EXPOSITORY NOTES ON DISTRIBUTION THEORY
AND OTHER TOPICS, FALL 2018

While these notes are under construction, I expect there will be many
typos.

The main reference for this is volume 1 of Hormander, The analysis
of liner partial differential equations. I have picked a few of the most
useful and concrete highlights. The references are based on the 1989
hardcover second edition.

1. GENERALITIES (FROM CH. 2 AND 3)

Definition 1.1. Let U be an open set in R™. A distribution u € D'(U)
is a linear function u : C§°(U) — C. One can write u(¢) =< u,¢ >
and think of this, informally, as u(¢) = [u¢. It is required that u is
continuous in the following sense:

For every K C U compact there exist C', k such that

u(@)| = | <u,¢>|<C Y sup|dg| (1)

laj<k ©
for every ¢ € C5°(U) supported in K.

If one k works for all K, u is of finite order. The smallest such k is
the order of w.
We will need an equivalent formulation of the continuity condition.

Definition 1.2. Let ¢;,¢ € C5°(U). The sequence ¢; — ¢ in C5°(U)
if there exists a compact subset of U which contains the support of all
¢;, ¢ and for every fixed «, sup, [0 (¢;(z) — ¢(x))| — 0 as j — oo.

Theorem 1.3. A linear function u : C§*(U) — C is a distribution if
and only if u(¢;) — u(@) for every ¢p; — ¢ in C3°(U).

Proof. To show that if u is a distribution, then u(¢;) — u(¢) for every
¢; = ¢ in C3°(U) is clear from the definition. The other half is an easy
exercise in negations. U

Examples:

(1) If @ is a locally integrable function, u(¢) := [ a¢. This identifies
the function @ with a distribution u.

(2) Dirac delta function. 6,(¢) = ¢(a)
1



EXPOSITORY NOTES ON DISTRIBUTION THEORY AND OTHER TOPICS, FALL 2018

(3) Weak derivatives: If u is a smooth function, and ¢ € C§° is
a test function, a = (aq,--+ ,q,) is a multi-index and 0%u =
ogt -+ 9gnu, then
< 0%, ¢ >= [0%up = (=)l [ud¢ = (=)l < u, 0% >.
(integration by parts). This motivates the definition of 0%u
for any distribution u: < 0%, ¢ >= (—1)l* < u,0%¢ >.

(4) It takes some work (thm. 4.4.7 in Hormander) and we will not
prove this, but the above essentially accounts for all possible
distributions:

If w € D'(U) then there exists a locally finite family of con-
tinuous functions f, (each compact subset of U intersects only
finitely many of the supports of the f,s) such that

U= Zaafa

Definition 1.4. A sequence of distributions u; converges to u in D'(U)
(or in the sense of distribution theory) if u;(¢) — u(¢) for every ¢ €
Co(U)

Also, if u; € D'(U) and for each fixed ¢ € C§°(U) the limit u;(¢)
exists and is denoted u(¢), then u is automatically a distribution. See
Theorem 2.1.8. We will not prove this.

Definition 1.5. Let u € D(U) and f € C*°(U). Then the distributions
9u and fu are defined by

(6r) =+ (an)
(Fu) (6) = ul0)

Unlike classical convergence, if w; — u in D'(U), then 0%u; — 0%u
in D'(U) is trivial.

Example 1: Let H be the Heavyside function. Then H' = ;.

The following will be worked out in class:

If E is the fundamental solution of the Laplace operator, VE in the
sense of distributions agrees with the locally integrable function VE
defined for x # 0, but AE in the sense of distributions does not agree
with the locally integrable function AE = 0 defined for x # 0. In fact
AE - 50.

Definition 1.6. A distribution v is defined to be 0 in an open set
V C U if u(¢p) = 0 for every ¢ € C5°(V'). The union of all such subsets
V' is the largest open set where u is 0, and the complement of that is
defined to be the support of u.
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Thus the support of a distribution v € D(U) is always (relatively)
closed in U. If the support of u is compact, u is called compactly sup-
ported. The set of compactly supported distributions in U is denoted
by £'(U)

Recall the support of a function ¢ is the closure of the set {¢(z) # 0}.
If u € D'(R™) and ¢ € C§°(R"), and the support of ¢ and u are disjoint,
then u(¢) = 0. However, if ¢ is zero on the support of u, it does not
follow that u(¢) = 0. Example: §'(z).

