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Kashiwara conjugation is a contravariant functor that sends regular
holonomic D-modules on a complex manifold X to regular holonomic
D-modules on its complex conjugate X̄ . Using it, Kashiwara explained
how, locally, every regular holonomic D-module can be de�ned in terms of
distributions. Later Barlet and Kashiwara, applied a twisted version of this
on �ag varieties to questions in representation theory. My goal is to
formulate a version of Kashiwara conjugation valid for arbitrary complex
manifolds. I have two motivations:

Formulating the general version gives an explicit presentation of rings
of twisted di�erential operators.

The general formulation was motivated by a beautiful
representation-theoretic conjecture of Schmid and Vilonen.
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X = (XR,OX ) a complex manifold. XR is the underlying smooth
manifold. The sheaf of C-algebras OX is the sheaf of holomorphic
functions.

X̄ = (XR,OX̄ ) is the complex conjugate of X . It has the same
underlying smooth manifold XR, but the sheaf of C-algebras is the
C-algebra of anti-holomorphic functions on X .

DbX = DbXR is the sheaf of complex valued distributions on the
underlying smooth manifold XR. If dimXR = 2n, then a section of
DbX takes a compactly supported smooth 2n-form on XR and returns
a complex number. For example, L1loc ⊂ DbX .

Di�XR is the sheaf of C∞ di�erential operators on XR. It is a
non-commutative sheaf of C-algebras.
DX is the sheaf of holomorphic di�erential operators on X . It is the
subring of Di�XR generated by OX and the holomorphic tangent
vectors.

Write FpDX for the subsheaf of DX generated by di�erential operators
of order ≤ p. Each FpDX is a locally free sheaf of OX modules.
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DX modules.

The sheaf DX acts on the left on several interesting sheaves. For example:

OX is a DX -modules with DX acting by di�erentiating holomorphic
functions.

C∞XR
is Di�XR module, so, since DX is a subring of Di�XR , C∞XR

is a
DX module.

It's not hard to see that DbXR is a Di�XR-module, and, thus a DX

module.

As DX -modules OX ⊂ C∞XR
⊂ DbXR .

Note that DX and DX̄ commute with each other inside of Di�XR . In
particular, their actions on DbXR commute.
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DX module examples

Here's a nice way to get a DX modules: Take a distribution
µ ∈ Γ(X ,DbXR). Then setM = DXµ ⊂ DbXR .
For example, with X = P1:

OX = DX · 1. So here µ is the constant function.

Set L = DX |z |. Since |z | ∈ L1loc, L is a DX -module.

Let δ denote the Dirac delta function concentrated at 0 in A1 ⊂ P1.
To a 2-form, φ dx dy , δ associates the valued φ(0). ThenM = DX δ
is a DX module supported at the 0.

All of the above are examples of regular holonomic DX modules.
Kashiwara showed that the functor

M DRX (M) := RHomDX (OX ,M)[dimX ]

is an equivalence between from the category RH(DX ) to the category
Perv(CX ) of perverse sheaves on X .
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De�nition

SupposeM is a DX module. The Kashiwara conjugate ofM is

K (M) := HomDX (M,DbXR).

Since the actions of DX and DX̄ on DbXR commute, DX̄ acts on
K (M) via its action on DbXR . Thus K (M) is a DX̄ module.

It's not hard to see that we get a functor

K : (DX mod)op  (DX̄ mod).
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Theorem (Kashiwara)

Let RH(X ) denote the category of regular holonomic DX modules on X .

Then Kashiwara conjugation gives an equivalence of categories between

K : RH(X )op
∼→ RH(X̄ ).

Call a distribution φ on X , regular holonomic if the DX module DXφ is
regular holonomic. Using the theorem, Kashiwara showed that every
regular holonomic DX module is locally of the form DXφ for some regular
holonomic distribution φ.
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My goal is to do what Kashiwara did but for twisted D modules. Luckily
the twist is a global phenomenon but Kashiwara's proof is local on X . So
the proofs are essentially the same as Kashiwara's once things are set up
properly. The �rst thing to do is to describe rings of twisted di�erential
operators or tdos. Here's a quick de�nition:

De�nition

A tdo is a sheaf of rings A on X together with a �ltration FpA by OX

modules and an isomorphism i : OX → F0A such that the triple
(A,FpA, i) is locally isomorphic to the obvious triple for DX (where FpDX

is the �ltration by order of operator).
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The �ltration on a tdo enjoys several properties:

FpA · FqA ⊂ Fp+qA and FpA = 0 for p < 0.

