Kashiwara Conjugation for Twisted \mathcal{D}-modules Wednesday, 10:00a

Patrick Brosnan

Maryland

2014-01-15/Baltimore

Outline

(1) Introduction
(2) \mathcal{D}-modules and Kashiwara conjugation

- \mathcal{D}-modules
- Kashiwara conjugation
(3) Twisted \mathcal{D} modules
(4) The theorem

Kashiwara conjugation is a contravariant functor that sends regular holonomic \mathcal{D}-modules on a complex manifold X to regular holonomic \mathcal{D}-modules on its complex conjugate \bar{X}. Using it, Kashiwara explained how, locally, every regular holonomic \mathcal{D}-module can be defined in terms of distributions. Later Barlet and Kashiwara, applied a twisted version of this on flag varieties to questions in representation theory. My goal is to formulate a version of Kashiwara conjugation valid for arbitrary complex manifolds. I have two motivations:

- Formulating the general version gives an explicit presentation of rings of twisted differential operators.
- The general formulation was motivated by a beautiful representation-theoretic conjecture of Schmid and Vilonen.

Outline

(1) Introduction

(2) \mathcal{D}-modules and Kashiwara conjugation

- D-modules
- Kashiwara conjugation
(3) Twisted \mathcal{D} modules
(4) The theorem
- $X=\left(X_{\mathbb{R}}, \mathcal{O}_{X}\right)$ a complex manifold. $X_{\mathbb{R}}$ is the underlying smooth manifold. The sheaf of \mathbb{C}-algebras \mathcal{O}_{X} is the sheaf of holomorphic functions.
- $\bar{X}=\left(X_{\mathbb{R}}, \mathcal{O}_{\bar{X}}\right)$ is the complex conjugate of X. It has the same underlying smooth manifold $X_{\mathbb{R}}$, but the sheaf of \mathbb{C}-algebras is the \mathbb{C}-algebra of anti-holomorphic functions on X.
- $\mathfrak{D b} \mathfrak{D}_{X}=\mathfrak{D} \mathfrak{b}_{X_{\mathbb{R}}}$ is the sheaf of complex valued distributions on the underlying smooth manifold $X_{\mathbb{R}}$. If $\operatorname{dim} X_{\mathbb{R}}=2 n$, then a section of $\mathfrak{D b}_{X}$ takes a compactly supported smooth $2 n$-form on $X_{\mathbb{R}}$ and returns a complex number. For example, $L_{\mathrm{loc}}^{1} \subset \mathfrak{D} \mathfrak{b}_{X}$
- Diff $X_{\mathbb{R}}$ is the sheaf of \mathcal{C}^{∞} differential operators on $X_{\mathbb{R}}$. It is a non-commutative sheaf of \mathbb{C}-algebras.
- D_{X} is the sheaf of holomorphic differential operators on X. It is the subring of Diff $X_{\mathbb{R}}$ generated by \mathcal{O}_{X} and the holomorphic tangent vectors.
- $X=\left(X_{\mathbb{R}}, \mathcal{O}_{X}\right)$ a complex manifold. $X_{\mathbb{R}}$ is the underlying smooth manifold. The sheaf of \mathbb{C}-algebras \mathcal{O}_{X} is the sheaf of holomorphic functions.
- $\bar{X}=\left(X_{\mathbb{R}}, \mathcal{O}_{\bar{X}}\right)$ is the complex conjugate of X. It has the same underlying smooth manifold $X_{\mathbb{R}}$, but the sheaf of \mathbb{C}-algebras is the \mathbb{C}-algebra of anti-holomorphic functions on X.
- $\mathfrak{b}_{X}=\mathfrak{D b} X_{\mathbb{R}}$ is the sheaf of complex valued distributions on the
underlying smooth manifold $X_{\mathbb{R}}$. If $\operatorname{dim} X_{\mathbb{R}}=2 n$, then a section of
$\mathfrak{D} \mathfrak{b}_{X}$ takes a compactly supported smooth $2 n$-form on $X_{\mathbb{R}}$ and returns
a complex number. For example, $L_{10 c}^{1} \subset \mathfrak{D} \mathfrak{b}_{X}$.
- iff $_{X_{\mathbb{R}}}$ is the sheaf of \mathcal{C}^{∞} differential operators on $X_{\mathbb{R}}$. It is a
non-commutative sheaf of \mathbb{C}-algebras.
- \mathcal{D}_{X} is the sheaf of holomorphic differential operators on X. It is the
subring of $D_{\text {iff }}^{X_{\mathbb{R}}}$ generated by \mathcal{O}_{X} and the holomorphic tangent
vectors.
- Write $F_{p} \mathcal{D}_{X}$ for the subsheaf of \mathcal{D}_{X} generated by differential operators
- $X=\left(X_{\mathbb{R}}, \mathcal{O}_{X}\right)$ a complex manifold. $X_{\mathbb{R}}$ is the underlying smooth manifold. The sheaf of \mathbb{C}-algebras \mathcal{O}_{X} is the sheaf of holomorphic functions.
- $\bar{X}=\left(X_{\mathbb{R}}, \mathcal{O}_{\bar{X}}\right)$ is the complex conjugate of X. It has the same underlying smooth manifold $X_{\mathbb{R}}$, but the sheaf of \mathbb{C}-algebras is the \mathbb{C}-algebra of anti-holomorphic functions on X.
- $\mathfrak{D b} \mathfrak{b}_{X}=\mathfrak{D b}_{X_{\mathbb{R}}}$ is the sheaf of complex valued distributions on the underlying smooth manifold $X_{\mathbb{R}}$. If $\operatorname{dim} X_{\mathbb{R}}=2 n$, then a section of $\mathfrak{D b}_{X}$ takes a compactly supported smooth $2 n$-form on $X_{\mathbb{R}}$ and returns a complex number. For example, $L_{\text {loc }}^{1} \subset \mathfrak{D} \mathfrak{b}_{X}$.
non-commutative sheaf of \mathbb{C}-algebras.
- \mathcal{D}_{X} is the sheaf of holomorphic differential operators on X. It is the subring of Diff $_{X_{\mathbb{R}}}$ generated by \mathcal{O}_{X} and the holomorphic tangent vectors.
- $X=\left(X_{\mathbb{R}}, \mathcal{O}_{X}\right)$ a complex manifold. $X_{\mathbb{R}}$ is the underlying smooth manifold. The sheaf of \mathbb{C}-algebras \mathcal{O}_{X} is the sheaf of holomorphic functions.
- $\bar{X}=\left(X_{\mathbb{R}}, \mathcal{O}_{\bar{X}}\right)$ is the complex conjugate of X. It has the same underlying smooth manifold $X_{\mathbb{R}}$, but the sheaf of \mathbb{C}-algebras is the \mathbb{C}-algebra of anti-holomorphic functions on X.
- $\mathfrak{D b} \mathfrak{b}_{X}=\mathfrak{D b}_{X_{\mathbb{R}}}$ is the sheaf of complex valued distributions on the underlying smooth manifold $X_{\mathbb{R}}$. If $\operatorname{dim} X_{\mathbb{R}}=2 n$, then a section of $\mathfrak{D b}_{X}$ takes a compactly supported smooth $2 n$-form on $X_{\mathbb{R}}$ and returns a complex number. For example, $L_{\text {loc }}^{1} \subset \mathfrak{D} \mathfrak{b}_{X}$.
- Diff $X_{\mathbb{R}}$ is the sheaf of \mathcal{C}^{∞} differential operators on $X_{\mathbb{R}}$. It is a non-commutative sheaf of \mathbb{C}-algebras.
- $X=\left(X_{\mathbb{R}}, \mathcal{O}_{X}\right)$ a complex manifold. $X_{\mathbb{R}}$ is the underlying smooth manifold. The sheaf of \mathbb{C}-algebras \mathcal{O}_{X} is the sheaf of holomorphic functions.
- $\bar{X}=\left(X_{\mathbb{R}}, \mathcal{O}_{\bar{X}}\right)$ is the complex conjugate of X. It has the same underlying smooth manifold $X_{\mathbb{R}}$, but the sheaf of \mathbb{C}-algebras is the \mathbb{C}-algebra of anti-holomorphic functions on X.
- $\mathfrak{D b} \mathfrak{b}_{X}=\mathfrak{D b}_{X_{\mathbb{R}}}$ is the sheaf of complex valued distributions on the underlying smooth manifold $X_{\mathbb{R}}$. If $\operatorname{dim} X_{\mathbb{R}}=2 n$, then a section of $\mathfrak{D b}_{X}$ takes a compactly supported smooth $2 n$-form on $X_{\mathbb{R}}$ and returns a complex number. For example, $L_{\text {loc }}^{1} \subset \mathfrak{D} \mathfrak{b}_{X}$.
- Diff $X_{\mathbb{R}}$ is the sheaf of \mathcal{C}^{∞} differential operators on $X_{\mathbb{R}}$. It is a non-commutative sheaf of \mathbb{C}-algebras.
- \mathcal{D}_{X} is the sheaf of holomorphic differential operators on X. It is the subring of Diff $_{X_{\mathbb{R}}}$ generated by \mathcal{O}_{X} and the holomorphic tangent vectors.
- $X=\left(X_{\mathbb{R}}, \mathcal{O}_{X}\right)$ a complex manifold. $X_{\mathbb{R}}$ is the underlying smooth manifold. The sheaf of \mathbb{C}-algebras \mathcal{O}_{X} is the sheaf of holomorphic functions.
- $\bar{X}=\left(X_{\mathbb{R}}, \mathcal{O}_{\bar{X}}\right)$ is the complex conjugate of X. It has the same underlying smooth manifold $X_{\mathbb{R}}$, but the sheaf of \mathbb{C}-algebras is the \mathbb{C}-algebra of anti-holomorphic functions on X.
- $\mathfrak{D b} \mathfrak{b}_{X}=\mathfrak{D b} X_{\mathbb{R}}$ is the sheaf of complex valued distributions on the underlying smooth manifold $X_{\mathbb{R}}$. If $\operatorname{dim} X_{\mathbb{R}}=2 n$, then a section of $\mathfrak{D b}_{X}$ takes a compactly supported smooth $2 n$-form on $X_{\mathbb{R}}$ and returns a complex number. For example, $L_{\text {loc }}^{1} \subset \mathfrak{D} \mathfrak{b}_{X}$.
- Diff $X_{\mathbb{R}}$ is the sheaf of \mathcal{C}^{∞} differential operators on $X_{\mathbb{R}}$. It is a non-commutative sheaf of \mathbb{C}-algebras.
- \mathcal{D}_{X} is the sheaf of holomorphic differential operators on X. It is the subring of Diff $X_{\mathbb{R}}$ generated by \mathcal{O}_{X} and the holomorphic tangent vectors.
- Write $F_{p} \mathcal{D}_{X}$ for the subsheaf of \mathcal{D}_{X} generated by differential operators of order $\leq p$. Each $F_{p} \mathcal{D}_{X}$ is a locally free sheaf of \mathcal{O}_{X} modules.

