Introduction to MATLAB(
copyright © 2000 by Paul Green and Jonathan Rosenberg
Working with the Command Window

Elsewhere on your Desktop (possibly behind this window), you should find a window labeled MATLAB Command Window. This is the first (and sometimes the only) window you see when you launch MATLAB on a PC. (When you launch MATLAB 5 on a UNIX machine, the terminal window from which you started MATLAB—usually by typing matlab—becomes your command window.) In the command window you should see a prompt that looks like >> or ». Position your mouse there and type 1+1
and hit RETURN. MATLAB should type in response:

ans =

 2

In this way you can use MATLAB as a calculator. Try typing sin(pi) and hit RETURN. MATLAB should type in response something like:

ans =

 1.2246e-016

MATLAB has recognized sin as referring to the sine function, and pi as referring to (. Of course sin(()=0, but because of round-off error, MATLAB has given the numerical answer 1.224(10(16 (in scientific notation). That's because MATLAB does arithmetic with double-precision numbers, which are only accurate to around 15 decimal places. By default, MATLAB only prints five digits, but you can change this by typing format long and hitting RETURN. Thereafter, MATLAB will print out answers to 15 significant digits (unless you go back to the default by typing format short).

Exercise:

Experiment with using the MATLAB Command Window as a calculator. The basic operations and functions are represented by * for (, / for (, ^ for powers (i.e., 3^3 means "3 cubed"), abs for absolute value, sqrt for square root, exp for the exponential function to the base e, so exp(1)=2.718281828…, log for the logarithm function to the base e, sin, cos, and tan for the basic trig functions, cosh, sinh, tanh for the basic hyperbolic functions, and asin, acos, atan for the inverse trig functions.

Numerical vs. Symbolic Calculation

It is important to remember that MATLAB, by default, does numerical calculations with double-precision numbers. It can also do exact, i.e., symbolic calculations and algebra, using an accessory called the Symbolic Toolbox, but only if you tell it to. For example, notice what happens if you type sin(sym('pi')) and hit RETURN. MATLAB responds with:

ans =

0

The meaning of this is as follows. A string of characters, enclosed in single quotes, is what MATLAB calls a string. The command sym takes a string as an argument and tells MATLAB to interpret this string as a symbolic expression. So sym('pi')) refers not to the approximate number 3.14159265… (which MATLAB denotes simply by pi) but to the exact symbolic number (. So now when we take the sine, we get the exact answer 0. If you look carefully, you'll see that MATLAB indents its answer when the answer is numerical (double-precision) and prints its answer flush with the left margin when the answer is symbolic. That way you can always distinguish numerical from symbolic output.

The usual way to do symbolic calculations in MATLAB (to avoid having to keep writing such awkward expressions as sym('x') over and over) is to declare certain variables to be symbolic. Such a declaration lasts until you clear the assignment or assign a numerical value to that variable instead. Here's an example. Type syms pi and hit RETURN. That's equivalent to saying, "From now on I want pi to represent the true (, not the approximation." The command syms declares whatever follows to be a symbolic variable or expression. MATLAB responds with

pi =

pi
Note the lack of indentation. If you now type sin(pi) and hit RETURN as before, this time you get

ans =

0

If you now type clear pi and hit RETURN, then hit the (key twice (a shorthand for recalling the next-to-last command) to recover sin(pi) and hit RETURN, you get back

ans =

 1.2246e-016

again.

Working in an M-Book

The document you are currently reading may look like an ordinary Microsoft Word(file, but there's one important difference. It's been enabled to transmit commands in an input cell directly to MATLAB and have the output appear immediately in the document in an output cell. Such a document is called an M-book. In an M-book, if you want to redo a command, you simply edit the cell in which it appears and re-evaluate the cell. In this course, we will be doing most of our work in M-books. Nevertheless, it's useful to know how to run MATLAB from the Command Window, since it often runs much faster that way.

To convert a line of text in an M-book into an input cell, you can either hit CONTROL-RETURN while the cursor is on that line (this not only creates a one-line cell but evaluates it immediately), or else highlight the text and type ALT-N-I, or else use the Notebook menu at the top of the Word window and click on Define Input Cell. (You need one of the last two methods if you want to create a multi-line input cell.) Input cells are identified by black surrounding brackets and the fact that they are set in green Courier type. Here is a typical input cell:

syms x

factor(x^2-4)

Try evaluating it by positioning the cursor in the cell and hitting CONTROL-RETURN. Note MATLAB creates a blue output cell in response. In this output cell you see exactly what MATLAB would respond had you entered your command in the Command Window. In this case, we have a two-line input cell. The first line declares x to be a symbolic variable, and the second line factors an expression involving x. Without the declaration of x to be a symbolic variable, the second line would have resulted in an error message:

??? Undefined function or variable 'x'.

