Math 406, Spring 2021

HW07, due Wednesday, March 31 at 5pm ${ }^{1}$
Reading: Read Chapters 8 and 9 of Crisman's text.
Graded Problems: Work the following problems for a grade. Turn them in on Gradescope.

Some problems are taken from the Online Version of Crisman's text:

> http://math.gordon.edu/ntic/

Each problem is worth 20 points.

1 (Crisman 9.6.8). Evaluate $\operatorname{Mod}\left(11^{49}, 21\right)$ and $\operatorname{Mod}\left(139^{112}, 27\right)$ without using a computer or a calculator. (And show your work.)

Here, when n is a positive integer, $\operatorname{Mod}(k, n)$ is the unique integer r such that $0 \leq r<n$ and $k=q n+r$ for some integer q. In other words, $\operatorname{Mod}(k, n)$ is the remainder you get when you divide n into k.
2. Suppose n is an integer with $n>1$, and let S denote the set of all prime numbers appearing in the prime factorization of n. Show that

$$
\phi(n)=n \prod_{p \in S} 1-1 / p
$$

3. As in class, when d is a positive integer write

$$
S_{d}:=\{k \in \mathbb{Z}: 0<k \leq d, \operatorname{gcd}(k, d)=1\}
$$

Then $\phi(d)$ is, by definition, the cardinality $\# S_{d}$ of S_{d}.
Suppose n and m are positive integers which are coprime, and suppose that $a \in S_{n}, b \in S_{m}$. Show that there exists a unique integer $x \in S_{n m}$ such that

$$
\begin{aligned}
\operatorname{Mod}(x, n) & =a \\
\operatorname{Mod}(x, m) & =b
\end{aligned}
$$

This will finish the proof I gave in class for the multiplicativity of Euler's function ϕ.

4 (Crisman 9.6.13). Compute the ϕ function evaluated at 1492, 1776, and 2001.
5 (Crisman 8.4.1-2). Write out the addition and multiplication tables for the ring \mathbb{Z}_{11} by hand.

[^0]
[^0]: ${ }^{1}$ This version created Tuesday $27^{\text {th }}$ April, 2021 at 21:42.

