Math 602 Term 22012 at UMD
 Homework 1
 Due Friday, March 8.

Problem 1. Do Exercise 2.4.4 and 2.5.3 in Weibel's book.
Problem 2. Let \mathcal{A} denote an abelian category, and let $\mathrm{Ch}_{\geq 0}(\mathcal{A})$ denote the full subcategory of $\operatorname{Ch}(\mathcal{A})$ consisting of objects X such that $X_{n}^{-}=0$ for all integers $n>0$. Show that the inclusion functor $i: \mathrm{Ch}_{\geq 0}(\mathcal{A}) \rightarrow \operatorname{Ch}(\mathcal{A})$ is the left-adjoint of the functor $\tau_{\geq 0}: \operatorname{Ch}(\mathcal{A}) \rightarrow \mathrm{Ch}_{\geq 0}(\mathcal{A})$. To do this, show that, for $Y \in \operatorname{Ch}(\mathcal{A})$ and $X \in \mathrm{Ch}_{\geq 0}(\mathcal{A})$, the inclusion $\tau_{\geq 0} Y \rightarrow Y$ induces an isomorphism

$$
\operatorname{Hom}_{\operatorname{Ch}(\mathcal{A})}\left(X, \tau_{\geq 0} Y\right) \rightarrow \operatorname{Hom}_{\operatorname{Ch}(\mathcal{A})}(X, Y)
$$

Problem 3. Let F be a field and let \mathcal{A} denote the category consististing of pairs (V, N) where V is a finite dimensional vector space over F and $N \in \operatorname{End}_{F}(V)$ is a nilpotent operator. A morphism from $\varphi:(V, N) \rightarrow\left(V^{\prime}, N^{\prime}\right)$ is an F-linear transformation $\varphi_{V}: V \rightarrow V^{\prime}$ such that $N^{\prime} \circ \varphi=\varphi \circ N$.
(1) Show that \mathcal{A} is an abelian category.
(2) Show that the functor $D: \mathcal{A} \rightarrow \mathcal{A}^{\text {op }}$ given by $(V, N) \mapsto\left(V^{*}, N^{*}\right)$ is an equivalence.
(3) An object (V, N) is cyclic if there exists a $v \in V$ such that V is the smallest subobject of (V, N) containing v. Show that every object in \mathcal{A} is a direct sum of cyclic objects.
(4) Define functors $T_{i}: \mathcal{A}$ to the category Vect $_{F}$ of F-vector spaces by setting $T_{0}(V, N)=\operatorname{ker} N, T_{1}(V, N)=\operatorname{coker} N$ and $T_{i}(V, N)=0$ for any integer $i>1$. Explain why the snake lemma applied to an exact sequence $0 \rightarrow$ $X \rightarrow Y \rightarrow Z \rightarrow 0$ in \mathcal{A} gives rise to a natural transformation $d: T_{0} \rightarrow T_{1}$ making $\left(T_{i}\right)_{i \in \mathbb{Z}}$ into a cohomological δ-functor.
(5) Show that T_{1} is effaceable, and conclude that $\left(T_{i}\right)$ is the universal cohomological δ-functor.

Problem 4. Suppose $T: \mathcal{A} \rightarrow \mathcal{B}$ is an additive functor between additive categories. Show that $T(0)=0$. (Hint: Remember that, by definition, functors have to take identity morphisms to identity morphisms.)

Problem 5. Suppose X and Y are objects in an additive category \mathcal{A}. Let s_{X} : $X \rightarrow X \oplus Y$ and $p_{X}: X \oplus Y \rightarrow X$ be the canonical morphisms arising respectively from viewing $X \oplus Y$ as the coproduct and the product of X and Y. Define s_{Y} : $X \rightarrow X \oplus Y$ and $p_{Y}: X \oplus Y \rightarrow Y$ similarly. Show that $s_{X} p_{X}+s_{Y} p_{Y}$ is the identity on $X \oplus Y$.

Problem 6. Suppose \mathcal{A} is an additive category as defined in Weibel's book, and suppose that $f, g \in \operatorname{Hom}_{\mathcal{A}}(X, Y)$ are two morphisms. Show that $f+g$ is defined by the composition

$$
X \xrightarrow{\Delta} X \oplus X \xrightarrow{(f, g)} Y \oplus Y \xrightarrow{\nabla} Y
$$

where Δ is a the diagonal and $\nabla: Y \oplus Y \rightarrow Y$ is the map inducing the identity on both factors.

Problem 7. Suppose $T: \mathcal{A} \rightarrow \mathcal{B}$ is a functor between additive categories. Let X and Y denote objects in \mathcal{A} and let $s_{X}, p_{X}, s_{Y}, p_{Y}$ be as in Problem 5. Define $s: T(X) \oplus T(Y) \rightarrow T(X \oplus Y)$ by $s=T\left(s_{X}\right) \oplus T\left(s_{Y}\right)$. Define $p: T(X \oplus Y) \rightarrow$ $T(X) \oplus T(Y)$ by $p=T\left(p_{X}\right) \times T\left(p_{Y}\right)$. Show that $p \circ s$ is the identity on $\left.T X\right) \oplus T(Y)$. Then show that, if T is an additive functor, $s \circ p$ is the identity on $T(X \oplus Y)$. Conclude that additive functors preserve coproducts.

Problem 8. Suppose $T: \mathcal{A} \rightarrow \mathcal{B}$ is a functor between abelian categories such that $T(0)=0$. From the previous problem it follows that we have

$$
T(X \oplus Y)=T(X) \oplus T(Y) \oplus T_{2}(X, Y)
$$

where T_{2} is the kernel of the $s \circ p$. What is T_{2} when $T=\wedge^{2}: \operatorname{Vect}_{F} \rightarrow \operatorname{Vect}_{F}$ where Vect_{F} is the category of vector spaces over a field?