The sheaf of rings GrF A is a commutative OX algebra. This induces
a map

∇ : GrF1 A → TX

sending P ∈ F1A to the derivation f 7→ [P, f ] (f ∈ OX ). In a tdo, ∇
is an isomorphism.

The isomorphism ∇−1 then extends to an isomorphism of graded
OX -modules

∇−1 : GrF DX → GrF A.
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Write Tw(DX ) for the set of isomorphism classes of tdos.

Theorem

There is a natural isomorphism Tw(DX ) = H1(X , dOX ).

The theorem is not horribly di�cult. You can �nd a proof in Björk's
big book on D-modules.

A tdo A gives rise to an exact sequence

0→ OX → F1A → TX → 0.

These are classi�ed by elements of H1(X ,ΩX ). The class of F1A in
H1(X ,ΩX ) agrees with the class of A in H1(X , dOX ) under the
natural map H1(X , dOX )→ H1(X ,ΩX ).
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One way to compute Tw(DX ) is to use the Dolbeault resolution. So let
Ap,q denote the sheaf of (p, q) forms on X .

Set ZDX := {(λ, ω) ∈ A1,1
X ⊕A

2,0
X : ∂λ = ∂̄ω, ∂̄λ = ∂ω = 0}.

BDX := {(∂̄γ, ∂γ) : γ ∈ A1,0
X .

Proposition

We have H1(X , dOX ) = ZDX/BDX .

Proof.

This is the calculation that falls out of the Dolbeault resolution of the
complex Ω≥1X [1] which is quasi-isomorphic to dOX .
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The main de�nition of this talk is a way to embed certain tdo's A in
Di�XR . The �rst step is to embed F1A.

De�nition

Suppose λ ∈ A1,1
X is ∂̄ closed. Set

Eλ := {(f , v) ∈ C∞X ⊕ TX : ∀w ∈ TX̄ ,w(f ) = λ(w ∧ v)}.

Proposition

We have a short exact sequence of OX -modules

0→ OX → Eλ → TX → 0.

In particular Eλ is a locally free sheaf of OX modules.
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Note that C∞ ⊕ TX ⊂ Di�XR .

If λ ∈ A1,1 is a closed (1, 1) form, then (λ, 0) ∈ Tw(DX ).

Theorem

Assume λ is a closed (1, 1) form. Then

Eλ generates a subalgebra DX ,λ of Di�XR whose class in Tw(DX ) is

(λ, 0).

DX ,λ commutes with DX̄ ,−λ in Di�XR .

IfM is a DX ,λ module then

K (M) := HomDX ,λ(M,DbXR)

is a DX̄ ,−λ module.

K : RH(DX ,λ)op → RH(DX̄ ,−λ) is an equivalence of categories.

Patrick Brosnan (Maryland) Twisted D-modules 2014-01-15/Baltimore 16 / 24



Note that C∞ ⊕ TX ⊂ Di�XR .

If λ ∈ A1,1 is a closed (1, 1) form, then (λ, 0) ∈ Tw(DX ).

Theorem

Assume λ is a closed (1, 1) form. Then

Eλ generates a subalgebra DX ,λ of Di�XR whose class in Tw(DX ) is

(λ, 0).

DX ,λ commutes with DX̄ ,−λ in Di�XR .

IfM is a DX ,λ module then

K (M) := HomDX ,λ(M,DbXR)

is a DX̄ ,−λ module.

K : RH(DX ,λ)op → RH(DX̄ ,−λ) is an equivalence of categories.

Patrick Brosnan (Maryland) Twisted D-modules 2014-01-15/Baltimore 16 / 24



Note that C∞ ⊕ TX ⊂ Di�XR .

If λ ∈ A1,1 is a closed (1, 1) form, then (λ, 0) ∈ Tw(DX ).

Theorem

Assume λ is a closed (1, 1) form. Then

Eλ generates a subalgebra DX ,λ of Di�XR whose class in Tw(DX ) is

(λ, 0).

