) = (L1(ẋ, x))2 =∑
gij(x(s)ẋi(s)ẋj(s). Easy calculus shows that if x is parametrized

by arc-length, then the Euler-Lagrange equations for L1 are equivalent
with the Euler-Lagrange equations for (L1)

2.
It is also easy to see that the Euler-Lagrange equations for

L2(ẋ, x) =
∑

gij(x(s)ẋi(s)ẋj(s)

are exactly (4). We will also show that they satisfy
∑
gij(x(s))ẋi(s)ẋj(s) =

const.. This is ”conservation of energy”, similar to the conservation
formulas for the energy-momentum tensor for PDEs which are Euler-
Lagrange equations.

�

6. The gradient of a characteristic function

This is background material (formula 3.1.5 in Hörmander’s book).

Theorem 6.1. Let U be an open set with C1 boundary. Then

∇χU = −νdS

where dS is surface measure on ∂U and ν is the outward pointing unit
normal.

Proof. Let h : R→ R be a smoothed out Heaviside function: h(x) = 0
if x ≤ 0, h(x) = 1 if x ≥ 1 and smooth in-between. Using a par-
tition of unity, it suffices the prove the theorem for test functions φ
supported in a small neighborhood of x0 ∈ ∂U , where U agrees with
xn > r(x1, · · ·xn−1). Then
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< ∇χU , φ >= − < χU ,∇φ >

= − lim
ε→0

∫
h(
xn − r(x1, · · ·xn−1)

ε
)∇φ(x1, · · · , xn)dx1 · · · dxn

= lim
ε→0

∫
∇
(
h(
xn − r(x1, · · ·xn−1)

ε
)

)
φ(x1, · · · , xn)

= lim
ε→0

∫
Rn

1

ε
h′(

xn − r(x1, · · ·xn−1)
ε

) · (−∇r(x1, · · · , xn−1), 1)φ(x)dx

=

∫
Rn−1

(−∇r(x1, · · · , xn−1), 1)

(
lim
ε→0

∫
R

1

ε
h′(

xn − r(x1, · · ·xn−1)
ε

)φ(x)dxn

)
dx1 · · · dxn−1

=

∫
Rn−1

φ(x1, · · · xn−1, r(x1, · · · rx−1))(−∇r(x1, · · · , xn−1), 1)dx1 · · · dxn−1

= −
∫
∂U

φνdS

(by the Calculus formulas for ν and dS). We used the fact that 1
ε
h′(x

ε
)

is an ”approximation to the identity”.
�

7. Solving the Cauchy problem for the wave equation in 1
and 3 dimensions

To solve (in n+ 1 dimensions, i.e. x ∈ Rn, t ∈ R)

utt −∆u = 0 if t > 0 (5)

u(0, x) = f(x)

ut(0, x) = g(x)

with u ∈ C2, u(t, ·) ∈ S(Rn) for each fixed t > 0, take Fourier transform
in x:

ûtt(t, ξ) + |ξ|2û(t, ξ) = 0 if t > 0

û(0, ξ) = f̂(ξ)

ût(0, ξ) = ĝ(ξ)

This ODE has solution

û(t, ξ) = cos(t|ξ|)f̂(ξ) +
sin(t|ξ|)
|ξ|

ĝ(ξ)

As it is clear from this formulation, it suffices to solve the problem
with f = 0.
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So we want u(t, x) such that

û(t, ξ) =
sin(t|ξ|)
|ξ|

ĝ(ξ)

We are looking for a compactly supported distribution E(t) ∈ E ′(Rn)
such that

Ê(t) =
sin(t|ξ|)
|ξ|

At least in 1 and 3 dimensions, such a distribution is well-known and
”elementary” (see the next section for other dimensions).

Then the solution will be

u(t, x) = E(t) ∗ g
or, equivalently

û(t, ξ) = Ê(t, ξ)ĝ(ξ)

(Background facts: if E is a compactly supported distribution and
g ∈ S, E ∗ g(x) is defined as < E, g(x− ·) >. Its Fourier transform is

Êĝ. See Theorem 7.1.5 in Hörmander’s book).

Also, for a compactly supported distribution E, Ê(ξ) =< E, e−ix·ξ >
(E acts in the x variable). See Theorem 7.1.14 in Hörmander’s book.

In one dimension, the Fourier transform of the characteristic function
of [−t, t] is ∫ t

−t
e−ix·ξdx = 2

sin(tξ)

ξ

We found that in one space dimension

E(t, x) =
1

2
χ[−t,t]

and the solution to (5) with f = 0 is

u(t, x) =

∫
E(t, y)g(x− y)dy

=
1

2

∫ t

−t
g(x− y)dy

=
1

2

∫ x+t

x−t
g(y)dy

In 3 space dimensions, we compute the Fourier transform of surface
measure on S2:

∫
S2 e

−ix·ξdSx. Without loss of generality, ξ = (0, 0, |ξ|).



16EXPOSITORY NOTES ON DISTRIBUTION THEORY AND OTHER TOPICS, FALL 2018

Integrating in spherical coordinates (x1, x2, x3) = (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)),∫
S2

e−ix3|ξ|dSx =

∫ π

0

∫ 2π

0

e−i cos(φ)|ξ| sin(φ)dφdθ

= 2π

∫ π

0

e−i cos(φ)|ξ| sin(φ)dφ

= 2π

∫ 1

−1
e−iλ|ξ|dλ

= 4π
sin(|ξ|)
|ξ|

By the exact same calculation, the Fourier transform of surface measure

on the sphere of radius t > 0 is 4πt sin(t|ξ|)|ξ| .