Ifue &' (U), u(ep) is well defined for ¢ € C*°: Let K be the support
of u, K C V C U with V open. There exists a smooth cut-off function
¢ € CPU), and ¢ = 1 in V. Then u(¢¢) is well-defined, and is
independent of the choice of (. Define u(¢) = u(¢¢) for ¢ as above.

Definition 1.7. A distribution « is defined to be smooth in an open
set V' C U if there exists @ € C°°(V) such that u(¢) = [ a(z)p(z)dx
for all ¢ € C5°(V) The union of all such subsets V' is the largest open
set where u is smooth, and the complement of that is defined to be the
singular support of w.

2. DISTRIBUTIONS SUPPORTED AT ONE POINT

Theorem 2.1. If u € D'(R"™) is supported at a point, say 0, then u is
a finite linear combination

U= Z Co 00

Proof. Assume u is of order k (and prove: any compactly supported
distribution is of finite order). Pick a test function ¢ and write ¢(z) =
T(x) 4+ R(x) the kth order Taylor polynomial plus remainder. u(7) is
what we want (check!), and the point is to show that u(R) = 0 where
R is the remainder. We know |R(z)| < C|z|*** for |z| < 1 and in fact
|0°R(x)| < C|z|*1=lel for all |a|] < k. Let € > 0, and let x be a cut-off
function, identically 1 in a neighborhood of 0.

Then |u(R)| = |u(x (£)R) < O o<k SUP, [0 (X(F)R)| < Ce. Now

€

let € — 0. O

Application to PDE: Let E = —— (n > 3). Then AE = 0 for

zn—2
away from 0 by calculation, thus |A‘E is a distribution supported at 0.
It is a finite linear combination of the delta function and its derivatives.
An additional homogeneity argument shows AFE = ¢d.

If u is a locally integrable function in R™ — {0}, u is homogeneous
of degree « if u(txr) = t*u(z) for all ¢ > 0 and = # 0. Denoting
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¢i(x) = t"p(tx) this is equivalent to

Juo=r [ uo

and the definition of a homogeneous distribution in R™ (or R™ — {0})
1s

u(p) = t*u(¢r)
for every ¢ € Cg°(R") or C§°(R™ — {0}).

3. CONVOLUTIONS (CHAPTER 4 IN HORMANDER’S BOOK)

The major goal of this section is to prove

1) If f € &(R™), then there exists u € D'(R"™) such that Au = f.

2) If u, f are as above, and f € C*°(V) for some open set V', then
ue (V).

Both of these goals follow from the properties of the convolution of
a distribution with a compactly supported distribution. Part 1 follows
by writing u = E % f, Au = (AE) x f = § x f = f, but we have to
assign rigorous meaning to this. Part 2 follows from the fact that the
fundamental solution F is C*° away from 0. The exact same results
hold for 2 — A but not 2 — A.

ot?
Definition 3.1. If u € D' (R") and ¢ € Cj°(R"),
u* ¢(r) =< u,p(x —-) > (where - stands for y, and u acts in the y variable)

Check ux ¢ € C®, 0*(ux¢)(x) = (0%u) * ¢ = ux* (0“¢)(x): We have

0
8%Mx—w+3@—%d

Pl —y+ee) —dplx—y)=e

where

R(x —y,€) = /0 j—; (p(x —y + tee;)) (1 —t)dt

1 32
= 62/0 (8—;;5) (x —y + tee;)(1 — t)dt

(2

Fix z. R(z—y,¢€)isin C§°, and sup, |07 R(z —y, €)| < Cqe®. Using the
continuity condition (1) we see

lim <u,
e—0 €
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and
iy =D O ) 9= P g

Check support(u * ¢) C supportu + support ¢: Fix x. If ¢(x — )
is supported in the complement of supportu, then u(¢(z —-) = 0 by
the definition of supportu. If u(¢p(x —-) # 0, then 3 y € supportu
and y € support (xz — -). Thus y = limy; with ¢(z — y;) # 0, and
x — Yy € support ¢.

