Math 406, Exam 1

Directions: Work over Zoom and turn in answers to each problem on one page (answer sheet). Turn in answers on Gradescope.

This is a closed book exam. No notes, calculators, or cell phones allowed.

Please answer Question 1 on Answer Sheet 1. (20 points)
a. Compute $d=\operatorname{gcd}(51,84)$.
b. Find integers x and y such that $51 x+84 y=d$.

Please answer Question 2 on Answer Sheet 2. (20 points)
Consider the linear diophantine equation

$$
17 x+13 y=100 .
$$

a. Find a solution $\left(x_{0}, y_{0}\right) \in \mathbb{Z}^{2}$ or show that the equation has no solutions with x and y integers.
b. Write down the general solution.

Please answer Question 3 on Answer Sheet 3. (20 points)
Suppose p is an odd prime number. Show that $(p-2)!\equiv 1(\bmod p)$.
Please answer Question 4 on Answer Sheet 4. (20 points)
Suppose a, b and c are integers with $c>0$ and with $a \equiv b(\bmod c)$. Show that $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)$.

Please answer Question 5 on Answer Sheet 5. (20 points)
A positive integer n is palindromic if its decimal expansion $b_{k} b_{k-1} \ldots b_{0}$ is the same backwards and forwards. In other words, n is palindromic if $b_{i}=b_{k-i}$ for $i=0, \ldots k$. The integers 11, 121 and 5335 are examples of palindromic integers.

Show that any palindromic integer with an even number of digits is divisible by 11 .

