Hint for Problem 3:

1. If $u(t)$ is differentiable between t_1, t_2 we have

$$u(t_2) - u(t_1) = \int_{t_1}^{t_2} u'(s)ds$$

$$|u(t_2) - u(t_1)| \leq |t_2 - t_1| \max_{s \in [t_1, t_2]} |u'(s)|$$

2. If $u(t)$ is analytic at t_0 we have near t_0 the Taylor expansion

$$u(t) - u(t_0) = u'(t_0)(t - t_0) + \frac{u''(t_0)}{2!}(t - t_0)^2 + \cdots$$

If $u'(t_0) \neq 0$: E.g., for $u'(t_0) > 0$ we have for $t \geq t_0$

$$(u(t) - u(t_0))^{1/3} = (t - t_0)^{1/3} \left[u'(t_0) + \frac{u''(t_0)}{2!}(t - t_0) + \cdots \right]^{1/3}$$

$$=: q(t)$$

where the function $q(t)$ is analytic with $q(t_0) > 0$.

3. For $s < t_0 < t$

$$|u(s) - u(t)| \leq |u(s) - u(t_0)| + |u(t_0) - u(t)| \leq C |s - t_0|^\alpha + C |t - t_0|^\alpha \leq C 2^{1-\alpha} |s - t|^\alpha$$

since x^α is concave: $\left(\frac{a}{2} + \frac{b}{2}\right)\alpha \geq \frac{1}{2} (a^\alpha + b^\alpha)$ for $0 < \alpha \leq 1$, $a, b \geq 0$.