Finally, if © € supportu = ¢, there exist x; — z with u % ¢(z;) # 0
and

x; € support ¢ + supportu

x € support ¢ + supportu = support ¢ + supportu

because support u is compact.
We also have

Theorem 3.2. Letu € D' (R™), and ¢,¢ € C(R™). Then (ux¢)x) =

Proof. Before starting the proof, review Definition (1.2). u* ¢ € C.
Fix z.

(s 6) (o) = [ (wx )~ y)ulw)dy
= lim Y (u*¢)(x — kh)y(kh)h"

h—0+
kezn

= lim (Z d(x — kh — -)¢(kh)h”)

kezn

=u(/¢@—y—»ww@0

In the last line, we used the (obvious) fact that, for z fixed,

S ol — k= 2R > [ 0w -y - oy

kezn

uniformly in z, and the same is true for after differentiating with respect
to z an arbitrary number of times. Also, both LHS and RHS are
supported in a fixed compact set. In other words, LHS — RHS in
Cse. O

This implies the important theorem on approximating distributions
by C* functions.
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Theorem 3.3. Let uw € D' (R™), and let n. be the standard mollifier.
Then u xn. € C*(R™) and u*n. — u in the sense of distribution
theory (as e —0).

Proof. We have to check

(u*ne)(0) = ul(e)

for every ¢ € C§°(R™). The proof is based on the observation that
u(¢) = ux¢p_(0) where ¢p_(x) = ¢(—x). So it suffices to show (u*n.) *
»(0) = u* ¢(0). But

(uxme) x (0) = wx (ne * ¢)(0) — u* $(0)
since 7. * ¢ — ¢ in C§°. O
Now we define the convolution of two distribution u;, uy, one
of which is compactly supported.
This is defined so that the formula
(ur * ug) * ¢ = uy * (ug * @)

holds for all ¢ € C3°(R™). For simplicity, let’s assume uy is compactly
supported. Instead of defining < uy * us, ¢ > it suffices to define
(u1 * ug) * ¢(0). This is done in the obvious way:

(ug * ug) * @(0) = uy * (ug * ¢)(0)

We have to check that u; * uy satisfies the continuity condition. Let
¢»; — 0 in C3°(R™) (see Definition (1.2)). Then so does us * ¢;, and
uy * (uz * ¢;)(0) — 0.

Also, it 7, denotes a translation, (7,¢)(z) = ¢(x+h), then 7,(ux¢p) =
u * (Tp¢) and

(u1 * uz) * ¢(h) = 74 ((ur * u2) * ) (0)
= Uy * (UQ * Th¢)(0)

(w1 * uz) * 7,¢) (0)
uy * (7h(uz * ¢)) (0)
= uy * (ug * @) (h)

Proposition 3.4. Let uj,uy € D' (R™), one of which is compactly
supported. Then

support (uy * ug) C support u; + support us

Proof. Let 1. be a standard mollifier supported in a ball or radius €. It
suffices to show

support (uy * ug) C supportuy + support ug + support ne,
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for all ¢ > 0. We do know

support (uy * ug * 1) C support uy + support uy + support n.

C support uy + support ug + support ne,
for all 0 < € < ¢y. Also remark that if A is closed and w is a distribution
such that supportu xn. C A for all ¢¢ > € > 0, then supportu C A.

This amounts to showing that if u * 7. = 0 in A¢, then u = 0 in A€,
which follows from u * 7. — u in the sense of distributions. U

Theorem 3.5. Let uy, us, us distributions in R™, two of which are com-
pactly supported. Then

(ug * ug) * ug = up * (ug * uz)

Proof. The proof follows by noticing it suffices to check
((ug * ug) * ug) x ¢ = (ug * (ug * uz)) * ¢ for every ¢ € C§°(R™) which
follows easily from the defining property of Theorem (3.2). O

Theorem 3.6. Let uy,us € D' (R™), one of which is compactly sup-
ported. Then

U1 * Uy = U * Uy

Proof. The strategy is to show that (ug*xusg)*(p*10) = (ugkuy)* (d*1)
for all test functions ¢, 1. This is done using the associativity property
Theorem (3.2) together with the fact that convolutions of functions is
commutative. We will not prove this U

Theorem 3.7. Let uj,us € D' (R™), one of which is compactly sup-
ported. Then

0%(uy * ug) = (0%uy) * ug = uy * O%ug (2)
Proof. We already know 0%(u * ¢) = (0%u) * ¢ = u * (0*¢), so the
theorem is proved by convolving (2) with ¢. O

