
Linear Systems

Example: Findx1, x2, x3 suchthatthe following three equations hold:

2x1 + 3x2 + x3 = 1
4x1 + 3x2 + x3 = −2
−2x1 + 2x2 + x3 = 6

We can write this using matrix-vector notation as 2 3 1
4 3 1
−2 2 1


︸ ︷︷ ︸

A

 x1

x2

x3


︸ ︷︷ ︸

x

=

 1
−2
6


︸ ︷︷ ︸

b

General case: We can haven equations forn unknowns:

Given: Coefficientsa11, . . . , ann, right hand side entriesb1, . . . , bn.

Wanted: Numbersx1, . . . , xn such that

a11x1 + · · ·+ a1nxn = b1
...

an1x1 + · · ·+ annxn = bn

Using matrix-vector notation this can be written as follows: Given a matrixA ∈ Rn×n and a right-hand side vectorb ∈ Rn,
find a vectorx ∈ Rn such that  a11 . . . a1n

...
...

an1 . . . ann


︸ ︷︷ ︸

A

 x1
...
xn


︸ ︷︷ ︸

x

=

 b1
...
bn


︸ ︷︷ ︸

b

Singular and Nonsingular Matrices

Definition: We call a matrixA ∈ Rn×n singular if there exists a nonzero vectorx ∈ Rn such thatAx = 0.

Example: The matrixA =
[

1 −2
−2 4

]
is singular since forx =

(
2
1

)
we haveAx =

(
0
0

)
.

The matrixA =
[

1 −2
0 4

]
is nonsingular:Ax =

(
b1
b2

)
impliesx2 = b2/4, x1 = b1 + 2x2. ThereforeAx = 0 implies

x = 0.

1

Observation: If A is singular, the linear systemAx = b has either no solution or infinitely many solutions: AsA is
singular there exists a nonzero vectory with Ay = 0. If Ax = b has a solutionx, thenx + αy is also a solution for any
α ∈ R.

We will later prove: IfA is nonsingular, then the linear systemAx = b has a unique solutionx for any givenb ∈ Rn.

We only want to consider problems where there is a unique solution, i.e. where the matrixA is nonsingular. How can we
check whether a given matrixA is nonsingular? If we use exact arithmetic we can use Gaussian elimination with pivoting
(which will be explained later) to show thatA is nonsingular. But in machine arithmetic we can only assume that a machine
approximation for the matrixA is known, and we will have to use a different method to decide whetherA is nonsingular in
this case.

Gaussian Elimination without Pivoting

Basic Algorithm: We can add (or subtract) a multiple of one equation to another equation, without changing the solution
of the linear system. By repeatedly using this idea we can eliminate unknowns from the equations until we finally get an
equation which just contains one unknown variable.

1. Elimination:
step 1: eliminatex1 from equation2, . . . , equationn by subtracting multiples of equation 1:

eq2 := eq2 − `21 · eq1 , . . . , eqn := eqn − `n1 · eq1

step 2: eliminatex2 from equation3, . . . , equationn by subtracting multiples of equation 2:
eq3 := eq3 − `32 · eq2 , . . . , eqn := eqn − `n2 · eq2
...

stepn− 1: eliminatexn−1 from equationn by subtracting a multiple of equationn− 1:
eqn := eqn − `n,n−1 · eqn−1

2. Back substitution:
Solve equationn for xn.
Solve equationn− 1 for xn−1.
...
Solve equation 1 forx1.

The elimination transforms the original linear systemAx = b into a new linear systemUx = y with an upper triangular
matrixU , and a new right hand side vectory.

Example: We consider the linear system 2 3 1
4 3 1
−2 2 1


︸ ︷︷ ︸

A

 x1

x2

x3


︸ ︷︷ ︸

x

=

 1
−2
6


︸ ︷︷ ︸

b

Elimination: To eliminatex1 from equation 2 we choosel21 = 4/2 = 2 and subtractl21 times equation 1 from equation 2.
To eliminatex1 from equation 3 we choosel31 = −2/1 = −1 and subtractl31 times equation 1 from equation 3. Then the

2

linear system becomes  2 3 1
0 −3 −1
0 5 2

 x1

x2

x3

 =

 1
−4
7


To eliminatex2 from equation 3 we choosel32 = 5/(−3) and subtractl32 times equation 2 from equation 3, yielding the
linear system  2 3 1

0 −3 −1
0 0 1

3


︸ ︷︷ ︸

U

 x1

x2

x3

 =

 1
−4

1
3


︸ ︷︷ ︸

y

Now we have obtained a linear system with an upper triangular matrix (denoted byU) and a new right hand side vector
(denoted byy).

