HW01, due Wednesday, February 3 Math 406, Spring 2021

Reading: Read Chapter 1 of Crisman's text and begin reading Chapter 2.

Graded Problems: Work the following problems for a grade. Turn them in on Gradescope.

Some problems are taken from the Online Version of Crisman's text:

http://math.gordon.edu/ntic/

Each problem is worth 20 points.

1. Suppose *S* is a subset of the set \mathbb{R} of real numbers. We say that *S* has the *well-ordering property* if, for any nonempty subset $T \subset S$, there exists an $n \in T$ such that, for all $m \in T$, $n \leq m$. In other words, *S* has the well-ordering property if every nonempty subset *T* of *S* has a smallest element. By Axiom 1.2.1, the set \mathbb{P} of positive integers has the well-ordering property.

- (a) Let $S \subset \mathbb{R}$, and suppose that there exists a strictly increasing function $f: S \to \mathbb{P}$. (Here by *strictly increasing* I mean that $x < y \Rightarrow f(x) < f(y)$.) Show that S has the well-ordering property.
- (b) (10 point bonus) Does the converse to (a) hold? In other words, if a subset *S* of \mathbb{R} has the well-ordering property, does it follow that there exists a strictly increasing function $f: S \to \mathbb{P}$. Prove or give a counterexample.

2. We say that a subset *S* of the set \mathbb{R} is *closed under addition* if, for all $x, y \in S$, x + y is also in *S*. Similarly, we say that *S* is *closed under multiplication* if, for all $x, y \in S$, $xy \in S$.

- (a) Suppose S is a subset of \mathbb{R} , which is closed under addition and has the well-ordering property. Show that S is contained in the set $[0,\infty)$ of non-negative real numbers.
- (b) Suppose S is a subset of the set $\mathbb{R}_+ = (0, \infty)$ of positive real numbers. And suppose further that S is closed under multiplication and has the well-ordering property. Show that $S \subset [1, \infty)$.
- **3.** Suppose *a* and *b* are positive integers.
 - (a) Assuming that a|b, show that $a \leq b$.
 - (b) Assuming that a|b and b|a, show that a = b.
- 4. Suppose *a* and *b* are positive integers, and set

 $S := \{ as + bt : s, t \ge 0 \}.$

Suppose that $c, c+1, \ldots, c+a-1 \in S$ for some integer c. Show that S contains all integers bigger than or equal to c.

5. As in Crisman's Exercise 1.6, compute the conductors for $\{3,5\}$ and $\{4,5\}$. Prove your answers.