Thus in 3 dimensions, if f = 0,

E(t, x) =
1

4πt
surface measure on the sphere of radius t

and

u(t, x) =
1

4πt

∫
∂B(0,t)

g(x− y)dSy

=
1

4πt

∫
∂B(x,t)

g(y)dSy

while, in general, the solution to (5) is

u(t, x) =
∂

∂t

(
1

4πt

∫
∂B(x,t)

f(y)dSy

)
+

1

4πt

∫
∂B(x,t)

g(y)dSy

8. The formula for the Cauchy problem for the wave
equation in n+ 1 dimensions

We need the (famous) family of distributions χα+. For α > −1, these
are functions defined by

χα+ =
xα+

Γ(α + 1)

Using properties of the Γ function,(
χα+
)′

= χα−1+
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This allows one to define χα+ for α ≤ −1. Of special interest to us are

χ0
+(x) = H(x) (the Heaviside function)

χ
− 1

2
+ (x) =

1√
π

1√
x
H(x)

χ−1+ = H ′ = δ

The general statement (which we will not prove right now) is(
∂2

∂t2
− ∂2

∂x21
− · · · − ∂2

∂x2n

)
χ

1−n
2

+

(
t2 − · · · − x2n

)
= 4π

n−1
2 δ

The definition of the composition of a distribution with a smooth
function is explained in the next section.

The above formula provides a fundamental solution for the wave
equation (there are others, see Hörmander’s book). The solution to
the Cauchy problem,(

∂2

∂t2
− ∂2

∂x21
− · · · − ∂2

∂x2n

)
u = 0 if t > 0

u(0, x) = 0, ut(0, x) = f

is

u(t, x) = (E+(t, ·) ∗ f) (x)

where E+ is defined as follows in the open set t > 0:

E+ =
1

2π
n−1
2

χ
1−n
2

+

(
t2 − · · · − x2n

)
This agrees with the results from the previous section. To see that

in 3 dimensions, we need the important formula δ(f) = dS
|∇f | if f is C1,

∇f(x) 6= 0 if f(x) = 0 and dS is surface measure on f = 0 (explained
in the next section).

9. Compositions with smooth functions and the chain rule

Theorem 9.1. Let u ∈ D′(R), and f : Rn → R C∞, such that
∇f(x) 6= 0 for all x ∈ supp u. Then there exists a unique distribution
u ◦ f (or f ∗u) such that if ui is a sequence of continuous functions,
ui → u in the sense of distribution theory, then ui ◦ f → u ◦ f . As a
consequence, the chain rule is true.

Proof. Using a partition of unity, it suffices to prove this for test func-
tions supported in a sufficiently small open set. Let U open such that
∂f
∂xn

is bounded away from 0 on U . Consider the map Φ defined by
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(x1, · · ·xn) → (x1, · · · , xn−1, f(x1, · · · , xn)). By the inverse function
theorem, after possibly shrinking U , we have Φ : U → V , one to one,
onto, with a smooth inverse, and V open. Also,

f(Φ−1(x1, · · · , xn)) = xn for all (x1, · · · , xn) ∈ V
Let φ be a test function supported in U , and let ui be a sequence of

continuous functions converging to u in the sense of distribution theory.
Then

< ui ◦ f, φ >=

∫
U

ui(f(x))φ(x)dx

=

∫
V

ui(xn)φ(Φ−1(x1, · · · , xn))| det
∂(Φ−1)

∂x
|dx

=

∫
Rn−1

< ui, φ(Φ−1(x1, · · · , ·))| det
∂(Φ−1)

∂x
| > dx1 · · · dxn−1

→
∫
Rn−1

< u, φ(Φ−1(x1, · · · , ·))| det
∂(Φ−1)

∂x
| > dx1 · · · dxn−1

To pass to the limit inside the integral, we need the following lemma:
Then < ui, φ(x1, · · · , xn−1, ·) >→< u, φ(x1, · · · , xn−1, ·) and the se-

quence is uniformly bounded in (x1, · · · , xn−1). This follows from the
uniform boundedness principle in a Frechet space. As a consequence,
the chain rule is true. Indeed, given u we know we can find ui → u
in D′ (R), ui ∈ C∞. Let f : Rn → R, C∞, such that ∇f(x) 6= 0 for
all x. Then ui ◦ f → u ◦ f as above, and ∇(ui ◦ f) = (u′i ◦ f)∇f →
(u′ ◦ f)∇f = ∇(u ◦ f). So ∇(u ◦ f) = (u′ ◦ f)∇f . �

Remark 9.2. As an important application, let U be a C1 bounded
domain given by a defining function r. U = {r > 0}. Then H ◦r = χU ,
and ∇(H ◦ r) = ∇(χU) = dS ∇r|∇r| , but ∇(H ◦ r) also equals H ′(r)∇r =

δ(r)∇r. Here δ stands for the delta function on the real line. As a
consequence, δ(f) = dS

|∇f | where dS is surface measure on the surface

f = 0.

At this stage, χ
1−n
2

+ (t2 − · · · − x2n) is defined in the set Rn+1 − {0},
and homogeneous of degree −n+ 1.

To extend it to D′(Rn+1) we need the following technical result (The-
orem 3.2.3 in Hörmander). We will not prove this in class.

Theorem 9.3. If u ∈ D′(Rn−{0}) is homogeneous of degree α and α
is not an integer ≤ −n, then u has a unique extension to D′(Rn), and
this extension is also homogeneous of degree α.