\mathcal{D}_{X} modules.

The sheaf \mathcal{D}_{X} acts on the left on several interesting sheaves. For example:

- \mathcal{O}_{X} is a \mathcal{D}_{X}-modules with \mathcal{D}_{X} acting by differentiating holomorphic functions.
- $\mathcal{C}_{X_{\mathbb{R}}}^{\infty}$ is Diff $X_{\mathbb{R}}$ module, so, since \mathcal{D}_{X} is a subring of Diff $_{X_{\mathbb{R}}}, \mathcal{C}_{X_{\mathbb{R}}}^{\infty}$ is a \mathcal{D}_{X} module.
- It's not hard to see that D_{x} is a Diff $x_{\text {- }}$-module, and, thus a D_{x} module.
- As \mathcal{D}_{X}-modules $\mathcal{O}_{X} \subset \mathcal{C}_{X_{\mathbb{R}}}^{\infty} \subset \mathfrak{D b}_{X_{\mathbb{R}}}$
- Note that \mathcal{D}_{X} and $\mathcal{D}_{\bar{X}}$ commute with each other inside of Diff_{X}. In particular, their actions on $\mathfrak{D b}_{X_{\mathbb{R}}}$ commute.

\mathcal{D}_{X} modules.

The sheaf \mathcal{D}_{X} acts on the left on several interesting sheaves. For example:

- \mathcal{O}_{X} is a \mathcal{D}_{X}-modules with \mathcal{D}_{X} acting by differentiating holomorphic functions.
- $\mathcal{C}_{X_{\mathbb{R}}}^{\infty}$ is Diff $_{X_{\mathbb{R}}}$ module, so, since \mathcal{D}_{X} is a subring of Diff $_{X_{\mathbb{R}}}, \mathcal{C}_{X_{\mathbb{R}}}^{\infty}$ is a \mathcal{D}_{X} module.
- It's not hard to see that $\mathfrak{D b}_{X_{\mathbb{R}}}$ is a $\operatorname{Diff}_{X_{\mathbb{R}}}$-module, and, thus a \mathcal{D}_{X} module.
- As \mathcal{D}_{x}-modules $\mathcal{O}_{x} \subset C_{X}^{\infty} \subset D_{X}$
- Note that \mathcal{D}_{X} and $\mathcal{D}_{\bar{X}}$ commute with each other inside of $\operatorname{Diff}_{X_{\mathbb{R}}}$. In particular, their actions on $\mathfrak{D b}_{X_{\mathbb{R}}}$ commute.

\mathcal{D}_{X} modules.

The sheaf \mathcal{D}_{X} acts on the left on several interesting sheaves. For example:

- \mathcal{O}_{X} is a \mathcal{D}_{X}-modules with \mathcal{D}_{X} acting by differentiating holomorphic functions.
- $\mathcal{C}_{X_{\mathbb{R}}}^{\infty}$ is Diff $X_{X_{\mathbb{R}}}$ module, so, since \mathcal{D}_{X} is a subring of Diff $_{X_{\mathbb{R}}}, \mathcal{C}_{X_{\mathbb{R}}}^{\infty}$ is a \mathcal{D}_{X} module.
- It's not hard to see that $\mathfrak{D b}_{X_{\mathbb{R}}}$ is a $\operatorname{Diff} X_{X_{\mathbb{R}}}$-module, and, thus a \mathcal{D}_{X} module.
- As \mathcal{D}_{X}-modules $\mathcal{O}_{X} \subset \mathcal{C}_{X_{\mathbb{R}}}^{\infty} \subset \mathfrak{D b}_{X_{\mathbb{R}}}$
- Note that \mathcal{D}_{X} and $\mathcal{D}_{\bar{X}}$ commute with each other inside of $\operatorname{Diff} X_{X_{\mathbb{R}}}$. In particular, their actions on $\mathfrak{D b}_{X_{\mathbb{R}}}$ commute.

\mathcal{D}_{X} modules.

