Visualizing Functions of Several Variables

and Surfaces

copyright © 2000 by Paul Green and Jonathan Rosenberg

Functions of Two Variables

A function f of two variables is a rule which produces from two numerical inputs, say x and y, a numerical output, written f(x, y). Sometimes it will be preferable to think of f as taking one vector input instead of two scalar inputs. Now there are two main ways to visualize such a function:

1. a contour plot, or a two-dimensional picture of the level curves of the surface, which have equations of the form f(x, y) = c, where c is a constant.

2. the graph of the function, which is the set of points in three-dimensional space satisfying

 f(x, y) = z.
We begin by illustrating how to produce these two kids of pictures in MATLAB, using MATLAB's easy-to-use plotting commands, ezcontour and ezsurf. We will f sufficiently complicated to be of some interest. Note that our plotting commands really take as input an expression that defines a function, rather than a function itself. (In other words, we do not use an m-file or an inline function as an input to the plotting command.

syms x y
f=((x^2-1)+(y^2-4)+(x^2-1)*(y^2-4))/(x^2+y^2+1)^2

We start with the contour plot. All we need as arguments to ezcontour are the expression, whose contour are to be plotted, and the ranges of values for x and y.

ezcontour(f, [-3, 3, -3, 3])

The color coding tells us how the values of the constant c are varying. One of the pictures in this case is misleading; the contour in dark blue in the very middle should really have the form of a figure-eight. We will see later why this is so and how to detect it.

But for the time being let's move on. Now for a picture of the graph of f:

ezsurf(f, [-3, 3, -3, 3])

If we had done this from the command line, we could have rotated the figure in space to be able to view it from different angles. Note that the graph is a surface, in other words, a two-dimensional geometric object sitting in three-space. Every graph of a function of two variables is a surface, but not conversely. Note that MATLAB again color-codes the output, with blue denoting the smallest values of the function, and red denoting the largest.

Finer Points of Plotting with MATLAB

We begin with a brief discussion of how MATLAB does its plotting. The arguments to a MATLAB [non-ez] plotting function, such as surf, plot, plot3, mesh, or contour, are two or three identically shaped arrays. The positions in these arrays correspond to parameter or coordinate values; the entries give the coordinates as functions of the parameters (which may be identical with the coordinates). Thus for a curve, the arguments are usually linear arrays, or vectors, while for a surface, they are rectangular arrays, or matrices.

We will illustrate how this works to plot the graph of the function f above. In this case, the parameters are also the x and y coordinates. We start by defining the coordinate grid with the meshgrid command.

[X1,Y1]=meshgrid(-5:.2:5,-5:.2:5);
We use X1 and Y1, rather than x and y because they receive immediate values from this command, and we do not wish to assign values to our symbolic variables. The command creates a grid with both the x and y coordinates varying in steps of .2 from -5 to 5. Note the use of the semicolon! If we had not suppressed the output, MATLAB would have printed out the entire grid.

Next, we must make f available as a function that can be evaluated at each point of the grid, to define the z-coordinates of the plot, and define the vector of z-coordinates

zfun=inline(vectorize(f))

Z1=zfun(X1,Y1);

We can now proceed with the plot in any of several ways:

surf(X1,Y1,Z1)

mesh(X1,Y1,Z1)

plot3(X1,Y1,Z1)

By now, it may have occurred to you that we could have issued exactly the same sequence of commands for any parametrized surface. The essential information for such a plot is the name of the symbolic vector that defined the parametrization, the specification of the parameter grid, and the plotting function to be used. We have a function m-file called genplot.m that takes advantage of this observation. We will reproduce the mesh plot using genplot.

genplot(f, -5:.2:5,-5:.2:5,'mesh')

Notice that the first argument to genplot is the name of the symbolic object to be plotted, while the next two provide the arguments to meshgrid for the specification of the parameter grid. These are the only required arguments. If we had not included 'mesh', genplot would have invoked its default for this case, which happens to be 'surf'. Note that the result is not so different from what we get from ezsurf and ezmesh, except that there is no ez equivalent to genplot with the option 'plot3'.

ezsurf(f,[-5,5,-5,5])

ezmesh(f,[-5,5,-5,5])

Problem 1:

Obtain surface mesh and line plots of the function
[image: image1.wmf]1

6

2

)

,

(

4

4

4

2

2

3

4

+

+

+

-

+

=

y

x

y

y

x

y

x

x

y

x

g

(a) By using the step by step procedure followed above.