Simple MATLAB Plots

The easiest way to plot a graph in MATLAB is with the command ezplot. It can take as input either a string or a symbolic expression. Thus ezplot('t^3-t', [-2, 2]) and syms t followed by ezplot('t^3-t', [-2, 2]) are both acceptable ways to plot t3 (t over the interval where t runs from (2 to 2. What happens to the output from a graphics command such as this depends on whether you are working from Command Window or in an M-Book, so try it both ways. If you execute the command from the Command Window (or change the Notebook Options… in the Notebook menu to turn off "Embed Figures in M-Book"), the output will pop up in a separate Figure Window. On the other hand, in an M-Book with "Embed Figures in M-Book" turned on (that's the default), the figure will appear just below the command that produced it. Go ahead and try evaluating:

ezplot('t^3-t',[-2,2])

Once you have produced a plot, you can modify it. If the plot has been produced in a figure window, then commands to modify the plot will change the active figure window. If you are working in an M-Book with embedded figures, however, then commands to modify a plot must go in the same input cell as the plotting command. The command hold on sets a toggle switch so that output from the next plotting command is superimposed on the existing one. The command hold off turns this off again. Thus to find the solutions of the equation sin(x) = x/2, you can superimpose the plots of sin(x) and of x/2 as follows:

syms x; ezplot(sin(x),[-2,2]);

hold on; ezplot(x/2,[-2,2]); hold off

Note that you can separate commands on the same line with semicolons (or commas), though a semicolon will also suppress the printed output (not the graphical output) of a command. Another important command for modifying plots is the axis command, which enables you to modify the scales on the axes. For example, axis tight will cut the axes down to the minimum required to enclose the figure, and axis equal makes the scales on the horizontal and vertical axes the same. This is important to know about if you want your circles to look like circles and not like ellipses. Thus compare the following two ways to plot a semicircle:

ezplot(sqrt(1-x^2),[-1,1])
ezplot(sqrt(1-x^2),[-1,1]); axis equal; axis tight

Getting Help in MATLAB

To use MATLAB effectively, it's important to know how to look up the syntax for hundreds of commands that you can't possibly memorize. There are many ways to get online help. If you remember the name of a command, but can't remember its syntax or all its options, all you have to do is type help followed by the name of the command. For example, try:

help axis

From the Command Window, clicking on the ? icon or typing helpwin will pop up a small help window with MATLAB commands indexed by categories. Typing lookfor followed by a keyword will get you a list of all the MATLAB commands with that keyword in their basic description.

The MATLAB Workspace

As you work in MATLAB, you will usually end up defining various variables and objects. These are saved in the MATLAB Workspace. There are two ways to inspect the contents of the Workspace: with the Workspace browser, which you can access from the toolbar at the top of the Command Window, or with the whos command. This lists all the currently defined variables and their "types" (double (i.e., double-precision numeric), string, symbolic, etc.). Most of the time you will see a variable called ans; MATLAB uses this for the last output that you did not explicitly store somewhere else, so the contents of ans will usually change many times during a session. Variables can be removed from the Workspace (for instance, to save memory space) with the clear command. Consider the following example.

a='pi'; b=sym('pi'); c=pi; whos

Here a is of type "char" (a string), b is of type "sym" (symbolic), and c is of type "double". Allowable variable names must be strings of letters, underscores, and numbers starting with a letter, but both upper-case and lower-case letters are allowed, and MATLAB distinguishes between them. Don't be fooled by the fact that the help lines for a command often refer to the command in all caps; MATLAB's built-in commands are almost all to be typed entirely in lower-case letters.

Problems for Practice

1. Plot y = x2 and y = 2x on the same set of axes. Where do they intersect?

2. Turn on format long, set a=1, and then repeat the command a=(a+2/a)/2 about six times. (For the moment it's easiest to do this from the Command Window with the (key. Later we will see how to do this with a loop.) What do you observe, and why? Compare with sqrt(2).

3. Plot cosh(x) and sinh(x) on the same set of axes, with x running from –5 to 5. What do you observe? For an explanation, try syms x; y = simple(cosh(x)-sinh(x)).

4. Compare sin(pi/6) and cos(pi/6) with sin(sym('pi/6')) and cos(sym('pi/6')).