The sheaf \mathcal{D}_{X} acts on the left on several interesting sheaves. For example:

- \mathcal{O}_{X} is a \mathcal{D}_{X}-modules with \mathcal{D}_{X} acting by differentiating holomorphic functions.
- $\mathcal{C}_{X_{\mathbb{R}}}^{\infty}$ is Diff $_{X_{\mathbb{R}}}$ module, so, since \mathcal{D}_{X} is a subring of Diff $_{X_{\mathbb{R}}}, \mathcal{C}_{X_{\mathbb{R}}}^{\infty}$ is a \mathcal{D}_{X} module.
- It's not hard to see that $\mathfrak{D b}_{X_{\mathbb{R}}}$ is a $\operatorname{Diff} X_{X_{\mathbb{R}}}$-module, and, thus a \mathcal{D}_{X} module.
- As \mathcal{D}_{X}-modules $\mathcal{O}_{X} \subset \mathcal{C}_{X_{\mathbb{R}}}^{\infty} \subset \mathfrak{D b}_{X_{\mathbb{R}}}$.
particular, their actions on $\mathfrak{D b}_{X_{\mathbb{R}}}$ commute.

\mathcal{D}_{X} modules.

The sheaf \mathcal{D}_{X} acts on the left on several interesting sheaves. For example:

- \mathcal{O}_{X} is a \mathcal{D}_{X}-modules with \mathcal{D}_{X} acting by differentiating holomorphic functions.
- $\mathcal{C}_{X_{\mathbb{R}}}^{\infty}$ is Diff $_{X_{\mathbb{R}}}$ module, so, since \mathcal{D}_{X} is a subring of Diff $_{X_{\mathbb{R}}}, \mathcal{C}_{X_{\mathbb{R}}}^{\infty}$ is a \mathcal{D}_{X} module.
- It's not hard to see that $\mathfrak{D b}_{X_{\mathbb{R}}}$ is a $\operatorname{Diff} X_{X_{\mathbb{R}}}$-module, and, thus a \mathcal{D}_{X} module.
- As \mathcal{D}_{X}-modules $\mathcal{O}_{X} \subset \mathcal{C}_{X_{\mathbb{R}}}^{\infty} \subset \mathfrak{D b}_{X_{\mathbb{R}}}$.
- Note that \mathcal{D}_{X} and $\mathcal{D}_{\bar{X}}$ commute with each other inside of $\operatorname{Diff}_{X_{\mathbb{R}}}$. In particular, their actions on $\mathfrak{D b}_{X_{\mathbb{R}}}$ commute.

\mathcal{D}_{X} module examples

Here's a nice way to get a \mathcal{D}_{X} modules: Take a distribution $\mu \in \Gamma\left(X, \mathfrak{D b}_{X_{\mathbb{R}}}\right)$. Then set $\mathcal{M}=\mathcal{D}_{X} \mu \subset \mathfrak{D} \mathfrak{b}_{X_{\mathbb{R}}}$. For example, with $X=\mathbb{P}^{1}$:

- $\mathcal{O}_{X}=\mathcal{D}_{X} \cdot 1$. So here μ is the constant function.
- Set $\mathcal{L}=\mathcal{D}_{X}|z|$. Since $|z| \in L_{\text {loc }}^{1}, \mathcal{L}$ is a \mathcal{D}_{X}-module.
- Let δ denote the Dirac delta function concentrated at 0 in $\mathbb{A}^{1} \subset \mathbb{P}^{1}$ To a 2 -form, $\phi d x d y, \delta$ associates the valued $\phi(0)$. Then $\mathcal{M}=\mathcal{D}_{\chi} \delta$ is a \mathcal{D}_{X} module supported at the 0 .

All of the above are examples of regular holonomic D_{X} modules. Kashiwara showed that the functor

$$
\mathcal{M} \rightsquigarrow \mathrm{DR}_{X}(\mathcal{M}):=\operatorname{RHom}_{\mathcal{D}_{X}}\left(\mathcal{O}_{X}, \mathcal{M}\right)[\operatorname{dim} X]
$$

is an equivalence between from the category $\operatorname{RH}\left(\mathcal{D}_{X}\right)$ to the category $\operatorname{Perv}\left(\mathbb{C}_{X}\right)$ of perverse sheaves on X.

\mathcal{D}_{X} module examples

Here's a nice way to get a \mathcal{D}_{X} modules: Take a distribution $\mu \in \Gamma\left(X, \mathfrak{D b}_{X_{\mathbb{R}}}\right)$. Then set $\mathcal{M}=\mathcal{D}_{X} \mu \subset \mathfrak{D b}_{X_{\mathbb{R}}}$. For example, with $X=\mathbb{P}^{1}$:

- $\mathcal{O}_{X}=\mathcal{D}_{X} \cdot 1$. So here μ is the constant function.

- Let δ denote the Dirac delta function concentrated at 0 in $\mathbb{A}^{1} \subset \mathbb{P}^{1}$ To a 2 -form, $\phi d x d y, \delta$ associates the valued $\phi(0)$. Then $\mathcal{M}=\mathcal{D}_{\chi} \delta$ is a \mathcal{D}_{X} module supported at the 0 .

All of the above are examples of regular holonomic \mathcal{D}_{X} modules. Kashiwara showed that the functor

$$
\mathcal{M} \rightsquigarrow \mathrm{DR}_{X}(\mathcal{M}):=\operatorname{RHom}_{\mathcal{D}_{X}}\left(\mathcal{O}_{X}, \mathcal{M}\right)[\operatorname{dim} X]
$$

> is an equivalence between from the category $\operatorname{RH}\left(\mathcal{D}_{X}\right)$ to the category $\operatorname{Perv}\left(\mathbb{C}_{X}\right)$ of perverse sheaves on

\mathcal{D}_{X} module examples

Here's a nice way to get a \mathcal{D}_{X} modules: Take a distribution $\mu \in \Gamma\left(X, \mathfrak{D b}_{X_{\mathbb{R}}}\right)$. Then set $\mathcal{M}=\mathcal{D}_{X} \mu \subset \mathfrak{D b}_{X_{\mathbb{R}}}$. For example, with $X=\mathbb{P}^{1}$:

- $\mathcal{O}_{X}=\mathcal{D}_{X} \cdot 1$. So here μ is the constant function.
- Set $\mathcal{L}=\mathcal{D}_{X}|z|$. Since $|z| \in L_{\text {loc }}^{1}, \mathcal{L}$ is a \mathcal{D}_{X}-module.
- Let δ denote the Dirac delta function concentrated at 0 in $\mathbb{A}^{1} \subset \mathbb{P}^{1}$.
To a 2-form, $\phi d x d y, \delta$ associates the valued $\phi(0)$. Then $\mathcal{M}=\mathcal{D}_{X} \delta$ is a \mathcal{D}_{X} module supported at the 0 .

