Linear Systems

Example: Findzxq, z2, x3 suchthatthe following three equations hold:

201 +3x0+2x3 = 1
dr1 +3x0+2x3 = —2
—2x1+2rx94+2x3 = 6

We can write this using matrix-vector notation as

2 31 T 1
4 3 1 T2 = -2
-2 21 x3 6

R e e e
A x b

General case:  We can have: equations forn unknowns:

Given: Coefficientsaiq, ... , aqnn, right hand side entrids, . .. , b,.
Wanted: Numberseq, ... , x, such that
anzy+ -+ apr, = b
ap1T1 + -+ Ay, = by

Using matrix-vector notation this can be written as follows: Given a matrix R™*™ and a right-hand side vectorc R",
find a vectorr € R™ such that

air ... A1n il bl
apl --- Qpn Tn, b,
A T b

Singular and Nonsingular Matrices

Definition:  We call a matrixA € R™*" singularif there exists a nonzero vectore R"™ such thatdz = 0.

1

Example: The matrixA = [ 9

-2 } is singular since for: = < f > we havedx = ( 8 )

b1

b impliesxze = ba/4, x1 = by + 2x9. Thereforedz = 0 implies
2

The matrixA = [ (1) _42 } is nonsingular:Az =
z = 0.



Observation: If A is singular, the linear systetdz = b has either no solution or infinitely many solutions: Asis
singular there exists a nonzero vectowith Ay = 0. If Az = b has a solution, thenz + «ay is also a solution for any
a € R.

We will later prove: IfA is nonsingular, then the linear systefm = b has a unique solution for any givenb € R"™.

We only want to consider problems where there is a unique solution, i.e. where the m&rhonsingular. How can we
check whether a given matrig is nonsingular? If we use exact arithmetic we can use Gaussian elimination with pivoting
(which will be explained later) to show thdtis nonsingular. But in machine arithmetic we can only assume that a machine
approximation for the matrix is known, and we will have to use a different method to decide whediemonsingular in

this case.

Gaussian Elimination without Pivoting

Basic Algorithm: We can add (or subtract) a multiple of one equation to another equation, without changing the solutiol
of the linear system. By repeatedly using this idea we can eliminate unknowns from the equations until we finally get €
equation which just contains one unknown variable.

1. Elimination:
step 1: eliminate:; from equatior, ... , equatiorn by subtracting multiples of equation 1:

ep:=eqp—fo1-€Q, ..., €0, :=€Q, — 1 - €Q
step 2: eliminate:, from equatior8, ... , equatiorn by subtracting multiples of equation 2:

e :=eq —Vl32-eqp, ..., €Q, :=€eq, — ln2 - €Qp

stepn — 1: eliminatex,,_1 from equatiom by subtracting a multiple of equation— 1:
€q, :=€eq, — gn,nfl c€0h—1

2. Back substitution:
Solve equatiom for z,,.
Solve equatiom — 1 for z,,_1.

Solve equation 1 fog;.

The elimination transforms the original linear systetm = b into a new linear systertz = y with an upper triangular
matrix U, and a new right hand side vectpr

Example:  We consider the linear system

2 31 T 1

4 3 1 T = -2

-2 21 T3 6
N—— e e — N——

A T b

Elimination: To eliminatez; from equation 2 we choode, = 4/2 = 2 and subtracty; times equation 1 from equation 2.
To eliminatez; from equation 3 we choodg; = —2/1 = —1 and subtracts; times equation 1 from equation 3. Then the



linear system becomes

2 3 1 T 1
0 -3 -1 I = —4
0 5 2 3 7

To eliminatex, from equation 3 we choodg, = 5/(—3) and subtractss times equation 2 from equation 3, yielding the
linear system

2 3 1 1 1
0 -3 -1 o | = -4
0o o0 1 3 X
——
U Y

Now we have obtained a linear system with an upper triangular matrix (denotéd bpd a new right hand side vector
(denoted byy).

Back substitution: The third equation i%xg = % and givesrs = 1. Then the second equation becomekry — 1 = —4,
yielding zo = 1. Then the first equation becom2s; + 3 + 1 = 1, yieldingz; = —%.

Transforming the matrix and right hand side vector separately: We can split the elimination into two parts: The
first part acts only on the matrid, generating the upper triangular mattixand the multiplierd,;;,. The second part uses
the multipliers?;, to transform the right hand side vectoto the vecton.