DX ,λ commutes with DX̄ ,−λ in Di�XR .

IfM is a DX ,λ module then

K (M) := HomDX ,λ(M,DbXR)

is a DX̄ ,−λ module.

K : RH(DX ,λ)op → RH(DX̄ ,−λ) is an equivalence of categories.

Patrick Brosnan (Maryland) Twisted D-modules 2014-01-15/Baltimore 16 / 24



Note that C∞ ⊕ TX ⊂ Di�XR .

If λ ∈ A1,1 is a closed (1, 1) form, then (λ, 0) ∈ Tw(DX ).

Theorem

Assume λ is a closed (1, 1) form. Then

Eλ generates a subalgebra DX ,λ of Di�XR whose class in Tw(DX ) is

(λ, 0).

DX ,λ commutes with DX̄ ,−λ in Di�XR .

IfM is a DX ,λ module then

K (M) := HomDX ,λ(M,DbXR)

is a DX̄ ,−λ module.

K : RH(DX ,λ)op → RH(DX̄ ,−λ) is an equivalence of categories.

Patrick Brosnan (Maryland) Twisted D-modules 2014-01-15/Baltimore 16 / 24



Note that C∞ ⊕ TX ⊂ Di�XR .

If λ ∈ A1,1 is a closed (1, 1) form, then (λ, 0) ∈ Tw(DX ).

Theorem

Assume λ is a closed (1, 1) form. Then

Eλ generates a subalgebra DX ,λ of Di�XR whose class in Tw(DX ) is

(λ, 0).

DX ,λ commutes with DX̄ ,−λ in Di�XR .

IfM is a DX ,λ module then

K (M) := HomDX ,λ(M,DbXR)

is a DX̄ ,−λ module.

K : RH(DX ,λ)op → RH(DX̄ ,−λ) is an equivalence of categories.

Patrick Brosnan (Maryland) Twisted D-modules 2014-01-15/Baltimore 16 / 24



Note that C∞ ⊕ TX ⊂ Di�XR .

If λ ∈ A1,1 is a closed (1, 1) form, then (λ, 0) ∈ Tw(DX ).

Theorem

Assume λ is a closed (1, 1) form. Then

Eλ generates a subalgebra DX ,λ of Di�XR whose class in Tw(DX ) is

(λ, 0).

DX ,λ commutes with DX̄ ,−λ in Di�XR .

IfM is a DX ,λ module then

K (M) := HomDX ,λ(M,DbXR)

is a DX̄ ,−λ module.

K : RH(DX ,λ)op → RH(DX̄ ,−λ) is an equivalence of categories.

Patrick Brosnan (Maryland) Twisted D-modules 2014-01-15/Baltimore 16 / 24



Note that C∞ ⊕ TX ⊂ Di�XR .

If λ ∈ A1,1 is a closed (1, 1) form, then (λ, 0) ∈ Tw(DX ).

Theorem

Assume λ is a closed (1, 1) form. Then

Eλ generates a subalgebra DX ,λ of Di�XR whose class in Tw(DX ) is

(λ, 0).

DX ,λ commutes with DX̄ ,−λ in Di�XR .

IfM is a DX ,λ module then

K (M) := HomDX ,λ(M,DbXR)

is a DX̄ ,−λ module.

K : RH(DX ,λ)op → RH(DX̄ ,−λ) is an equivalence of categories.

Patrick Brosnan (Maryland) Twisted D-modules 2014-01-15/Baltimore 16 / 24



Suppose ∂̄∂ log g = λ. Write Lg for left multiplication by g inside
Di�XR . Then DX ,λ = L−1g DXLg .

In the theorem, everything, even the de�nition RH(DX ,λ), is local. So,
since DX ,λ is locally isomorphic to DX , the theorem follows almost
directly from the untwisted case.

De�ne a twisted regular holonomic distribution to be a distribution φ
such that DX ,λφ is a regular holonomic DX ,λ module. You can use
the theorem to see that locally every regular holonomic DX ,λ is of the
above form.

The notion of regular holonomic distribution de�nitely depends on λ
itself and not simply its cohomology class. So it seems primarily
interesting when we have a particular choice of λ.
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There is another functor going from twisted DX modules to DX̄ modules.
This is induced by the complex anti-linear ring homomorphism

DX̄ ,λ̄ → DX ,λ

P 7→ P̄.

