Math 406, Spring 2021

HW05, due Wednesday, March 3
Reading: Read Chapter 6 of Crisman's text.
Graded Problems: Work the following problems for a grade. Turn them in on Gradescope.

Some problems are taken from the Online Version of Crisman's text:
http://math.gordon.edu/ntic/

Each problem is worth 20 points.

1. Suppose p is a prime number and a_{1}, \ldots, a_{r} are integers (with $r \geq 1$). Assuming that $p \mid a_{1} a_{2} \cdots a_{r}$, show that there exists i such that $p \mid a_{i}$.

Hint: Induct on r and use the case $r=2$, which was proved in class.
2. (Crisman 6.6.22) Show that $\log _{10} 5$ is irrational.
3. (Crisman 6.6.15) Find the ged of $2^{2} \cdot 3^{5} \cdot 7^{2} \cdot 13 \cdot 37$ and $2^{3} \cdot 3^{4} \cdot 11 \cdot 31^{2}$ by hand.
4. (Based on Crisman 6.6.1) According to Crisman, a repunit is one of the numbers in the infinite sequence $11,111,1111, \ldots$. Write r_{n} for the repunit with $n 1 \mathrm{~s}$. So that $r_{2}=11, r_{3}=111, \ldots$.
(a) (20 points) Suppose $n>2$ and r_{n} is prime. Show that $n \equiv \pm 1(\bmod 6)$.
(b) (5 point bonus) Obviously, $r_{2}=11$ is prime. Find two more prime repunits. Say how you found them and checked that they are prime. Don't just say, "on the web." But it's ok to use a computer or to write a short computer program. (The book promotes Sage, but I think using Python in Google Colab is more convenient.) Just include your source, whatever program or language you use.
5. For each $k=1,2,3, \cdots$, let p_{k} denote the k th prime number. So $p_{1}=2, p_{2}=3$, $p_{3}=5, \ldots$. Set $N(k)=p_{1} p_{2} \cdots p_{k}+1$.
(a) ($\mathbf{1 0}$ points) Show that $N(k)$ is not divisible by any prime number less than or equal to p_{k}.
(b) (5 point bonus) Is $N(k)$ always prime? Prove it or give a counterexample.
(c) ($\mathbf{1 0}$ points) Now let q_{k} denote the k th prime number congruent to 5 modulo 6. So, for example, $q_{1}=5, q_{2}=11$ and $q_{3}=17$. Set $M(k):=$ $6 q_{1} q_{2} \cdots q_{k}-1$. Show that $M(k)$ is congruent to 5 modulo 6 and that $M(k)$ is not divisible by any q_{i} with $1 \leq i \leq k$.
(d) (5 point bonus) Show that there are infinitely many primes congruent to 5 modulo 6 .

[^0]
[^0]: ${ }^{1}$ This version created Wednesday $24{ }^{\text {th }}$ March, 2021 at 19:37.