1. Elimination for matrix: Given the matrixA4, find an upper triangular matrix and multiplierst ;.
LetU := A and perform the following operations on the rowd af

step 1. Uy = UQl/uH, FOWy := rOWy — fo1 - TOWq , ... , €1 := unl/ull, row,, := row,, — £,1 - row;
step 2: {39 := uge/ug, FOW3 :=TrOW3 — f39 - TOWy , ... , {po := Upa/Ug2, FOW, := FOW, — {,2 - FOW,

stepn — 11 lpp—1 = Upp—1/Unn, FOWy, :=TOW, — £y 1 - FOW,_1

2. Transform right hand side vector: Given the vectob and the multiplied;;, find the transformed vectay.
Lety := b and perform the following operations gn

stepl: yoi=y2o—lo1-Y1, ooy Yn = Yn —Ln1 -
step2: ys:=ys—¥l32-Y2, ..., Yn i =UYn — L2 Y2

stepn — 11 yn :=yn — en,n—l *Yn—1

3. Back substitution: Given the matriXJ and the vectoy find the vector: by solvingUzx = y:
Ty, = by [Unp
Tpn—1 = (bn—l - un—l,nxn)/un—l,n—l

x1 = (b1 — w122 — - -+ — U Ty) /U1y



What can possibly go wrong: Note that we have to divide by the so-called pivot elements. .. ,u,—1,,—1 in part
1, and we divide byi11, . . . , un, in part 3. If we encounter a zero pivot we have to stop the algorithm with an error message.
Part 1 of the algorithm therefore becomes

step 1: If u1; = 0 then stop with error messagasels; := ug; /uii, rOWs := rows — fo1 - TOW; , ...
step 2: If uge = 0 then stop with error messagselss := uga/uga2, rOWs := rows — {39 - FOW; , ...

stepn — 1:  If u,—1,—1 = 0 then stop with error messagssel,, ,,—1 := wp n—1/Unn, FOW,, 1= FOWy, — £y 1 - TOW,,_1
If w,, = 0then stop with error message

Observation:  If for a given matrixA part 1 of the algorithm finishes without an error message, then parts 2 and 3 work,
and the linear system has a unique solution. Hence the nmxrxst be nonsingular. However, the converse is not true: For

the matrixA = < (1) 1

0 > the algorithm stops immediately sinag; = 0, but the matrixA is nonsingular.

Reformulating part 2 as forward substitution: Now we want to express the relation betwéemndy in a different
way. Assume we are givep and we want to reconstruttby reversing the operations: Far= 3 we would perform the
operations

Y3 1= y3 + {3292, Y3 = y3 + L3191, Y2 1= Y2 + La1y1

and obtain
b1 n 1 0 0 n
by | =1 yat+rlor -y =141 1 0 Y2
b3 y3 + 4031 - y1 + 32 - 42 l31 l32 1 Y3
)

with the lower triangular matrix..

Therefore we can rephrase the transformation step as follows: Giamb, solve the linear systerhy = b for y. Since
L is lower triangular, we can solve this linear systenfdryvard substitution : We first solve the first equation faf, then
solve the second equation fgy, . . .

The LU decomposition: In the same way as we reconstructed the vekfoom the vectory , we can reconstruct the
matrix A from the matrixU: Forn = 3 we obtain
row 1 of A (rowlofU) 10 0 row 1 of U
row2of A | = | (row20fU)+ /¢y - (rowlofU) =¥y 1 0 row 2 of U
row 3 of A (row3of U) +f3; - (rowlof U) + ¢35 - (row2of U) l31 30 1 row 3 of U
L

Therefore we havel = LU. We have written the matrid as the product of a lower triangular matrix (with 1's on the
diagonal) and an upper triangular matkix This is called thé.U-decompositionof A.



Summary: Now we can rephrase the parts 1., 2., 3. of the algorithm as follows:

1. Find the LU-decompositiodl = LU:
Perform elimination on the matri{, yielding an upper triangular matriX. Store the multipliers in a matrix and
put 1’s on the diagonal of the matrix

1 0 0

L= E?l
0
En 1 gn,n—l 1

2. Solve Ly = b using forward substitution
3. SolveUx = y using back substitution
The matrix decompositiod = LU allows us to solve the linear systeAx = b in two steps: Since
LUx =0
~~

Y
we can first solvd.y = b to find y, and then solvé/x = y to find x.

Example:

1. We start withU := A and L being the zero matrix:

0 00 2 31
L={0 0 0|, U=| 4 3 1
0 0 0] | -2 2 1
step 1:
0 0 0] 2 3 1
L={ 2 0 0{, U=|0 -3 -1
-1 0 0 | |0 5 2
step 2:
0 0 0 2 3 1
L= 2 0 0], U=|0 -3 -1
5 1
-1 -3 0 0 0 3
1 0 0 2 3 1
We put 1's on the diagonal df and obtainl, = 2 1 0|, U=|0 -3 -1
5 1
-1 -3 1 0 0 3
2. We solve the linear systeify = b
10 0 U 1
2 1 0 v | =1 -2
-1 -2 1 Y3 6

by forward substitution: The first equation givgs= 1. Then the second equation becores iy, = —2 yielding
y2 = —4. Then the third equation becomes — 2 - (—4) + y3 = 6, yieldingy; = 3.