All of the above are examples of regular holonomic D_{X} modules. Kashiwara showed that the functor

\square $\operatorname{Perv}\left(\mathbb{C}_{X}\right)$ of perverse sheaves on

\mathcal{D}_{X} module examples

Here's a nice way to get a \mathcal{D}_{X} modules: Take a distribution $\mu \in \Gamma\left(X, \mathfrak{D b}_{X_{\mathbb{R}}}\right)$. Then set $\mathcal{M}=\mathcal{D}_{X} \mu \subset \mathfrak{D} \mathfrak{b}_{X_{\mathbb{R}}}$. For example, with $X=\mathbb{P}^{1}$:

- $\mathcal{O}_{X}=\mathcal{D}_{X} \cdot 1$. So here μ is the constant function.
- Set $\mathcal{L}=\mathcal{D}_{X}|z|$. Since $|z| \in L_{\text {loc }}^{1}, \mathcal{L}$ is a \mathcal{D}_{X}-module.
- Let δ denote the Dirac delta function concentrated at 0 in $\mathbb{A}^{1} \subset \mathbb{P}^{1}$. To a 2 -form, $\phi d x d y, \delta$ associates the valued $\phi(0)$. Then $\mathcal{M}=\mathcal{D}_{X} \delta$ is a \mathcal{D}_{X} module supported at the 0 .

$$
\begin{aligned}
& \text { Kashiwara showed that the functor } \\
& \qquad \mathcal{M} \rightsquigarrow \mathrm{DR}_{X}(\mathcal{M}):=\operatorname{RHom}_{\mathcal{D}_{X}}\left(\mathcal{O}_{X}, \mathcal{M}\right)[\operatorname{dim} X]
\end{aligned}
$$

\mathcal{D}_{X} module examples

Here's a nice way to get a \mathcal{D}_{X} modules: Take a distribution $\mu \in \Gamma\left(X, \mathfrak{D b}_{X_{\mathbb{R}}}\right)$. Then set $\mathcal{M}=\mathcal{D}_{X} \mu \subset \mathfrak{D b}_{X_{\mathbb{R}}}$. For example, with $X=\mathbb{P}^{1}$:

- $\mathcal{O}_{X}=\mathcal{D}_{X} \cdot 1$. So here μ is the constant function.
- Set $\mathcal{L}=\mathcal{D}_{X}|z|$. Since $|z| \in L_{\text {loc }}^{1}, \mathcal{L}$ is a \mathcal{D}_{X}-module.
- Let δ denote the Dirac delta function concentrated at 0 in $\mathbb{A}^{1} \subset \mathbb{P}^{1}$. To a 2 -form, $\phi d x d y, \delta$ associates the valued $\phi(0)$. Then $\mathcal{M}=\mathcal{D}_{X} \delta$ is a \mathcal{D}_{X} module supported at the 0 .

All of the above are examples of regular holonomic \mathcal{D}_{X} modules. Kashiwara showed that the functor

$$
\mathcal{M} \rightsquigarrow \mathrm{DR}_{X}(\mathcal{M}):=\operatorname{RHom}_{\mathcal{D}_{X}}\left(\mathcal{O}_{X}, \mathcal{M}\right)[\operatorname{dim} X]
$$

is an equivalence between from the category $\operatorname{RH}\left(\mathcal{D}_{X}\right)$ to the category $\operatorname{Perv}\left(\mathbb{C}_{X}\right)$ of perverse sheaves on X.

Outline

(1) Introduction

(2) \mathcal{D}-modules and Kashiwara conjugation

- D-modules
- Kashiwara conjugation
(3) Twisted \mathcal{D} modules
(4) The theorem

Definition

Suppose \mathcal{M} is a \mathcal{D}_{X} module. The Kashiwara conjugate of \mathcal{M} is

$$
K(\mathcal{M}):=\operatorname{Hom}_{\mathcal{D}_{X}}\left(\mathcal{M}, \mathfrak{D b}_{X_{\mathbb{R}}}\right)
$$

- Since the actions of \mathcal{D}_{X} and $\mathcal{D}_{\bar{X}}$ on $\mathfrak{D b}_{X_{\mathbb{R}}}$ commute, $\mathcal{D}_{\bar{X}}$ acts on $K(\mathcal{M})$ via its action on $\mathfrak{D}_{X_{\mathbb{R}}}$. Thus $K(\mathcal{M})$ is a $D_{\bar{X}}$ module.
- It's not hard to see that we get a functor

Definition

Suppose \mathcal{M} is a \mathcal{D}_{X} module. The Kashiwara conjugate of \mathcal{M} is

$$
K(\mathcal{M}):=\operatorname{Hom}_{\mathcal{D}_{X}}\left(\mathcal{M}, \mathfrak{D b}_{X_{\mathbb{R}}}\right)
$$

- Since the actions of \mathcal{D}_{X} and $\mathcal{D}_{\bar{X}}$ on $\mathfrak{D b}_{X_{\mathbb{R}}}$ commute, $\mathcal{D}_{\bar{X}}$ acts on $K(\mathcal{M})$ via its action on $\mathfrak{D} \mathfrak{b}_{X_{\mathbb{R}}}$. Thus $K(\mathcal{M})$ is a $D_{\bar{x}}$ module.
- It's not hard to see that we get a functor

Definition

Suppose \mathcal{M} is a \mathcal{D}_{X} module. The Kashiwara conjugate of \mathcal{M} is

$$
K(\mathcal{M}):=\operatorname{Hom}_{\mathcal{D}_{X}}\left(\mathcal{M}, \mathfrak{D b}_{X_{\mathbb{R}}}\right)
$$

- Since the actions of \mathcal{D}_{X} and $\mathcal{D}_{\bar{X}}$ on $\mathfrak{D b}_{X_{\mathbb{R}}}$ commute, $\mathcal{D}_{\bar{X}}$ acts on $K(\mathcal{M})$ via its action on $\mathfrak{D b}_{X_{\mathbb{R}}}$. Thus $K(\mathcal{M})$ is a $D_{\bar{\chi}}$ module.
- It's not hard to see that we get a functor

$$
K:\left(\mathcal{D}_{X} \bmod \right)^{\mathrm{op}} \rightsquigarrow\left(\mathcal{D}_{\bar{X}} \bmod \right) .
$$

Theorem (Kashiwara)
Let $\mathrm{RH}(X)$ denote the category of regular holonomic \mathcal{D}_{X} modules on X. Then Kashiwara conjugation gives an equivalence of categories between

$$
K: \mathrm{RH}(X)^{\mathrm{op}} \underset{\rightarrow}{\sim} \mathrm{RH}(\bar{X}) .
$$

\square

Theorem (Kashiwara)

Let $\mathrm{RH}(X)$ denote the category of regular holonomic \mathcal{D}_{X} modules on X. Then Kashiwara conjugation gives an equivalence of categories between

$$
K: \operatorname{RH}(X)^{\mathrm{op}} \underset{\rightarrow}{\sim} \mathrm{RH}(\bar{X}) .
$$

Call a distribution ϕ on X, regular holonomic if the \mathcal{D}_{X} module $\mathcal{D}_{X} \phi$ is regular holonomic. Using the theorem, Kashiwara showed that every regular holonomic \mathcal{D}_{X} module is locally of the form $\mathcal{D}_{X} \phi$ for some regular holonomic distribution ϕ.

My goal is to do what Kashiwara did but for twisted \mathcal{D} modules. Luckily the twist is a global phenomenon but Kashiwara's proof is local on X. So the proofs are essentially the same as Kashiwara's once things are set up properly. The first thing to do is to describe rings of twisted differential operators or tdos. Here's a quick definition:

My goal is to do what Kashiwara did but for twisted \mathcal{D} modules. Luckily the twist is a global phenomenon but Kashiwara's proof is local on X. So the proofs are essentially the same as Kashiwara's once things are set up properly. The first thing to do is to describe rings of twisted differential operators or tdos. Here's a quick definition:

Definition

A tdo is a sheaf of rings \mathcal{A} on X together with a filtration $F_{p} \mathcal{A}$ by \mathcal{O}_{X} modules and an isomorphism $i: \mathcal{O}_{X} \rightarrow F_{0} \mathcal{A}$ such that the triple $\left(\mathcal{A}, F_{p} \mathcal{A}, i\right)$ is locally isomorphic to the obvious triple for \mathcal{D}_{X} (where $F_{p} \mathcal{D}_{X}$ is the filtration by order of operator).