Theorem 3.8. Let uy,us € D' (R"), one of which is compactly sup-
ported. Then

sing support (uy * ug) C sing support uj + sing support uy

Proof. The proof is based on the fact that if one of uq, usy is smooth, so is

uykus. Let x1, x2 be supported in small neighborhoods of sing support uy,

sing support uy, so that (1 — x1)uy and (1 — x2)us are smooth. Then

sing support (uy * ug) C sing support (x1uy) * (x2uz) C support x1uy + support xous

O
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Now we come back to PDEs. Let P(D) be a constant coefficient dif-
ferential operator. A distribution £ € D’ (R"™) is called a fundamental
solution if P(D)E = §. We already know formulas for (the) funda-
mental solution of the Laplace and heat operators. We will write down
later several fundamental solutions of the wave operator.

Theorem 3.9. If sing support (E) = {0}, U is open and u € D'(U) is
such that P(D)u € C*(U), then v e C*(U)

Proof. Let V. CC U an arbitrary open subset. It suffices to show
ue C®V). Let ( € CP(U), ( =1on V. Then P(D)(Cu) = P(D)u
in V, and in particular is C'*° there. Finally,

Cu=Cuxd=Cux P(D)(E)=(P(D)((u)) *E
and therefore
sing support (Cu) C sing support (P(D)(Cu)) + {0} = sing support (P(D)(Cu))

But we know that sing support (P(D)(Cu)) is disjoint from V', so sing support (Cu)
is also disjoint from V', in other words (u, which equals u in V, is
smooth there. U

4. THE FOURIER TRANSFORM

Definition 4.1. The space of Schwartz functions S is defined by the
requirement that all semi-norms

sup |2%0” f|
be finite. Convergence in this space means
sup |2%0° (f, — )| = 0

for all o, 5.

N

The Fourier transform F(f) = f is defined by

for = [ e

The following are elementary properties which will be checked in
class:

Lemma 4.2. Let f € S, denote f\(z) = f(Az) (A > 0), 7,f(x) =
fle+y) (y € R* ) and D; = 1.2 Then f € S and f — f is

Zj



EXPOSITORY NOTES ON DISTRIBUTION THEORY AND OTHER TOPICS, FALL 2018

continuous in the topology of S. Also,

06 = D)

F(r,f)(€) = v f()
FD;)(€) =¢&f(©)
F(z;0)(€) = —D;f(€)

/fﬁ:/fg forallf,fLES
F(f+g)=fg

These easily imply the inversion formula and Plancherel formulas |,
which will be proved in class.

Theorem 4.3. Let f € S. Then

_ 1 it f
@) = e [ S
Also,
— 1 r =~
- f(@)g(z)dx = 20 e f(€)g(§)dé

Definition 4.4. The space of continuous linear functionals v : § — C
is the space of tempered distributions S&’. u € &’ if and only if there
exists N and C' such that

<up>|<C 3 suplod(f)

jal|BI<N 7
forall p € S. If u € &', then © € S’ is defined by
< U, >=< u,gz@ >
for all ¢ € S.
Example: The constant function 1 € S and 1 = (27)"6.
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5. INTEGRATING FUNCTIONS ON A k-DIMENSIONAL HYPERSURFACE
IN R"

This section uses geometric notation: coodinates are written .

Let S be a compact C! k-dimensional hypersurface in R".

We will integrate f : S — R, continuous.

Each point in S has a neighborhood (a ball B ) such that SN B can
be parametrized:

There exists

P:C—SNnBCR"

where C'is open in R*¥ and P is one-to-one and onto. We assume P is
C! and the n vectors VP, are linearly independent. This insures S is a
C' hypersurface. S can be covered by finitely many such balls B,,(x;).

Before anything else, we break up f as a finite sum of continuous
functions f;, each supported in one such B.

For convenience and without loss of generality, we assume f has been
extended as a continuous function to R”, and is supported in the union
of the B,,(x;).

Theorem 5.1. Let f : R™ — R be a C' function supported in a finite
union of k balls US_, B,.(z;). Then there exist C' functions f; supported
in By,(x;) such that f = f;.

Proof. First we argue that there are s; < r; such that the support of
f is covered by UBg, (z;). Indeed, the infinite union U, ., By, (2;) cover
the compact support of f, so finitely many also do.