3. The back substitution for solvingx = b is performed as explained above.



Gaussian Elimination with Pivoting

There is a problem with Gaussian elimination without pivoting: If we have atsteptu;; = 0 we cannot continue since
we have to divide by:;;. This element:;; by which we have to divide is called tipévot.

4 -2 2
Example: For A = -2 1 3 | we usely = ‘72,631 = % and obtain after step 1 of the eliminatiah =
2 =2 2
4 =2 2
0 0 4 |.Nowwe haveuy; = 0 and cannot continue.
0 -1 2
Gaussian elimination with pivoting uses row interchanges to overcome this problem. Fpo$tbp algorithm we consider
the pivot candidatesu; ;, uji15,. .. ,un;, i.€., the diagonal element and all elements below. If there is a nonzero pivot

candidate, say;; we interchange rowg andk of the matrixU. Then we can continue with the elimination.

Since we want that the multipliers correspond to the appropriate r@ wfe also interchange the rows bfwhenever we
interchange the rows di. In order to keep track of the interchanges we use a veadich is initially (1,2,... ,n)", and
we interchange its rows whenever we interchange the rows of

Algorithm: Gaussian Elimination  with pivoting:  Input: matrix A. Output; matrix L (lower triangular), matrix/

(upper triangular), vectgr (contains permutation df, ... , n)
o --- 0 1

L:=|: s U=Ap = :
o --- 0 n

Forj=1ton—1
If (Ujj,...,Unj) =1(0,...,0)
Stop with error message “Matrix is singular”
Else
Pickk € {j,j +1,... ,n} such thalU;; # 0
End
Interchange row and rowk of U
Interchange row and rowk of L
Interchange; andp;,
Fork=j+1ton
Lij = Uy;/Uy;
(rowk of U) := (rowk of U) — Ly; - (row j of U)

End
End
If Upp, =0
Stop with error message “Matrix is singular”
End
Forj=1ton
ij =1
End

Note that we can have several nonzero pivot candidates, and we still have to specify which one we pick. This is callec
pivoting strategy. Here are two examples:



Pivoting strategy 1Pick the smallest such thatU;,; # 0.
Pivoting strategy 2Pick k so that|Uy;| is maximal.

If we use exact arithmetic, it does not matter which nonzero pivot we choose. However, in machine arithmetic the choice
the pivot can make a big difference for the accuracy of the result, as we will see below.

Example:
000 -2 2 1
L=]00 0], U=|-2 1 3], p=1 2
0 00 2 =2 2 3
Here the pivot candidates ate—2, 2, and we usd:
0 0 0 4 -2 2 1
L=|-3 0 0], U=1]0 0 4/, p=1 2
5 00 0 1 3

Here the pivot candidates abe—1, and we use-1. Therefore we interchange rows 2 and 3ot p:

0 0 0] [4 -2 2] 1
L=| 1 0 0], U=|0 -1 1], p=1 3
| —3 0 0| 0 0 4 | 2
For column 2 we havé, = 0 andU does not change. Finally we plg on the diagonal of and get the final result
1 0 0] 4 -2 2] 1
L=| 1 1 0], U=1|0 -1 1|, p=1| 3
| -3 0 1| [0 0 4| 2
LU Decomposition for Gaussian elimination with pivoting: If we perform row interchanges during the algorithm
we no longer havd U = A. Instead we obtain a matriz which contains the rows ol in a different order:
row p; of A
LU = A := ;
row p,, of A

The reason for this is the following: If we applied Gaussian eliminatithout pivotingto the matrix4, we would get the
samel andU that we got for the matrixd with pivoting

Solving a linear system using Gaussian elimination with pivoting: In order to solve a linear systeAw = b we
first apply Gaussian elimination with pivoting to the matrxyielding L, U, p. Then we know thaLU = A.
By reordering the equations afxz = b in the ordem, ... , p, we obtain the linear system
row p; of A T1 by,
row p;l of A :n'n b,;n
A=LU b

i.e., we haveL(Uz) = b. We sety = Uz. Then we solve the linear systeby = b using forward substitution, and finally
we solve the linear systebiz = y using back substitution.



Summary:

row p; of A
1. Apply Gaussian elimination with pivoting to the matuk yielding L, U, p such thatLU = :
row p,, of A
bpl
2. SolveLy = : using forward substitution.
bpn

3. SolveUzx = y using back substitution.

Note that this algorithm is also known as Gaussian elimination pattial pivoting (partial means that we perform row
interchanges, but no column interchanges).

