Math 406, Spring 2021

HW03, due Wednesday, February $17{ }^{\text {¹ }}$
Reading: Read Chapters 3 and 4 of Crisman's text.
Graded Problems: Work the following problems for a grade. Turn them in on Gradescope.

Some problems are taken from the Online Version of Crisman's text:
http://math.gordon.edu/ntic/

Each problem is worth 20 points.

1. For each of the following linear Diophantine equations, either show that there are no solutions or write down the general solution.
(a) $21 x+14 y=133$.
(b) $132 x+28 y=39$.
(c) $30 x-47 y=2$.
(d) $10 x+25 y=100$.

2 (Problem 3.6.10). Find all simultaneous integer solutions to the system of linear equations:

$$
\begin{aligned}
x+y+z & =100 \\
x+8 y+50 z & =156 .
\end{aligned}
$$

(See the hint in the text if you get stuck.)
3. Suppose a, b and n and m are integers with n and m positive, and suppose that $a \equiv b(\bmod n)$. Show, by induction on m, that $a^{m} \equiv b^{m}(\bmod n)$ as well.
4. Recall that, if a and n are integers with $n>0$, I write $\operatorname{Mod}(a, n)$ for the remainder you get when you divide n into a.
(a) Compute $\operatorname{Mod}\left(3^{k}, 11\right)$ for the integers $k=1,2,4,8,16$ and 32. (Do this by hand. If you ever see a number bigger than 121 you're doing something wrong.)
(b) Use what you did above to compute $\operatorname{Mod}\left(3^{43}, 11\right)$. (Hint: Write 43 in binary.)
5. Can you have 50 coins, all of which are pennies, dimes or quarters, worth a total of \$3?

[^0]
[^0]: ${ }^{1}$ This version created Wednesday $24^{\text {th }}$ March, 2021 at 19:37.