The filtration on a tdo enjoys several properties:

- $F_{p} \mathcal{A} \cdot F_{q} \mathcal{A} \subset F_{p+q} \mathcal{A}$ and $F_{p} \mathcal{A}=0$ for $p<0$.
- The sheaf of rings $\operatorname{Gr}^{F} \mathcal{A}$ is a commutative \mathcal{O}_{X} algebra. This induces a map

sending $P \in F_{1} \mathcal{A}$ to the derivation $f \mapsto[P, f]\left(f \in \mathcal{O}_{X}\right)$. In a tdo, is an isomorphism.
- The isomorphism ∇^{-1} then extends to an isomorphism of graded \mathcal{O}_{x}-modules

The filtration on a tdo enjoys several properties:

- $F_{p} \mathcal{A} \cdot F_{q} \mathcal{A} \subset F_{p+q} \mathcal{A}$ and $F_{p} \mathcal{A}=0$ for $p<0$.
- The sheaf of rings $\operatorname{Gr}^{F} \mathcal{A}$ is a commutative \mathcal{O}_{X} algebra. This induces
a map

sending $P \in F_{1} \mathcal{A}$ to the derivation $f \mapsto[P, f]\left(f \in \mathcal{O}_{X}\right)$. In a tdo, is an isomorphism.
- The isomorphism ∇^{-1} then extends to an isomorphism of graded \mathcal{O}_{x}-modules

The filtration on a tdo enjoys several properties:

- $F_{p} \mathcal{A} \cdot F_{q} \mathcal{A} \subset F_{p+q} \mathcal{A}$ and $F_{p} \mathcal{A}=0$ for $p<0$.
- The sheaf of rings $\operatorname{Gr}^{F} \mathcal{A}$ is a commutative \mathcal{O}_{X} algebra. This induces a map

$$
\nabla: \mathrm{Gr}_{1}^{F} \mathcal{A} \rightarrow T X
$$

sending $P \in F_{1} \mathcal{A}$ to the derivation $f \mapsto[P, f]\left(f \in \mathcal{O}_{X}\right)$. In a tdo, ∇ is an isomorphism.

- The isomorphism ∇^{-1} then extends to an isomorphism of graded \mathcal{O}_{x}-modules

The filtration on a tdo enjoys several properties:

- $F_{p} \mathcal{A} \cdot F_{q} \mathcal{A} \subset F_{p+q} \mathcal{A}$ and $F_{p} \mathcal{A}=0$ for $p<0$.
- The sheaf of rings $\operatorname{Gr}^{F} \mathcal{A}$ is a commutative \mathcal{O}_{X} algebra. This induces a map

$$
\nabla: \mathrm{Gr}_{1}^{F} \mathcal{A} \rightarrow T X
$$

sending $P \in F_{1} \mathcal{A}$ to the derivation $f \mapsto[P, f]\left(f \in \mathcal{O}_{X}\right)$. In a tdo, ∇ is an isomorphism.

- The isomorphism ∇^{-1} then extends to an isomorphism of graded \mathcal{O}_{X}-modules

$$
\nabla^{-1}: \mathrm{Gr}^{F} \mathcal{D}_{X} \rightarrow \mathrm{Gr}^{F} \mathcal{A}
$$

Write $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ for the set of isomorphism classes of tdos.

Theorem

There is a natural isomorphism $\operatorname{Tw}\left(\mathcal{D}_{X}\right)=H^{1}\left(X, d \mathcal{O}_{X}\right)$.

Write $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ for the set of isomorphism classes of tdos.

Theorem

There is a natural isomorphism $\operatorname{Tw}\left(\mathcal{D}_{X}\right)=H^{1}\left(X, d \mathcal{O}_{X}\right)$.

- The theorem is not horribly difficult. You can find a proof in Björk's big book on \mathcal{D}-modules.
- A tdo \mathcal{A} gives rise to an exact sequence

Write $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ for the set of isomorphism classes of tdos.

Theorem

There is a natural isomorphism $\operatorname{Tw}\left(\mathcal{D}_{X}\right)=H^{1}\left(X, d \mathcal{O}_{X}\right)$.

- The theorem is not horribly difficult. You can find a proof in Björk's big book on \mathcal{D}-modules.
- A tdo \mathcal{A} gives rise to an exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow F_{1} \mathcal{A} \rightarrow T X \rightarrow 0
$$

These are classified by elements of $H^{1}\left(X, \Omega_{X}\right)$. The class of $F_{1} \mathcal{A}$ in $H^{1}\left(X, \Omega_{X}\right)$ agrees with the class of \mathcal{A} in $H^{1}\left(X, d \mathcal{O}_{X}\right)$ under the natural map $H^{1}\left(X, d \mathcal{O}_{X}\right) \rightarrow H^{1}\left(X, \Omega_{X}\right)$.

One way to compute $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ is to use the Dolbeault resolution. So let $\mathcal{A}^{p, q}$ denote the sheaf of (p, q) forms on X.

One way to compute $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ is to use the Dolbeault resolution. So let $\mathcal{A}^{p, q}$ denote the sheaf of (p, q) forms on X.

- Set $Z \mathcal{D}_{X}:=\left\{(\lambda, \omega) \in \mathcal{A}_{X}^{1,1} \oplus \mathcal{A}_{X}^{2,0}: \partial \lambda=\bar{\partial} \omega, \bar{\partial} \lambda=\partial \omega=0\right\}$.

One way to compute $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ is to use the Dolbeault resolution. So let $\mathcal{A}^{p, q}$ denote the sheaf of (p, q) forms on X.

- Set $Z \mathcal{D}_{X}:=\left\{(\lambda, \omega) \in \mathcal{A}_{X}^{1,1} \oplus \mathcal{A}_{X}^{2,0}: \partial \lambda=\bar{\partial} \omega, \bar{\partial} \lambda=\partial \omega=0\right\}$.
- $B \mathcal{D}_{X}:=\left\{(\bar{\partial} \gamma, \partial \gamma): \gamma \in \mathcal{A}_{X}^{1,0}\right.$.

Proposition
We have $H^{1}\left(X, d O_{X}\right)=Z D_{X} / B D_{X}$

One way to compute $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ is to use the Dolbeault resolution. So let $\mathcal{A}^{p, q}$ denote the sheaf of (p, q) forms on X.

- Set $Z \mathcal{D}_{X}:=\left\{(\lambda, \omega) \in \mathcal{A}_{X}^{1,1} \oplus \mathcal{A}_{X}^{2,0}: \partial \lambda=\bar{\partial} \omega, \bar{\partial} \lambda=\partial \omega=0\right\}$.
- $B \mathcal{D}_{X}:=\left\{(\bar{\partial} \gamma, \partial \gamma): \gamma \in \mathcal{A}_{X}^{1,0}\right.$.

Proposition

We have $H^{1}\left(X, d \mathcal{O}_{X}\right)=Z \mathcal{D}_{X} / B \mathcal{D}_{X}$.

One way to compute $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ is to use the Dolbeault resolution. So let $\mathcal{A}^{p, q}$ denote the sheaf of (p, q) forms on X.

- Set $Z \mathcal{D}_{X}:=\left\{(\lambda, \omega) \in \mathcal{A}_{X}^{1,1} \oplus \mathcal{A}_{X}^{2,0}: \partial \lambda=\bar{\partial} \omega, \bar{\partial} \lambda=\partial \omega=0\right\}$.
- $B \mathcal{D}_{X}:=\left\{(\bar{\partial} \gamma, \partial \gamma): \gamma \in \mathcal{A}_{X}^{1,0}\right.$.

Proposition

We have $H^{1}\left(X, d \mathcal{O}_{X}\right)=Z \mathcal{D}_{X} / B \mathcal{D}_{X}$.

Proof.

This is the calculation that falls out of the Dolbeault resolution of the complex $\Omega_{\bar{X}}^{\geq 1}[1]$ which is quasi-isomorphic to $d \mathcal{O}_{X}$.