Let y; be C! functions supported in B,,(z;), x; = 1 on By, (z;). (It
is easy to construct such functions). Write

0= f(@)(1 = x1(2))(1 = xa(x)) -+ (1 = x(x))
f(x) = fl@)xa(@) + f(2)(1 = xa(x)xe(@) + f2)(1 = x1(2))(1 = xa(2))x3()
+o f(@)(1 = xa (@) (1= xa(2)) - xa()
= f1($) + f2<£L') + - fk(x)
O
We proceed to integrate one of the f;s, written as f from now on.

The Euclidean metric in R” induces a Riemannian metric on .S. With
respect to there coordinates, g;;(z) is defined as the Euclidean inner
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product of the push-forward of the usual basis vectors in R*:
_ OP(z) OP(x)
95(®) = =50 g

In matrix notation,

(9:4(x)) = (DP(x))" DP(x)
The standard Riemannian geometry definition of |, g fdVolis

/deol /f |det(glj( N|dzt - - da®

An explicit calculation shows this is independent of the parametriza-
tion. It agrees with familiar formulas in low dimensions:

Example 1: k£ = 1 (curves in R”). Here P : (a,b) — R™, P'(z) # 0
for all z, and g1 (z) = |P'(2)|%, s

/fds_/ F(P(2)|F'(z)|dx

Example 2: k =2, n = 3 (surfaces in R?).
Here DP(z) has two columns, 25 and 25.
Exercise (using a suitable rotation)

orP OP|?
| det(gy;)| = 91 X 52

so this is consistent with the Math 241 formula

/de /f aP oP

8$2
Example 3: k£ =n.
Here (g;;) = (DP(z))" DP(x), det(g;;) = det(DP)? so we get the
change-of-variables formula

/fda;—/f )| det DP(z)|dx

dxtdz?

Example 4 (what we need to prove the divergence theorem)
Let k =n — 1 and S given (locally) as the graph of a function 7:

Then
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- 1 0 O
or
1 0 o 0 X ’
(9i()) = 8 0 ; :
0 1 (%nr - P L
ozl 2 Oxn—1
ar
%'1;1
= ](n—l)x(n—l) + Ox? (%% .. 8187;;1)
or
dxn—1

Exercise: det(g;;) =1+ |Vr|.
S0

/de: / flt - et 2" YN+ | Vr2dat - da
s c

5.2. The length of a curve and the equation for geodesics as
an Euler-Lagrange equation. In the same set-up as before, let

x: [a,b] - C C R* ( C open) be a parametrized C? curve, P : C —
S C R™ the parametrization of (a subset of) the surface S (P is C?,
DP(x) has maximal rank for all ). The length of the parametrized
curve on S given by v(s) = P o z(s) is

/ (P oa(s))|ds = / /< (DP ()7 (s), (DP(a(s))2(5) >ds
~ [V st s)isis (3

We can forget P and S, and, given a Riemannian metric g;;(x) on C
(that is, the matrix g;;(x) is positive definite for every x, and C', we
can define the length of a parametrized curve x(s) by (3).

We will prove the following:

Theorem 5.3. If z(s) is parametrized by arc-length (that is, Y g;;(x
1), and if x(s) is the shortest path from A = x(a) to B = z(b), (A
fized) then it satisfies the geodesic equation

(s)2i(s)ai(s) =
,B

2i(s) + Iy (2(5))# (s)i(s) = 0 (4)
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where the Christoffel symbols T ik are defined by

Z Qll Fl]k

where

(gil( )) = (gil( ))71 matriz inverse
I, — <agl] L 99 _ 3gjk>
j B

oxk ~ OxJ ox!

Proof. The proof follows section 31.2 of volume 1 of the books by
Dubrovin, Fomenko and Novikov. Let Li(Z,z) be the Lagrangian den-

sity Ly(,2) = /X2 gig(e(s)a7(5)a7(5), and Lo(i ) = (Ly(ir2))? =

> gij(x(s)xi(s )7 (s). Easy calculus shows that if x is parametrized
by arc-length, then the Euler-Lagrange equations for L, are equivalent
with the Euler-Lagrange equations for (L;)2.