Back substitution: The third equation is13x3 = 1
3 and givesx3 = 1. Then the second equation becomes−3x2 − 1 = −4,

yieldingx2 = 1. Then the first equation becomes2x1 + 3 + 1 = 1, yieldingx1 = −3
2 .

Transforming the matrix and right hand side vector separately: We can split the elimination into two parts: The
first part acts only on the matrixA, generating the upper triangular matrixU and the multipliers̀ jk. The second part uses
the multipliers̀ jk to transform the right hand side vectorb to the vectory.

1. Elimination for matrix: Given the matrixA, find an upper triangular matrixU and multipliers̀ jk:
LetU := A and perform the following operations on the rows ofU :

step 1: `21 := u21/u11, row2 := row2 − `21 · row1 , . . . , `n1 := un1/u11, rown := rown − `n1 · row1

step 2: `32 := u32/u22, row3 := row3 − `32 · row2 , . . . , `n2 := un2/u22, rown := rown − `n2 · row2
...

stepn− 1: `n,n−1 := un,n−1/un,n, rown := rown − `n,n−1 · rown−1

2. Transform right hand side vector: Given the vectorb and the multiplies̀ jk find the transformed vectory:
Let y := b and perform the following operations ony:

step 1: y2 := y2 − `21 · y1 , . . . , yn := yn − `n1 · y1

step 2: y3 := y3 − `32 · y2 , . . . , yn := yn − `n2 · y2
...

stepn− 1: yn := yn − `n,n−1 · yn−1

3. Back substitution: Given the matrixU and the vectory find the vectorx by solvingUx = y:
xn := bn/un,n
xn−1 := (bn−1 − un−1,nxn)/un−1,n−1
...
x1 := (b1 − u12x2 − · · · − u1nxn)/u11

3

What can possibly go wrong: Note that we have to divide by the so-called pivot elementsu11, . . . , un−1,n−1 in part
1, and we divide byu11, . . . , unn in part 3. If we encounter a zero pivot we have to stop the algorithm with an error message.
Part 1 of the algorithm therefore becomes

step 1: If u11 = 0 then stop with error messageelse`21 := u21/u11, row2 := row2 − `21 · row1 , . . .
step 2: If u22 = 0 then stop with error messageelse`32 := u32/u22, row3 := row3 − `32 · row2 , . . .

...
stepn− 1: If un−1,n−1 = 0 then stop with error messageelse`n,n−1 := un,n−1/un,n, rown := rown − `n,n−1 · rown−1

If un,n = 0 then stop with error message

Observation: If for a given matrixA part 1 of the algorithm finishes without an error message, then parts 2 and 3 work,
and the linear system has a unique solution. Hence the matrixA must be nonsingular. However, the converse is not true: For

the matrixA =
(

0 1
1 0

)
the algorithm stops immediately sinceu11 = 0, but the matrixA is nonsingular.

Reformulating part 2 as forward substitution: Now we want to express the relation betweenb andy in a different
way. Assume we are giveny, and we want to reconstructb by reversing the operations: Forn = 3 we would perform the
operations

y3 := y3 + `32y2, y3 := y3 + `31y1, y2 := y2 + `21y1

and obtain  b1
b2
b3

 =

 y1

y2 + `21 · y1

y3 + `31 · y1 + `32 · y2

 =

 1 0 0
`21 1 0
`31 `32 1


︸ ︷︷ ︸

L

 y1

y2

y3



with the lower triangular matrixL.

