HW01, due Wednesday, February 3
 Math 406, Spring 2021

Reading: Read Chapter 1 of Crisman's text and begin reading Chapter 2.
Graded Problems: Work the following problems for a grade. Turn them in on Gradescope.

Some problems are taken from the Online Version of Crisman's text:
http://math.gordon.edu/ntic/

Each problem is worth 20 points.

1. Suppose S is a subset of the set \mathbb{R} of real numbers. We say that S has the well-ordering property if, for any nonempty subset $T \subset S$, there exists an $n \in T$ such that, for all $m \in T, n \leq m$. In other words, S has the well-ordering property if every nonempty subset T of S has a smallest element. By Axiom 1.2.1, the set \mathbb{P} of positive integers has the well-ordering property.
(a) Let $S \subset \mathbb{R}$, and suppose that there exists a strictly increasing function $f: S \rightarrow \mathbb{P}$. (Here by strictly increasing I mean that $x<y \Rightarrow f(x)<f(y)$.) Show that S has the well-ordering property.
(b) (10 point bonus) Does the converse to (a) hold? In other words, if a subset S of \mathbb{R} has the well-ordering property, does it follow that there exists a strictly increasing function $f: S \rightarrow \mathbb{P}$. Prove or give a counterexample.
2. We say that a subset S of the set \mathbb{R} is closed under addition if, for all $x, y \in S$, $x+y$ is also in S. Similarly, we say that S is closed under multiplication if, for all $x, y \in S, x y \in S$.
(a) Suppose S is a subset of \mathbb{R}, which is closed under addition and has the well-ordering property. Show that S is contained in the set $[0, \infty)$ of nonnegative real numbers.
(b) Suppose S is a subset of the set $\mathbb{R}_{+}=(0, \infty)$ of positive real numbers. And suppose further that S is closed under multiplication and has the well-ordering property. Show that $S \subset[1, \infty)$.
3. Suppose a and b are positive integers.
(a) Assuming that $a \mid b$, show that $a \leq b$.
(b) Assuming that $a \mid b$ and $b \mid a$, show that $a=b$.
4. Suppose a and b are positive integers, and set

$$
S:=\{a s+b t: s, t \geq 0\}
$$

Suppose that $c, c+1, \ldots, c+a-1 \in S$ for some integer c.
Show that S contains all integers bigger than or equal to c.
5. As in Crisman's Exercise 1.6, compute the conductors for $\{3,5\}$ and $\{4,5\}$. Prove your answers.