It induces an equivalence of categories

C : RH(DX ,λ)→ RH(DX̄ ,λ̄),

and we write C (M) = M̄ for short.

De�nition

Suppose λ = −λ̄. A polarization of a DX ,λ modulesM is an isomorphism
M̄ → K (M).
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By de�nition, a polarization gives rise to a pairing

M⊗M̄ 〈 , 〉→ DbXR ,

which is DX ,λ ×DX̄ ,λ̄-equivariant.

Suppose that X has a chosen smooth volume form vol. Then we can
integrate the above pairing on global sectinos to get another pairing

( , ) : Γ(M)⊗ Γ(M̄)→ C

α⊗ β 7→
∫
X

〈α, β〉dvol
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The motivation for the work above was to understand a conjecture of
Schmid and Vilonen about the pairing ( , ) in the case that X = G/B
is a generalized �ag variety andM is a twisted D-module on X

coming from representations of a real form of G .

In this caseM can be made into a mixed Hodge module in a natural
way. So it has a Hodge �ltration FpM. To �x notation, suppose
Fp = 0 for p < 0 and F0 6= 0 forM 6= 0. Roughly speaking, the
Schmid-Vilonen conjecture is the following:

Conjecture (Schmid-Vilonen)

Suppose λ+ ρ > 0. Then (forM coming from representation theory) the

pairing ( , ) is (−1)p de�nite on Γ(FpM) ∩ Γ(Fp−1M)⊥.
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If p = 0, then the conjecture is just saying that (α, β) > 0 for
α, β ∈ F0M. This follows from old results of Schmid about the
asymptotics of the Hodge metric.

The conjecture implies that Γ(M) = ⊕Hp where
Hp := Γ(FpM) ∩ Γ(Fp−1M)⊥. In this sense you can view it as
associating a polarized in�nite dimensional Hodge structure toM.

Schmid and Vilonen have veri�ed the conjecture in many cases. To
see what's going on, let's check it for X = P1.
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Untwisted Example

On X = P1 we can pick vol =
1

2i

dz ∧ dz̄

(1 + |z |2)2

TakeM = DX δ. This is, in fact, the modules coming from the
discrete series representation of SL2R.

The Hodge �ltration is given by FpM =
∑

k≤p C∂kδ.
We have

(∂kδ, ∂̄jδ) =

∫
(∂k ∂̄jδ)dvol

= (−1)k+j(δ, ∂k ∂̄jvol)

= (−1)k+j(δ, ∂k∂j
1

2i

∑
p≥0

(−1)p(p + 1)|z |2p)

=

{
(−1)k(k + 1), k = j

0, else.

So the conjecture holds forM.
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Twisted Example

Pick a non-integral real number c > 0 and set g = (1 + |z |2)c and

λ = ∂∂̄g =
2c dz ∧ dz̄

(1 + |z |2)2
.

Let N = DX |z |c . This is an (untwisted) DX module corresponding to
a local system is monodromy e2πic . It is a (complex) Hode module in
a natural way.

Away from ∞, setM = L−1g N . This is a DX ,λ-module isomorphic to

DX ,λ
|z |c

(1 + |z |2)c

The expresion makes sense near ∞ and we get a DX ,λ module on P1.
too.
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Continued Twisted Example

The Hodge �ltration onM comes from that on N . We have

Γ(FpM) = 〈zk |z |c

(1 + |z |2)c
: |k | < c

2
+ p + 1〉

with k ∈ Z and p ≥ 0.
To verify the conjecture we have to look at the integral

Ik =

∫
X

|z |c+2k

(1 + |z |2)c
dvol =

∫
X

|z |c+2k

(1 + |z |2)c+2
dx dy .

Note that the integrand is L1 for |k | < c/2 + 1 and it is manifestly
positive. So on F0 the integral is positive. But the integrand is really a
distribution otherwise.
By change of variables and other magic we �nd that

Ik = αΓ(c/2 + 1 + k)Γ(c/2 + 1− k)

where α is an (unimportant) positive constant.
Now the conjecture is trivial to verify using the sign alternation of that
Γ function.
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