Therefore we can rephrase the transformation step as follows: GivenL andb, solve the linear systemLy = b for y. Since
L is lower triangular, we can solve this linear system byforward substitution : We first solve the first equation fory1, then
solve the second equation fory2,

The LU decomposition: In the same way as we reconstructed the vectorb from the vectory , we can reconstruct the
matrixA from the matrixU : Forn = 3 we obtain row 1 of A

row 2 of A
row 3 of A

 =

 (row 1 of U)
(row 2 of U) + `2,1 · (row 1 of U)
(row 3 of U) + `3,1 · (row 1 of U) + `3,2 · (row 2 of U)

 =

 1 0 0
`21 1 0
`31 `32 1


︸ ︷︷ ︸

L

 row 1 of U
row 2 of U
row 3 of U



Therefore we haveA = LU . We have written the matrixA as the product of a lower triangular matrix (with 1’s on the
diagonal) and an upper triangular matrixU . This is called theLU-decompositionof A.

4

Summary: Now we can rephrase the parts 1., 2., 3. of the algorithm as follows:

1. Find the LU-decompositionA = LU :
Perform elimination on the matrixA, yielding an upper triangular matrixU . Store the multipliers in a matrixL and
put 1’s on the diagonal of the matrixL:

L :=


1 0 · · · 0

`21
... ...

...
...

... ... 0
`n,1 · · · `n,n−1 1


2. SolveLy = b using forward substitution

3. SolveUx = y using back substitution

The matrix decompositionA = LU allows us to solve the linear systemAx = b in two steps: Since

L Ux︸︷︷︸
y

= b

we can first solveLy = b to findy, and then solveUx = y to findx.

Example:

1. We start withU := A andL being the zero matrix:

L =

 0 0 0
0 0 0
0 0 0

 , U =

 2 3 1
4 3 1
−2 2 1


step 1:

L =

 0 0 0
2 0 0
−1 0 0

 , U =

 2 3 1
0 −3 −1
0 5 2


step 2:

L =

 0 0 0
2 0 0
−1 −5

3 0

 , U =

 2 3 1
0 −3 −1
0 0 1

3


We put 1’s on the diagonal ofL and obtainL =

 1 0 0
2 1 0
−1 −5

3 1

, U =

 2 3 1
0 −3 −1
0 0 1

3

.

2. We solve the linear systemLy = b  1 0 0
2 1 0
−1 −5

3 1

 y1

y2

y3

 =

 1
−2
6


by forward substitution: The first equation givesy1 = 1. Then the second equation becomes2 + y2 = −2 yielding
y2 = −4. Then the third equation becomes−1− 5

3 · (−4) + y3 = 6, yieldingy3 = 1
3 .

3. The back substitution for solvingUx = b is performed as explained above.

5

Gaussian Elimination with Pivoting

There is a problem with Gaussian elimination without pivoting: If we have at stepj thatujj = 0 we cannot continue since
we have to divide byujj . This elementujj by which we have to divide is called thepivot.

Example: For A =

 4 −2 2
−2 1 3
2 −2 2

 we use`21 = −2
4 , `31 = 2

4 and obtain after step 1 of the eliminationU = 4 −2 2
0 0 4
0 −1 2

. Now we haveu22 = 0 and cannot continue.

Gaussian elimination with pivoting uses row interchanges to overcome this problem. For stepj of the algorithm we consider
the pivot candidatesuj,j , uj+1,j , . . . , unj , i.e., the diagonal element and all elements below. If there is a nonzero pivot
candidate, sayukj we interchange rowsj andk of the matrixU . Then we can continue with the elimination.

Since we want that the multipliers correspond to the appropriate row ofU , we also interchange the rows ofL whenever we
interchange the rows ofL. In order to keep track of the interchanges we use a vectorp which is initially (1, 2, . . . , n)>, and
we interchange its rows whenever we interchange the rows ofU .

Algorithm: Gaussian Elimination with pivoting: Input: matrixA. Output: matrixL (lower triangular), matrixU
(upper triangular), vectorp (contains permutation of1, . . . , n)

L :=

 0 · · · 0
...

...
0 · · · 0

 ; U := A ; p :=

 1
...
n


For j = 1 to n− 1

If (Ujj , . . . , Unj) = (0, . . . , 0)
Stop with error message “Matrix is singular”

Else
Pickk ∈ {j, j + 1, . . . , n} such thatUkj 6= 0

End
Interchange rowj and rowk of U
Interchange rowj and rowk of L
Interchangepj andpk
Fork = j + 1 to n
Lkj := Ukj/Ujj
(row k of U) := (row k of U)− Lkj · (row j of U)

End
End
If Unn = 0

Stop with error message “Matrix is singular”
End
For j = 1 to n
Ljj := 1

End

Note that we can have several nonzero pivot candidates, and we still have to specify which one we pick. This is called a
pivoting strategy. Here are two examples:

6

Pivoting strategy 1:Pick the smallestk such thatUkj 6= 0.