The main definition of this talk is a way to embed certain tdo's \mathcal{A} in $\operatorname{Diff}_{X_{\mathbb{R}}}$. The first step is to embed $F_{1} \mathcal{A}$.

Proposition
N/e have a short exact sequence of $O x$-modules

In particular E_{λ} is a locally free sheaf of \mathcal{O}_{X} modules.

The main definition of this talk is a way to embed certain tdo's \mathcal{A} in Diff $X_{\mathbb{R}}$. The first step is to embed $F_{1} \mathcal{A}$.

Definition

Suppose $\lambda \in \mathcal{A}_{X}^{1,1}$ is $\bar{\partial}$ closed. Set

$$
E_{\lambda}:=\left\{(f, v) \in \mathcal{C}_{X}^{\infty} \oplus T X: \forall w \in T \bar{X}, w(f)=\lambda(w \wedge v)\right\} .
$$

Proposition
We have a short exact sequence of \mathcal{O}_{X}-modules

In particular E_{λ} is a locally free sheaf of \mathcal{O}_{X} modules.

The main definition of this talk is a way to embed certain tdo's \mathcal{A} in $\operatorname{Diff}_{X_{\mathbb{R}}}$. The first step is to embed $F_{1} \mathcal{A}$.

Definition

Suppose $\lambda \in \mathcal{A}_{X}^{1,1}$ is $\bar{\partial}$ closed. Set

$$
E_{\lambda}:=\left\{(f, v) \in \mathcal{C}_{X}^{\infty} \oplus T X: \forall w \in T \bar{X}, w(f)=\lambda(w \wedge v)\right\} .
$$

Proposition

We have a short exact sequence of \mathcal{O}_{X}-modules

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow E_{\lambda} \rightarrow T X \rightarrow 0
$$

In particular E_{λ} is a locally free sheaf of \mathcal{O}_{X} modules.

- Note that $\mathcal{C}^{\infty} \oplus T X \subset \operatorname{Diff}_{X_{\mathbb{R}}}$.
- If $\lambda \in \mathcal{A}^{1,1}$ is a closed $(1,1)$ form, then $(\lambda, 0) \in \operatorname{Tw}\left(\mathcal{D}_{X}\right)$.

Theorem
Assume λ is a closed $(1,1)$ form. Then

- E_{λ} generates a subalgebra $\mathcal{D}_{X, \lambda}$ of $\operatorname{Diff}_{X_{\mathbb{R}}}$ whose class in $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ is $(\lambda, 0)$.
- $\mathcal{D}_{X, \lambda}$ commutes with $\mathcal{D}_{\bar{X},-\lambda}$ in Diff $_{X_{\mathbb{R}}}$.
- If \mathcal{M} is a $\mathcal{D}_{X, \lambda}$ module then

$$
K(\mathcal{M}):=\operatorname{Hom}_{\mathcal{D}_{X, \lambda}}\left(\mathcal{M}, \mathfrak{D b}_{X_{\mathbb{R}}}\right)
$$

is a $\mathcal{D}_{\bar{X},-\lambda}$ module.

- K $: \operatorname{RH}\left(\mathcal{D}_{X, \lambda}\right)^{\mathrm{op}} \rightarrow \operatorname{RH}\left(\mathcal{D}_{\bar{\chi},-\lambda}\right)$ is an equivalence of categories.
- Note that $\mathcal{C}^{\infty} \oplus T X \subset \operatorname{Diff}_{X_{\mathbb{R}}}$.
- If $\lambda \in \mathcal{A}^{1,1}$ is a closed $(1,1)$ form, then $(\lambda, 0) \in \operatorname{Tw}\left(\mathcal{D}_{X}\right)$.

Theorem
Assume λ is a closed $(1,1)$ form. Then

- E_{λ} generates a subalgebra $\mathcal{D}_{X, \lambda}$ of Diff $_{X_{\mathbb{R}}}$ whose class in $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ is $(\lambda, 0)$.
- $\mathcal{D}_{X, \lambda}$ commutes with $\mathcal{D}_{\bar{X},-\lambda}$ in Diff $_{X_{\mathbb{R}}}$.
- If \mathcal{M} is a $\mathcal{D}_{X, \lambda}$ module then

$$
K(\mathcal{M}):=\operatorname{Hom}_{\mathcal{D}_{X, \lambda}}\left(\mathcal{M}, \mathfrak{D b}_{X_{\mathbb{R}}}\right)
$$

is a $\mathcal{D}_{\bar{X},-\lambda}$ module.

- K $: \operatorname{RH}\left(\mathcal{D}_{X, \lambda}\right)^{\mathrm{op}} \rightarrow \operatorname{RH}\left(\mathcal{D}_{\bar{\chi},-\lambda}\right)$ is an equivalence of categories.
- Note that $\mathcal{C}^{\infty} \oplus T X \subset \operatorname{Diff}_{X_{\mathbb{R}}}$.
- If $\lambda \in \mathcal{A}^{1,1}$ is a closed $(1,1)$ form, then $(\lambda, 0) \in \operatorname{Tw}\left(\mathcal{D}_{X}\right)$.

Theorem
Assume λ is a closed $(1,1)$ form. Then

- E_{λ} generates a subalgebra $\mathcal{D}_{X, \lambda}$ of $\operatorname{Diff}_{X_{\mathbb{R}}}$ whose class in $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ is
- $\mathcal{D}_{X, \lambda}$ commutes with $\mathcal{D}_{\bar{X},-\lambda}$ in $\operatorname{Diff}_{X_{\mathbb{R}}}$.
- If \mathcal{M} is a $\mathcal{D}_{X, \lambda}$ module then

$$
K(\mathcal{M}):=\operatorname{Hom}_{\mathcal{D}_{X, \lambda}}\left(\mathcal{M}, \mathfrak{D b}_{X_{\mathbb{R}}}\right)
$$

is a $\mathcal{D}_{\bar{X},-\lambda}$ module.

- K $: \operatorname{RH}\left(\mathcal{D}_{X, \lambda}\right)^{\mathrm{op}} \rightarrow \mathrm{RI}\left(\mathcal{D}_{\bar{\chi}},-\lambda\right)$ is an equivalence of categories.
- Note that $\mathcal{C}^{\infty} \oplus T X \subset \operatorname{Diff}_{X_{\mathbb{R}}}$.
- If $\lambda \in \mathcal{A}^{1,1}$ is a closed $(1,1)$ form, then $(\lambda, 0) \in \operatorname{Tw}\left(\mathcal{D}_{X}\right)$.

Theorem

Assume λ is a closed $(1,1)$ form. Then

- E_{λ} generates a subalgebra $\mathcal{D}_{X, \lambda}$ of $\operatorname{Diff}_{X_{\mathbb{R}}}$ whose class in $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ is $(\lambda, 0)$.
$\left.\begin{array}{l}\text { - } \mathcal{D}_{X, \lambda} \text { commutes with } \mathcal{D}_{\bar{X},-\lambda} \text { in } \operatorname{Diff}_{X_{\mathbb{R}}} . \\ \text { If } \mathcal{M} \text { is a } \mathcal{D}_{X, \lambda} \text { module then } \\ \qquad K(\mathcal{M}):=\operatorname{Hom}_{\mathcal{D}_{X, \lambda}}\left(\mathcal{M}, D_{\mathfrak{b}}^{X_{\mathbb{R}}}\right.\end{array}\right)$.
is a $\mathcal{D}_{\bar{X},-\lambda}$ module.
- K $: \operatorname{RH}\left(\mathcal{D}_{X, \lambda}\right)^{\mathrm{op}} \rightarrow \mathrm{RII}\left(\mathcal{D}_{\bar{\chi}}^{-, \lambda}\right)$ is an equivalence of categories.
- Note that $\mathcal{C}^{\infty} \oplus T X \subset \operatorname{Diff}_{X_{\mathbb{R}}}$.
- If $\lambda \in \mathcal{A}^{1,1}$ is a closed $(1,1)$ form, then $(\lambda, 0) \in \operatorname{Tw}\left(\mathcal{D}_{X}\right)$.

