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Suppose G is a finite group. For each d ∈ Z+, write aG(d) for the number of elements of order d in G.
The purpose of these notes is to prove the following.

Theorem 1. Suppose G and H are finite abelian groups, and suppose that, for every k ∈ Z+, aG(k) =
aH(k). Then G ∼= H.

I’m writing notes on this because someone tried to use it on Midterm 2 claiming that I proved it in
class. I didn’t. However, as you will see, the main idea did come up in class. (So I gave quite a bit of credit
to the student.)

The function aG : Z+ → N is a little difficult to deal with. So we define a related function bG by setting
bG(k) = #{g ∈ G : o(g)|k}. Note that bG(k) = #{g ∈ G : gk = e}. This makes it easier to deal with because
G[k] := {g ∈ G : gk = e} is a subgroup of G provided that G is abelian.

Lemma 2. We have bG(k) =
∑

j|k aG(j).

Proof. If gk = e then o(g)|k.

Lemma 2 implies that the function aG determines the function bG. In fact, bG also determines aG.
But the formula is more complicated, and we won’t even need to know that bG determines aG in these
notes. Here’s the basic idea though: if p is a prime, aG(p) = bG(p) − bG(1) = bG(p) − 1. But aG(p2) =
bG(p2) − aG(p) − aG(1) = bG(p2) − (bG(p) − 1) − 1 = bG(p2) − bG(p). By similar considerations, you can
compute aG(pn) and also aG(k) for any k ∈ Z+. The fancier (and more fun) way to do this is to use
something called the Möbius function.

Proposition 3. Suppose G = Z/d1×· · ·×Z/dr with d1, . . . , dr positive integers satisfying d1|d2| · · · |dr and
d1 > 1. Then bG(k) =

∏r
i=1(k, di).

Proof. In the group Z/di[k] there are (k, di) elements. This was a result proved in class. If G = X × Y
where X and Y are abelian groups then G[k] = X[k]× Y [k]. It follows that G[k] =

∏
(Z/di)[k] so bG(k) =

#G[k] =
∏r

i=1(k, di).

Proposition 4. Suppose G and H are finite abelian groups with

G = Z/d1 × · · · × Z/dr, d1|d2| · · · |dr;

H = Z/e1 × · · · × Z/es, e1|e2| · · · |es

where the di, ej are integers strictly greater that 1. If bG = bH then r = s and di = ei for all i = 1, · · · r. In
particular, G ∼= H.

Proof. We have dr1 =
∏r

i=1(d1, di) = bG(d1) = bH(d1) =
∏s

i=1(d1, ei) ≤ ds1. So dr1 ≤ ds1. Since d1 > 1, it
follows that r ≤ s. Switching the roles of G and H, it follows that s ≤ r. So r = s.

Now G and H are a counterexample to the proposition. Then there is an i < r such that dj = ej for
j ≤ i but di+1 6= ei+1. Without loss of generality, we can assume that ei+1 < di+1. (Otherwise switch G
and H.) Therefore (di+1, ei+1) < di+1. It follows that

d1 · · · didr−ii+1 = bG(di+1)

= bH(di+1)

= d1 · · · di
r∏

j=i+1

(ej , di+1)

< d1 · · · didr−ii+1

But this is a contradiction.
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Proof of Theorem 1. If aG(k) = bH(k) for all k, then Lemma 2 says that bG(k) = bH(k) for all k. So
G ∼= H.

Now here is what I proved in class, and we can get it as a corollary.

Proposition 5. Suppose
G = Z/d1 × · · · × Z/dr, d1|d2| · · · |dr;

= Z/e1 × · · · × Z/es, e1|e2 · · · |es
where the di, ej are integers strictly greater that 1. Then r = s and di = ei for all i.

Proof. Set G = H in Proposition 4.
Now, on the exam there was at least one person claiming that Theorem 1 holds for non-abelian groups.

This is not the case.

Example 6. Let G = Z/3× Z/3× Z/3. Let H denote the subset of 3× 3 matrices with coefficients in the
field Z/3 of the following form  1 a b

0 1 c
0 0 0.


Then aG(k) = bG(k) for all k, but G and H are not isomorphic.

Proof. To show that aG(k) = bG(k) for all k, it suffices to show that every non-identity element of G or H is
of order 3. This is clear for G. For H you can see it directly but multiplying matrices. However G is abelian
but H is not because, for example,  1 1 0

0 1 0
0 0 1

 and

 1 0 0
0 1 1
0 0 1


do not commute. So G and H are not isomorphic.
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