Pivoting strategy 2:Pickk so that|Ukj | is maximal.

If we use exact arithmetic, it does not matter which nonzero pivot we choose. However, in machine arithmetic the choice of
the pivot can make a big difference for the accuracy of the result, as we will see below.

Example:

L =

 0 0 0
0 0 0
0 0 0

 , U =

 4 −2 2
−2 1 3
2 −2 2

 , p =

 1
2
3


Here the pivot candidates are4,−2, 2, and we use4:

L =

 0 0 0
−1

2 0 0
1
2 0 0

 , U =

 4 −2 2
0 0 4
0 −1 1

 , p =

 1
2
3


Here the pivot candidates are0,−1, and we use−1. Therefore we interchange rows 2 and 3 ofL,U, p:

L =

 0 0 0
1
2 0 0
−1

2 0 0

 , U =

 4 −2 2
0 −1 1
0 0 4

 , p =

 1
3
2


For column 2 we havel32 = 0 andU does not change. Finally we put1s on the diagonal ofL and get the final result

L =

 1 0 0
1
2 1 0
−1

2 0 1

 , U =

 4 −2 2
0 −1 1
0 0 4

 , p =

 1
3
2


LU Decomposition for Gaussian elimination with pivoting: If we perform row interchanges during the algorithm
we no longer haveLU = A. Instead we obtain a matrix̃A which contains the rows ofA in a different order:

LU = Ã :=

 row p1 of A
...

row pn of A


The reason for this is the following: If we applied Gaussian eliminationwithout pivotingto the matrixÃ, we would get the
sameL andU that we got for the matrixA with pivoting.

Solving a linear system using Gaussian elimination with pivoting: In order to solve a linear systemAx = b we
first apply Gaussian elimination with pivoting to the matrixA, yieldingL,U, p. Then we know thatLU = Ã.

By reordering the equations ofAx = b in the orderp1, . . . , pn we obtain the linear system row p1 of A
...

row pn of A


︸ ︷︷ ︸

Ã=LU

 x1
...
xn

 =

 bp1

...
bpn


︸ ︷︷ ︸

b̃

i.e., we haveL(Ux) = b̃. We sety = Ux. Then we solve the linear systemLy = b̃ using forward substitution, and finally
we solve the linear systemUx = y using back substitution.

7

Summary:

1. Apply Gaussian elimination with pivoting to the matrixA, yieldingL, U , p such thatLU =

 row p1 of A
...

row pn of A

.

2. SolveLy =

 bp1

...
bpn

 using forward substitution.

3. SolveUx = y using back substitution.

Note that this algorithm is also known as Gaussian elimination withpartial pivoting (partial means that we perform row
interchanges, but no column interchanges).

Example: SolveAx = b for A =

 4 −2 2
−2 1 3
2 −2 2

, b =

 2
1
−4

. With L andp from the Gaussian elimination the

linear systemLy = (bp1 , bp2,bp3
)> = (b1, b3, b2)> is 1 0 0

1
2 1 0
−1

2 0 1

 y1

y2

y3

 =

 2
−4
1


yieldingy = (2,−5, 2) using forward substitution. Then we solveUx = y 4 −2 2

0 −1 1
0 0 4

 x1

x2

x3

 =

 2
−5
2


using back substitution and obtainx3 = 1

2 , x2 = 11
2 , x3 = 1

2 .

Existence and Uniqueness of Solutions

If we perform Gaussian elimination with pivoting on a matrixA (in exact arithmetic), there are two possibilities:

1. The algorithm can be performed without an error message. In this case the diagonal elementsu11, . . . , unn are all
nonzero. For an arbitrary right hand side vectorb we can then perform forward substitution (since the diagonal
elements ofL are 1), and back substitution, without having to divide by zero. Therefore this yieldsexactly one
solution x for our linear system.

2. The algorithm stops with an error message. E.g., assume that the algorithm stops in columnj = 3 since all pivot
candidates are zero. This means that a linear systemAx = b is equivalent to the linear system of the form

~ ∗ ∗ ∗ · · · ∗
0 ~ ∗ ∗ · · · ∗
... 0 0 ∗ · · · ∗
...