It is also easy to see that the Euler-Lagrange equations for

v) =Y gij(a(s)zi(s)ai(s)

are exactly (4). We will also show that they satisfy  g;; (z(s))zi(s)2i (s) =
const.. This is ”conservation of energy”, similar to the conservation
formulas for the energy-momentum tensor for PDEs which are Euler-
Lagrange equations.

n

6. THE GRADIENT OF A CHARACTERISTIC FUNCTION

This is background material (formula 3.1.5 in Hérmander’s book).
Theorem 6.1. Let U be an open set with C* boundary. Then
Vxu = —vdS

where dS is surface measure on OU and v is the outward pointing unit
normal.

Proof. Let h : R — R be a smoothed out Heaviside function: h(z) =0
if x <0, h(z) = 1if 2 > 1 and smooth in-between. Using a par-
tition of unity, it suffices the prove the theorem for test functions ¢
supported in a small neighborhood of xq € QU, where U agrees with
Ty > (T, xp_1). Then
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< Vxu,¢>=—<xu,Vo >

= —lim [ h(="— Mo o\ G ) d,
e— €
:hg% v<h(xn—r(:c1€,...xn1))) S(x1, - )
. 1 / xn—’l”<$1,"'$n,1)
=lim [ =R/ ) (=Vr(xy, - xpo1), Do(z)da
e—0 Rn € €
1 _ ez
_ / (=Vr(zr,- 20 1),1) <1im/ L@ rlo, 1>)¢(:c)d:cn) dy - do,
Rn—1 —0 Jp € €

= O(x1, - wpor,r(xr, - Tem1) )(=Vr(T1, -+ y2p_1), )day -+ - day g
Rn—l

:—/aUd)udS

(by the Calculus formulas for v and dS). We used the fact that 1h/(%)
is an ”approximation to the identity”.
O

7. SOLVING THE CAUCHY PROBLEM FOR THE WAVE EQUATION IN 1
AND 3 DIMENSIONS

To solve (in n + 1 dimensions, i.e. x € R, ¢t € R)
wy —Au=0 if t >0 (5)
u(0,z) = f(x)
uy(0,2) = g(x)
with u € C?, u(t, ) € S(R™) for each fixed ¢ > 0, take Fourier transform
in x:

a(0,€) = f(¢)
This ODE has solution
i(t,€) = costtefg) + T

As it is clear from this formulation, it suffices to solve the problem
with f = 0.

9(8)
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So we want u(t, z) such that

anil

We are looking for a compactly supported distribution E(t) € £'(R")
such that

ﬁ(t, 5) =

E(t) _ sm|(§||£|)

At least in 1 and 3 dimensions, such a distribution is well-known and
"elementary” (see the next section for other dimensions).
Then the solution will be
u(t,z) = E(t) * g

or, equivalently

a(t, ) = E(t, §)g(¢)
(Background facts: if E is a compactly supported distribution and
g €S, Exg(x)is defined as < F, g(x — -) >. Its Fourier transform is
E§. See Theorem 7.1.5 in Hérmander’s book).
Also, for a compactly supported distribution E, E (§) =< E,e7®¢ >
(E acts in the x variable). See Theorem 7.1.14 in Hormander’s book.

In one dimension, the Fourier transform of the characteristic function

of [—t,t] is
/tt e e dy = ZSiné_tg)

We found that in one space dimension

1
E(tv ZL’) - §X[—t,t}
and the solution to (5) with f =0 is

ult, ) = / E(t,9)g(z — y)dy

In 3 space dimensions, we compute the Fourier transform of surface
measure on 5% [, e74dS,. Without loss of generality, & = (0,0, [¢]).
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Integrating in spherical coordinates (z1, x2, z3) = (sin(¢) cos(f), sin(¢) sin(6), cos(¢)),

s 2
/ skl gg, — / / ¢~ OEl sin(6) dpdld
52 0 0

™

e OIEl gin () dep

=27

1

e~ el g\

=27

J

/.

sin([¢])
€]

By the exact same calculation, the Fourier transform of surface measure

on the sphere of radius t > 0 is 47Ttsml(§||€|).

