dcolumn

Math 406, Spring 2021 HW07, due Wednesday, March 31 at 5pm¹

Reading: Read Chapters 8 and 9 of Crisman's text.

Graded Problems: Work the following problems for a grade. Turn them in on Gradescope.

Some problems are taken from the Online Version of Crisman's text:

http://math.gordon.edu/ntic/

Each problem is worth 20 points.

1 (Crisman 9.6.8). Evaluate $Mod(11^{49}, 21)$ and $Mod(139^{112}, 27)$ without using a computer or a calculator. (And show your work.)

Here, when *n* is a positive integer, Mod(k,n) is the unique integer *r* such that $0 \le r < n$ and k = qn + r for some integer *q*. In other words, Mod(k,n) is the remainder you get when you divide *n* into *k*.

2. Suppose *n* is an integer with n > 1, and let *S* denote the set of all prime numbers appearing in the prime factorization of *n*. Show that

$$\phi(n) = n \prod_{p \in S} 1 - 1/p$$

3. As in class, when *d* is a positive integer write

$$S_d := \{k \in \mathbb{Z} : 0 < k \le d, \gcd(k, d) = 1\}.$$

Then $\phi(d)$ is, by definition, the cardinality $\#S_d$ of S_d .

Suppose *n* and *m* are positive integers which are coprime, and suppose that $a \in S_n$, $b \in S_m$. Show that there exists a unique integer $x \in S_{nm}$ such that

$$Mod(x,n) = a$$

 $Mod(x,m) = b$

This will finish the proof I gave in class for the multiplicativity of Euler's function ϕ .

4 (Crisman 9.6.13). Compute the ϕ function evaluated at 1492, 1776, and 2001.

5 (Crisman 8.4.1-2). Write out the addition and multiplication tables for the ring \mathbb{Z}_{11} by hand.

 $^{^1\}mathrm{This}$ version created Tuesday 27^{th} April, 2021 at 21:42.