...
...

...
...

0 0 0 ∗ · · · ∗




x1

x2

x3
...
xn

 =


c1

c2

c3
...
cn



8

Here∗ denots an arbitrary number, and~ denotes a nonzero number. Let us first consider equations 3 throughn of
this system. These equations only containx4 . . . , xn. There are two possibilities:

(a) There is a solutionx4, . . . , xn of equations 3 throughn. Then we can choosex3 arbitrarily. Now we can use
equation 2 to findx2, and finally equation 1 to findx1 (note that the diagonal elements are nonzero). Therefore
we haveinfinitely many solutions for our linear system.

(b) There is no solutionx4, . . . , xn of equations 3 throughn. That means that our original linear system hasno
solution.

Observation: In case 1. the linear system has a unique solution for anyb. In particular,Ax = 0 impliesx = 0. HenceA
is nonsingular.
In case 2we can construct a nonzero solutionx for the linear systemAx = 0. HenceA is singular.

We have shown:

Theorem: If a square matrixA is nonsingular, then the linear systemAx = b has aunique solutionx for any right hand
side vectorx.
If the matrixA is singular, then the linear systemAx = b has eitherinfinitely many solutions, or it hasno solution,
depending on the right hand side vector.

Example: ConsiderA =
[

4 −2
−2 1

]
. The first step of Gaussian elimination givesl21 = −2

4 andU =
[

4 −2
0 0

]
.

Now we haveu22 = 0, therefore the algorithm stops. ThereforeA is singular.

Consider the linear system

[
4 −2
−2 1

](
x1

x2

)
=
(

2
4

)
.

By the first step of elimination this becomes

[
4 −2
0 0

](
x1

x2

)
=
(

2
5

)
. Note that the second equation has no solution,

and therefore the linear system has no solution.

Now consider

[
4 −2
−2 1

](
x1

x2

)
=
(

2
−1

)
.

By the first step of elimination this becomes

[
4 −2
0 0

](
x1

x2

)
=
(

2
0

)
. Note that the second equation is always true.

We can choosex2 arbitrarily, and then determinex1 from equation 1:4x1−2x2 = 2, yieldingx1 = (2+2x2)/4. This gives
infinitely many solutions.

Gaussian Elimination with Pivoting in Machine Arithmetic

For a numerical computation we can only expect to find a reasonable answer if the original problem has a unique solution.
For a linear systemAx = b this means that the matrixA should be nonsingular. In this case we have found that Gaussian
elimination with pivoting, together with forward and back substitution always gives us the answer, at least in exact arithmetic.

It turns out that Gaussian elimination with pivoting can give us solutions with an unnecessarily large roundoff error, depend-
ing on the choice of the pivots.

9

Example Consider the linear system

[
.001 1

1 1

](
x1

x2

)
=
(

1
2

)
. In the first column we have the two pivot candi-

dates.001 and1.

If we choose.001 as pivot we get̀ 21 = 1000 and

[
.001 1

0 −999

](
x1

x2

)
=
(

1
−998

)
. Now back substitution gives

x2 = 998
999 andx1 = (1− 998

999)/.001. Note that we have subtractive cancellation in the computation ofx1: We have to expect
a roundoff error ofεM in x2. When we compute1 − x2 we get a relative error of 1

1−x2
εM = 999εM , i.e., we lose about

three digits of accuracy.

Alternatively, we can choose1 as the pivot in the first column and interchange the two equations:

[
1 1
.001 1

](
x1

x2

)
=(

2
1

)
. Now we get̀ 21 = .001 and

[
1 1
0 .999

](
x1

x2

)
=
(

2
.998

)
. This yieldsx2 = .998

.999 = 999
998 , andx1 = 2 − 998

999 .

Note that there is no subtractive cancellation, and we obtainx1 with almost the full machine accuracy.

This example is typical: Choosing very small pivot elements leads to subtractive cancellation during back substitution.
Therefore we have to use apivoting strategy which avoids small pivot elements. The simplest way to do this is the following:
Select the pivot candidate with the largest absolute value.

In most practical cases this leads to a numerically stable algorithm, i.e., no unnecessary magnification of roundoff error.

10