Theorem

Assume λ is a closed $(1,1)$ form. Then

- E_{λ} generates a subalgebra $\mathcal{D}_{X, \lambda}$ of $\operatorname{Diff}_{X_{\mathbb{R}}}$ whose class in $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ is $(\lambda, 0)$.
- $\mathcal{D}_{X, \lambda}$ commutes with $\mathcal{D}_{\bar{X},-\lambda}$ in $\operatorname{Diff}_{X_{\mathbb{R}}}$.
- If \mathcal{M} is a $\mathcal{D}_{X, \lambda}$ module then

$$
K(\mathcal{M}):=\operatorname{Hom}_{\mathcal{D}_{X, \lambda}}\left(\mathcal{M}, \mathfrak{D b}_{X_{\mathbb{R}}}\right)
$$

is a $\mathcal{D}_{\bar{X},-\lambda}$ module.

- K $: \operatorname{RH}\left(\mathcal{D}_{x},\right)^{\mathrm{op}} \rightarrow \operatorname{RI}\left(\mathcal{D}_{\bar{\chi}},-\lambda\right)$ is an equivalence of categories.
- Note that $\mathcal{C}^{\infty} \oplus T X \subset \operatorname{Diff}_{X_{\mathbb{R}}}$.
- If $\lambda \in \mathcal{A}^{1,1}$ is a closed $(1,1)$ form, then $(\lambda, 0) \in \operatorname{Tw}\left(\mathcal{D}_{X}\right)$.

Theorem

Assume λ is a closed $(1,1)$ form. Then

- E_{λ} generates a subalgebra $\mathcal{D}_{X, \lambda}$ of $\operatorname{Diff}_{X_{\mathbb{R}}}$ whose class in $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ is $(\lambda, 0)$.
- $\mathcal{D}_{X, \lambda}$ commutes with $\mathcal{D}_{\bar{X},-\lambda}$ in $\operatorname{Diff}_{X_{\mathbb{R}}}$.
- If \mathcal{M} is a $\mathcal{D}_{X, \lambda}$ module then

$$
K(\mathcal{M}):=\operatorname{Hom}_{\mathcal{D}_{X, \lambda}}\left(\mathcal{M}, \mathfrak{D b}_{X_{\mathbb{R}}}\right)
$$

is a $\mathcal{D}_{\bar{X},-\lambda}$ module.

- $K: \operatorname{RH}\left(\mathcal{D}_{X, \lambda}\right)^{\text {op }} \rightarrow \operatorname{RH}\left(\mathcal{D}_{\bar{\chi},-\lambda}\right)$ is an equivalence of categories.
- Note that $\mathcal{C}^{\infty} \oplus T X \subset \operatorname{Diff}_{X_{\mathbb{R}}}$.
- If $\lambda \in \mathcal{A}^{1,1}$ is a closed $(1,1)$ form, then $(\lambda, 0) \in \operatorname{Tw}\left(\mathcal{D}_{X}\right)$.

Theorem

Assume λ is a closed $(1,1)$ form. Then

- E_{λ} generates a subalgebra $\mathcal{D}_{X, \lambda}$ of $\operatorname{Diff}_{X_{\mathbb{R}}}$ whose class in $\operatorname{Tw}\left(\mathcal{D}_{X}\right)$ is $(\lambda, 0)$.
- $\mathcal{D}_{X, \lambda}$ commutes with $\mathcal{D}_{\bar{X},-\lambda}$ in $\operatorname{Diff}_{X_{\mathbb{R}}}$.
- If \mathcal{M} is a $\mathcal{D}_{X, \lambda}$ module then

$$
K(\mathcal{M}):=\operatorname{Hom}_{\mathcal{D}_{X, \lambda}}\left(\mathcal{M}, \mathfrak{D b}_{X_{\mathbb{R}}}\right)
$$

is a $\mathcal{D}_{\bar{X},-\lambda}$ module.

- $K: \operatorname{RH}\left(\mathcal{D}_{X, \lambda}\right)^{\mathrm{op}} \rightarrow \operatorname{RH}\left(\mathcal{D}_{\bar{x},-\lambda}\right)$ is an equivalence of categories.
- Suppose $\bar{\partial} \partial \log g=\lambda$. Write L_{g} for left multiplication by g inside $\operatorname{Diff}_{X_{\mathbb{R}}}$. Then $\mathcal{D}_{X, \lambda}=L_{g}^{-1} \mathcal{D}_{X} L_{g}$.
- In the theorem, everything, even the definition $\mathrm{RH}\left(\mathcal{D}_{X, \lambda}\right)$, is local. So, since $\mathcal{D}_{X, \lambda}$ is locally isomorphic to \mathcal{D}_{X}, the theorem follows almost directly from the untwisted case.
- Define a twisted regular holonomic distribution to be a distribution ϕ such that $\mathcal{D}_{X, \lambda} \phi$ is a regular holonomic $\mathcal{D}_{X, \lambda}$ module. You can use the theorem to see that locally every regular holonomic $\mathcal{D}_{X, \lambda}$ is of the above form.
- The notion of regular holonomic distribution definitely depends on λ itself and not simply its cohomology class. So it seems primarily interesting when we have a particular choice of λ.
- Suppose $\bar{\partial} \partial \log g=\lambda$. Write L_{g} for left multiplication by g inside $\operatorname{Diff}_{X_{\mathbb{R}}}$. Then $\mathcal{D}_{X, \lambda}=L_{g}^{-1} \mathcal{D}_{X} L_{g}$.
- In the theorem, everything, even the definition $\operatorname{RH}\left(\mathcal{D}_{X, \lambda}\right)$, is local. So, since $\mathcal{D}_{X, \lambda}$ is locally isomorphic to \mathcal{D}_{X}, the theorem follows almost directly from the untwisted case.

- Suppose $\bar{\partial} \partial \log g=\lambda$. Write L_{g} for left multiplication by g inside $\operatorname{Diff}_{X_{\mathbb{R}}}$. Then $\mathcal{D}_{X, \lambda}=L_{g}^{-1} \mathcal{D}_{X} L_{g}$.
- In the theorem, everything, even the definition $\operatorname{RH}\left(\mathcal{D}_{X, \lambda}\right)$, is local. So, since $\mathcal{D}_{X, \lambda}$ is locally isomorphic to \mathcal{D}_{X}, the theorem follows almost directly from the untwisted case.
- Define a twisted regular holonomic distribution to be a distribution ϕ such that $\mathcal{D}_{X, \lambda} \phi$ is a regular holonomic $\mathcal{D}_{X, \lambda}$ module. You can use the theorem to see that locally every regular holonomic $\mathcal{D}_{X, \lambda}$ is of the above form.
- The notion of regular holonomic distribution definitely depends on λ
itself and not simply its cohomology class. So it seems primarily interesting when we have a particular choice of λ.
- Suppose $\bar{\partial} \partial \log g=\lambda$. Write L_{g} for left multiplication by g inside $\operatorname{Diff}_{X_{\mathbb{R}}}$. Then $\mathcal{D}_{X, \lambda}=L_{g}^{-1} \mathcal{D}_{X} L_{g}$.
- In the theorem, everything, even the definition $\operatorname{RH}\left(\mathcal{D}_{X, \lambda}\right)$, is local. So, since $\mathcal{D}_{X, \lambda}$ is locally isomorphic to \mathcal{D}_{X}, the theorem follows almost directly from the untwisted case.
- Define a twisted regular holonomic distribution to be a distribution ϕ such that $\mathcal{D}_{X, \lambda} \phi$ is a regular holonomic $\mathcal{D}_{X, \lambda}$ module. You can use the theorem to see that locally every regular holonomic $\mathcal{D}_{X, \lambda}$ is of the above form.
- The notion of regular holonomic distribution definitely depends on λ itself and not simply its cohomology class. So it seems primarily interesting when we have a particular choice of λ.