= am

Thus in 3 dimensions, if f =0,

1
E(t,x) = 4—tsurface measure on the sphere of radius ¢

T
and
o) =1 | gle—y)as
u(t,r) = — gz —y
At Japo. Y

1

= g9(y)ds
4mt OB(z,t) <) Y

while, in general, the solution to (5) is

0 1
ulb:1) = 5 (m /BB(,,,,@ I Wsy)

1
— g(y)dS
At JaB(a,t) (v)d5,

8. THE FORMULA FOR THE CAUCHY PROBLEM FOR THE WAVE
EQUATION IN n + 1 DIMENSIONS

We need the (famous) family of distributions x. For o > —1, these
are functions defined by

o_ 7%
T Tt

Using properties of the I' function,

() =x3"
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This allows one to define x¢ for o < —1. Of special interest to us are

X' () = H(z) (the Heaviside function)
1
~3

1 1
= ——H
X =H =9§

The general statement (which we will not prove right now) is
92 92 52 1-n o
- T (2 Y =dAx 2z 6

(a# 02 395%) o 7) = 4m

The definition of the composition of a distribution with a smooth
function is explained in the next section.

The above formula provides a fundamental solution for the wave
equation (there are others, see Hormander’s book). The solution to
the Cauchy problem,

0? 0? 0? .
(@_8_33% ----- w)UZOIft>0

u(0,2) =0, w(0,2) = J:L
u(t,x) = (B (t,-) * f) (z)

where E is defined as follows in the open set ¢ > 0:
1 1=n
E+=—=x (——17)
2z

This agrees with the results from the previous section. To see that
in 3 dimensions, we need the important formula §(f) = % if fis C1,
Vf(x)#0if f(z) =0 and dS is surface measure on f = 0 (explained

in the next section).

9. COMPOSITIONS WITH SMOOTH FUNCTIONS AND THE CHAIN RULE

Theorem 9.1. Let v € D'(R), and f : R* — R C*, such that
Vf(x) # 0 for all x € supp u. Then there exists a unique distribution
wo f (or f*u) such that if u; is a sequence of continuous functions,
u; — u in the sense of distribution theory, then u; o f — uo f. As a
consequence, the chain rule is true.

Proof. Using a partition of unity, it suffices to prove this for test func-

tions supported in a sufficiently small open set. Let U open such that

% is bounded away from 0 on U. Consider the map ® defined by
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(X1, xp) — (21, ,xp_1, f(x1, - ,x,)). By the inverse function
theorem, after possibly shrinking U, we have ® : U — V/, one to one,
onto, with a smooth inverse, and V open. Also,

F@ e w0)) = g for all (1, a0) €V

Let ¢ be a test function supported in U, and let u; be a sequence of
continuous functions converging to u in the sense of distribution theory.
Then

<uofid o= / wi(f(2))(x)da

U
o(d~1
= / wi (20) PP (g, -+, )| det (8 )|dx
v X
o(P1
_ / < (@ o, ) det X2 S dy o da
]Rn—l al’
o(P1
— < u, (@ (xy, -+ ,-))| det ( )] > dxy - deg_q
Rn—1 al’
To pass to the limit inside the integral, we need the following lemma:
Then < w;, p(x1, -+, Tp_1, -) >=>< u,d(x1, -+ ,Tp_1, -) and the se-
quence is uniformly bounded in (z1,--- ,x,_1). This follows from the

uniform boundedness principle in a Frechet space. As a consequence,
the chain rule is true. Indeed, given u we know we can find u; —
in D'(R), u; € C*. Let f: R* — R, C*, such that Vf(x) # 0 for
all z. Then w; o f — wo f as above, and V(u; o f) = (u, o f)Vf —
(W o f)Vf=V(uof). So V(uo f) = (o [)Vf. 0

Remark 9.2. As an important application, let U be a C' bounded
domain given by a defining function r. U = {r > 0}. Then Hor = xy,

and V(Hor)=V(xy) = dS‘g—:‘, but V(H or) also equals H'(r)Vr =

d(r)Vr. Here § stands for the delta function on the real line. As a
consequence, 0(f) = % where dS is surface measure on the surface
f=0.
1-n
At this stage, x,°> (#* —---—22) is defined in the set R"* — {0},

and homogeneous of degree —n + 1.
To extend it to D'(R™!) we need the following technical result (The-
orem 3.2.3 in Hormander). We will not prove this in class.

Theorem 9.3. If u € D'(R" —{0}) is homogeneous of degree a and o
is not an integer < —n, then u has a unique extension to D'(R™), and
this extension is also homogeneous of degree .