4 -2 2 2
Example:  SolveAxr =bforAd=| -2 1 3 |[,b= 1 |. With L andp from the Gaussian elimination the
2 =2 2 —4
linear systemLy = (b, , bp, 5,,) " = (b1,b3,b2) " is
1 00 n 2
% 10 y2 | = —4
| -3 0 1 Y3 1

yieldingy = (2, —5, 2) using forward substitution. Then we solve: = y

[4 -2 2 x1 2
0 -1 1 T2 = -5
0 0 4 3 2

—_

using back substitution and obtaig = 3,z = 3, z3 = 3.

Existence and Uniqueness of Solutions
If we perform Gaussian elimination with pivoting on a matrdxin exact arithmetic), there are two possibilities:

1. The algorithm can be performed without an error message. In this case the diagonal elements u,,,, are all
nonzero. For an arbitrary right hand side vediowe can then perform forward substitution (since the diagonal
elements ofL. are 1), and back substitution, without having to divide by zero. Therefore this yeekstly one
solution x for our linear system.

2. The algorithm stops with an error message. E.g., assume that the algorithm stops in ¢oluBisince all pivot
candidates are zero. This means that a linear systers b is equivalent to the linear system of the form

® * ok ke %k 1 c1
0 ® % *x --- x T9 o

0O 0 *x --- =« T3 — c3
0 0 0 = * In Cn



Herex denots an arbitrary number, agddenotes a nonzero number. Let us first consider equations 3 throafjh
this system. These equations only contajn . . , x,,. There are two possibilities:

(a) There is a solutiorxy, ... ,x, of equations 3 through. Then we can choose; arbitrarily. Now we can use
equation 2 to findcy, and finally equation 1 to find; (note that the diagonal elements are nonzero). Therefore
we haveinfinitely many solutions for our linear system.

(b) There is no solutionzy, ... ,z, of equations 3 through. That means that our original linear system has
solution.

Observation:  In case 1 the linear system has a unique solution for &nin particular,Az = 0 impliesxz = 0. HenceA
is nonsingular.
In case 2we can construct a nonzero solutieffior the linear systemilz = 0. HenceA is singular.

We have shown:

Theorem: If a square matrix4 is nonsingular, then the linear systemz = b has aunique solution z for any right hand
side vectorr.

If the matrix A is singular, then the linear systerdz = b has eitheiinfinitely many solutions, or it hasno solution,
depending on the right hand side vector.

Example: Considerd = _42 _12 . The first step of Gaussian elimination givigs = =2 andU = [ é _02 }

Now we haveuss = 0, therefore the algorithm stops. Therefotés singular.

. . 4 -2 I . 2
Consider the linear syster{w 9 1 ] ( 2 ) = < 4 )

By the first step of elimination this becom% L2 } < 1 >

% 0
and therefore the linear system has no solution.

. 4 -2 z1\ _ [ 2
Nowconsnder[ 9 1 ] < 2 ) = < 1 >

By the first step of elimination this becom%g4 2 } ( 1 ) = < (2) > Note that the second equation is always true.

< g > Note that the second equation has no solution,

0 0 T2
We can choose; arbitrarily, and then determing from equation 14z, — 2x9 = 2, yieldingz; = (2+ 2z2)/4. This gives
infinitely many solutions.

Gaussian Elimination with Pivoting in Machine Arithmetic

For a numerical computation we can only expect to find a reasonable answer if the original problem has a unique solutic

For a linear systemlz = b this means that the matrix should be nonsingular. In this case we have found that Gaussian

elimination with pivoting, together with forward and back substitution always gives us the answer, at least in exact arithmeti

It turns out that Gaussian elimination with pivoting can give us solutions with an unnecessarily large roundoff error, depen

ing on the choice of the pivots.



Example Consider the linear syster[w’o01 ! ] ( o ) = ( ; ) In the first column we have the two pivot candi-

1 1 €T
dates.001 and1.
If we choose 001 as pivot we getsy; = 1000 and{ 001 L } ( o ) = < L ) Now back substitution gives
0 —999 T2 —998
Ty = % andz; = (1 — %)/.001. Note that we have subtractive cancellation in the computation :0fVe have to expect
a roundoff error ok, in 5. When we computé — x, we get a relative error o{_l—msM = 999¢,y, i.e., we lose about
three digits of accuracy.

Alternatively, we can chooskas the pivot in the first column and interchange the two equati%ng%1 } } < il > =
. 2

2 1 1 T 2 L
) ) Now we getls; = .001 and[ 0 999 ] < x; > = ( 008 ) This yieldsz, = 998 = 399 andz; = 2 — 25.

Note that there is no subtractive cancellation, and we ohtaimith almost the full machine accuracy.

This example is typical: Choosing very small pivot elements leads to subtractive cancellation during back substitutio
Therefore we have to usg@voting strategy which avoids small pivot elements. The simplest way to do this is the following:
Select the pivot candidate with the largest absolute value.

In most practical cases this leads to a numerically stable algorithm, i.e., no unnecessary magnification of roundoff error.
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