There is another functor going from twisted \mathcal{D}_{X} modules to $\mathcal{D}_{\bar{X}}$ modules. This is induced by the complex anti-linear ring homomorphism

$$
\begin{aligned}
\mathcal{D}_{\bar{X}, \bar{\lambda}} & \rightarrow \mathcal{D}_{X, \lambda} \\
P & \mapsto \bar{P} .
\end{aligned}
$$

It induces an equivalence of categories

$$
C: \operatorname{RH}\left(\mathcal{D}_{X, \lambda}\right) \rightarrow \operatorname{RH}\left(\mathcal{D}_{\bar{\chi}, \bar{\lambda}}\right)
$$

and we write $C(\mathcal{M})=\overline{\mathcal{M}}$ for short.

Definition

Suppose $\lambda=-\bar{\lambda}$. A polarization of a $\mathcal{D}_{X, \lambda}$ modules \mathcal{M} is an isomorphism $\overline{\mathcal{M}} \rightarrow K(\mathcal{M})$.

- By definition, a polarization gives rise to a pairing

$$
\mathcal{M} \otimes \overline{\mathcal{M}} \xrightarrow{\langle\boldsymbol{}\rangle} \mathfrak{D b}_{X_{\mathbb{R}}},
$$

which is $\mathcal{D}_{X, \lambda} \times \mathcal{D}_{\bar{X}, \bar{\lambda}}$-equivariant.

- Suppose that X has a chosen smooth volume form vol. Then we can integrate the above pairing on global sectinos to get another pairing

$$
\begin{aligned}
(,): \Gamma(\mathcal{M}) \otimes \Gamma(\overline{\mathcal{M}}) & \rightarrow \mathbb{C} \\
\alpha \otimes \beta & \mapsto \int_{X}\langle\alpha, \beta\rangle d \mathrm{vol}
\end{aligned}
$$

- The motivation for the work above was to understand a conjecture of Schmid and Vilonen about the pairing (,) in the case that $X=G / B$ is a generalized flag variety and \mathcal{M} is a twisted \mathcal{D}-module on X coming from representations of a real form of G.
- In this case \mathcal{M} can be made into a mixed Hodge module in a natural way. So it has a Hodge filtration $F_{p} \mathcal{M}$. To fix notation, suppose $F_{p}=0$ for $p<0$ and $F_{0} \neq 0$ for $\mathcal{M} \neq 0$. Roughly speaking, the Schmid-Vilonen conjecture is the following:

Conjecture (Schmid-Vilonen)

Suppose $\lambda+\rho>0$. Then (for \mathcal{M} coming from representation theory) the pairing $($,$) is (-1)^{p}$ definite on $\Gamma\left(F_{p} \mathcal{M}\right) \cap \Gamma\left(F_{p-1} \mathcal{M}\right)^{\perp}$.

- If $p=0$, then the conjecture is just saying that $(\alpha, \beta)>0$ for $\alpha, \beta \in F_{0} \mathcal{M}$. This follows from old results of Schmid about the asymptotics of the Hodge metric.
- The conjecture implies that $\Gamma(\mathcal{M})=\oplus H_{p}$ where $H_{p}:=\Gamma\left(F_{p} \mathcal{M}\right) \cap \Gamma\left(F_{p-1} \mathcal{M}\right)^{\perp}$. In this sense you can view it as associating a polarized infinite dimensional Hodge structure to \mathcal{M}.
- Schmid and Vilonen have verified the conjecture in many cases. To see what's going on, let's check it for $X=\mathbb{P}^{1}$.

Untwisted Example

- On $X=\mathbb{P}^{1}$ we can pick vol $=\frac{1}{2 i} \frac{d z \wedge d \bar{z}}{\left(1+|z|^{2}\right)^{2}}$
- Take $\mathcal{M}=\mathcal{D}_{X} \delta$. This is, in fact, the modules coming from the discrete series representation of $\mathrm{SL}_{2 \mathbb{R}}$.
- The Hodge filtration is given by $F_{p} \mathcal{M}=\sum_{k \leq p} \mathbb{C} \partial^{k} \delta$.
- We have

$$
\begin{aligned}
\left(\partial^{k} \delta, \bar{\partial}^{j} \delta\right) & =\int\left(\partial^{k} \bar{\partial}^{j} \delta\right) d \mathrm{vol} \\
& =(-1)^{k+j}\left(\delta, \partial^{k} \bar{\partial}^{j} \mathrm{vol}\right) \\
& =(-1)^{k+j}\left(\delta, \partial^{k} \partial^{j} \frac{1}{2 i} \sum_{p \geq 0}(-1)^{p}(p+1)|z|^{2 p}\right) \\
& = \begin{cases}(-1)^{k}(k+1), & k=j \\
0, & \text { else. }\end{cases}
\end{aligned}
$$

- So the conjecture holds for \mathcal{M}.

Twisted Example

- Pick a non-integral real number $c>0$ and set $g=\left(1+|z|^{2}\right)^{c}$ and

$$
\lambda=\partial \bar{\partial} g=\frac{2 c d z \wedge d \bar{z}}{\left(1+|z|^{2}\right)^{2}}
$$

- Let $\mathcal{N}=\mathcal{D}_{X}|z|^{c}$. This is an (untwisted) \mathcal{D}_{X} module corresponding to a local system is monodromy $e^{2 \pi i c}$. It is a (complex) Hode module in a natural way.
- Away from ∞, set $\mathcal{M}=L_{g}^{-1} \mathcal{N}$. This is a $\mathcal{D}_{X, \lambda}$-module isomorphic to

$$
D_{X, \lambda} \frac{|z|^{c}}{\left(1+|z|^{2}\right)^{c}}
$$

The expresion makes sense near ∞ and we get a $\mathcal{D}_{X, \lambda}$ module on \mathbb{P}^{1}. too.

Continued Twisted Example

- The Hodge filtration on \mathcal{M} comes from that on \mathcal{N}. We have

$$
\Gamma\left(F_{p} \mathcal{M}\right)=\left\langle z^{k} \frac{|z|^{c}}{\left(1+|z|^{2}\right)^{c}}:\right| k\left|<\frac{c}{2}+p+1\right\rangle
$$

with $k \in \mathbb{Z}$ and $p \geq 0$.

- To verify the conjecture we have to look at the integral

$$
I_{k}=\int_{X} \frac{|z|^{c+2 k}}{\left(1+|z|^{2}\right)^{c}} d \mathrm{vol}=\int_{X} \frac{|z|^{c+2 k}}{\left(1+|z|^{2}\right)^{c+2}} d x d y
$$

- Note that the integrand is L^{1} for $|k|<c / 2+1$ and it is manifestly positive. So on F_{0} the integral is positive. But the integrand is really a distribution otherwise.
- By change of variables and other magic we find that

$$
I_{k}=\alpha \Gamma(c / 2+1+k) \Gamma(c / 2+1-k)
$$

where α is an (unimportant) positive constant.

- Now the conjecture is trivial to verify using the sign alternation of that Γ function.

