Orders of Elements in Finite Abelian Groups

by Patrick Brosnan
November 11, 2011
Suppose G is a finite group. For each $d \in \mathbf{Z}_{+}$, write $a_{G}(d)$ for the number of elements of order d in G. The purpose of these notes is to prove the following.

Theorem 1. Suppose G and H are finite abelian groups, and suppose that, for every $k \in \mathbf{Z}_{+}, a_{G}(k)=$ $a_{H}(k)$. Then $G \cong H$.

I'm writing notes on this because someone tried to use it on Midterm 2 claiming that I proved it in class. I didn't. However, as you will see, the main idea did come up in class. (So I gave quite a bit of credit to the student.)

The function $a_{G}: \mathbf{Z}_{+} \rightarrow \mathbf{N}$ is a little difficult to deal with. So we define a related function b_{G} by setting $b_{G}(k)=\#\{g \in G: o(g) \mid k\}$. Note that $b_{G}(k)=\#\left\{g \in G: g^{k}=e\right\}$. This makes it easier to deal with because $G[k]:=\left\{g \in G: g^{k}=e\right\}$ is a subgroup of G provided that G is abelian.
Lemma 2. We have $b_{G}(k)=\sum_{j \mid k} a_{G}(j)$.
Proof. If $g^{k}=e$ then $o(g) \mid k$.
Lemma 2 implies that the function a_{G} determines the function b_{G}. In fact, b_{G} also determines a_{G}. But the formula is more complicated, and we won't even need to know that b_{G} determines a_{G} in these notes. Here's the basic idea though: if p is a prime, $a_{G}(p)=b_{G}(p)-b_{G}(1)=b_{G}(p)-1$. But $a_{G}\left(p^{2}\right)=$ $b_{G}\left(p^{2}\right)-a_{G}(p)-a_{G}(1)=b_{G}\left(p^{2}\right)-\left(b_{G}(p)-1\right)-1=b_{G}\left(p^{2}\right)-b_{G}(p)$. By similar considerations, you can compute $a_{G}\left(p^{n}\right)$ and also $a_{G}(k)$ for any $k \in \mathbf{Z}_{+}$. The fancier (and more fun) way to do this is to use something called the Möbius function.

Proposition 3. Suppose $G=\mathbf{Z} / d_{1} \times \cdots \times \mathbf{Z} / d_{r}$ with d_{1}, \ldots, d_{r} positive integers satisfying $d_{1}\left|d_{2}\right| \cdots \mid d_{r}$ and $d_{1}>1$. Then $b_{G}(k)=\prod_{i=1}^{r}\left(k, d_{i}\right)$.
Proof. In the group $\mathbf{Z} / d_{i}[k]$ there are $\left(k, d_{i}\right)$ elements. This was a result proved in class. If $G=X \times Y$ where X and Y are abelian groups then $G[k]=X[k] \times Y[k]$. It follows that $G[k]=\prod\left(\mathbf{Z} / d_{i}\right)[k]$ so $b_{G}(k)=$ $\# G[k]=\prod_{i=1}^{r}\left(k, d_{i}\right)$.
Proposition 4. Suppose G and H are finite abelian groups with

$$
\begin{aligned}
& G=\mathbf{Z} / d_{1} \times \cdots \times \mathbf{Z} / d_{r}, \quad d_{1}\left|d_{2}\right| \cdots \mid d_{r} ; \\
& H=\mathbf{Z} / e_{1} \times \cdots \times \mathbf{Z} / e_{s}, \quad e_{1}\left|e_{2}\right| \cdots \mid e_{s}
\end{aligned}
$$

where the d_{i}, e_{j} are integers strictly greater that 1 . If $b_{G}=b_{H}$ then $r=s$ and $d_{i}=e_{i}$ for all $i=1, \cdots r$. In particular, $G \cong H$.

Proof. We have $d_{1}^{r}=\prod_{i=1}^{r}\left(d_{1}, d_{i}\right)=b_{G}\left(d_{1}\right)=b_{H}\left(d_{1}\right)=\prod_{i=1}^{s}\left(d_{1}, e_{i}\right) \leq d_{1}^{s}$. So $d_{1}^{r} \leq d_{1}^{s}$. Since $d_{1}>1$, it follows that $r \leq s$. Switching the roles of G and H, it follows that $s \leq r$. So $r=s$.

Now G and H are a counterexample to the proposition. Then there is an $i<r$ such that $d_{j}=e_{j}$ for $j \leq i$ but $d_{i+1} \neq e_{i+1}$. Without loss of generality, we can assume that $e_{i+1}<d_{i+1}$. (Otherwise switch G and H.) Therefore $\left(d_{i+1}, e_{i+1}\right)<d_{i+1}$. It follows that

$$
\begin{aligned}
d_{1} \cdots d_{i} d_{i+1}^{r-i} & =b_{G}\left(d_{i+1}\right) \\
& =b_{H}\left(d_{i+1}\right) \\
& =d_{1} \cdots d_{i} \prod_{j=i+1}^{r}\left(e_{j}, d_{i+1}\right) \\
& <d_{1} \cdots d_{i} d_{i+1}^{r-i}
\end{aligned}
$$

But this is a contradiction.

Proof of Theorem 1. If $a_{G}(k)=b_{H}(k)$ for all k, then Lemma 2 says that $b_{G}(k)=b_{H}(k)$ for all k. So $G \cong H$.

Now here is what I proved in class, and we can get it as a corollary.
Proposition 5. Suppose

$$
\begin{aligned}
G & =\mathbf{Z} / d_{1} \times \cdots \times \mathbf{Z} / d_{r}, & & d_{1}\left|d_{2}\right| \cdots \mid d_{r} \\
& =\mathbf{Z} / e_{1} \times \cdots \times \mathbf{Z} / e_{s}, & & e_{1}\left|e_{2} \cdots\right| e_{s}
\end{aligned}
$$

where the d_{i}, e_{j} are integers strictly greater that 1 . Then $r=s$ and $d_{i}=e_{i}$ for all i.
Proof. Set $G=H$ in Proposition 4.
Now, on the exam there was at least one person claiming that Theorem 1 holds for non-abelian groups. This is not the case.

Example 6. Let $G=\mathbf{Z} / 3 \times \mathbf{Z} / 3 \times \mathbf{Z} / 3$. Let H denote the subset of 3×3 matrices with coefficients in the field $\mathbf{Z} / 3$ of the following form

$$
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 0 .
\end{array}\right)
$$

Then $a_{G}(k)=b_{G}(k)$ for all k, but G and H are not isomorphic.
Proof. To show that $a_{G}(k)=b_{G}(k)$ for all k, it suffices to show that every non-identity element of G or H is of order 3. This is clear for G. For H you can see it directly but multiplying matrices. However G is abelian but H is not because, for example,

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

do not commute. So G and H are not isomorphic.