(b) By using ezsurf and ezmesh. (You will not be able to obtain the line plot in this part.).

(c) By using genplot with appropriate options.

Now let's go back to contour plots. Ezcontour does not allow us to specify how many or which contours we want, or the colors of the contours. However, we can accomplish this using the 'contour' option to genplot. For instance, to see the true shape of the contours of f through the origin, we can proceed as follows: first we find the value of the function there; then we plot that contour as well as some nearby ones in red using a very fine grid with:

subs(f,[x,y],[0,0])

genplot(f,-3:.02:3,-3:.02:3,'contour',[-1.1, -1, -.9],'r')

As promised, the contour through the origin turns out to have a "figure eight" shape, though not the nearby contours, which do not self-intersect. We will see the reason for this in next week's session.

Problem 2:

(a) Obtain a contour plot of the function g(x,y) defined in Problem 1 showing MATLAB's default contours.

(b) Superimpose on the a plot of part (a) a plot showing the contours g(x,y)=0, g(x,y)=0.2, and g(x,y)=0.4 in red.

Actually, genplot is considerable more flexible than we have seen so far. The first argument can be either a single function or a two or three component vector valued function of one or two parameters. The number of variables or parameters determines the remaining required arguments. In the case of one variable or parameter, only a single argument of the form a:b:c is required; in the case of two variables or parameters, we have already seen that two such arguments are needed. The remaining arguments are optional. The next one specifies the particular MATLAB plotting function that will be used. The defaults are 'plot' for functions of one variable or two component parametrized curves, 'plot3' for three dimensional parametrized curves, and 'surf' for functions of two variables or parametrized surfaces. If the first argument is a function, genplot plots the graph of the function with the range and stepsize specified by the other arguments. Optional arguments following the specification of the plotting function provide additional specifications for the plot, such as color or line style; what these may be depends on the plotting function chosen. Some plotting functions may have required additional arguments.

Surfaces

Although we will analyze the function f(x,y) further in the next lesson, we abandon it for the present. Instead we discuss how to plot a surface that is not the graph of a function of two variables, such as a sphere. There are two main techniques available:

1. We can write the surface as a level surface f(x, y, z) = c of a function of three variables,

 f(x, y, z).

2. We can parameterize the surface by writing x, y, and z each as functions of two parameters, say s

 and t. This is analogous to parameterizing a curve and writing x, y, and z each as functions of t.

We begin with case (1). The graph of a function of three variables would require a four dimensional plot, which is beyond MATLAB's capabilities, but we can draw a picture of a single level surface of the function. This can be viewed as a three dimensional version of contour plotting. A plot showing more than one contour is usually difficult to interpret, so we will discuss plotting a single contour. This is the default option for genplot if the first argument is a function of three variables; the last argument is the function value corresponding to the contour to be plotted. As an example, we plot a sphere of radius 2. The axis equal command sets the scales on all three axes to be the same, so that our sphere doesn't look like an ellipsoid.

syms z; h=x^2+y^2+z^2

genplot(h,-3:.05:3,-3:.05:3,-3:.05:3,4); axis equal

Problem 3:

Plot the hyperboloid
[image: image2.wmf].

1

25

16

9

2

2

2

=

-

+

z

y

x

 (Think of it as a level surface.)

We have now plotted surfaces as graphs of functions of two variables or as level surfaces of functions of three variables. The third possibility is case (2) above, using a parameterization, which we have already used in a previous notebook. Let us return to the tube around the twisted cubic. We will not need the entire context that created it, but only the parametrization of the tube itself.

syms s t
tctube=[t- 1/5*cos(s)*t*(2+9*t^2)/(9*t^4+9*t^2+1)^(1/2)/(1+4*t^2+9*t^4)^(1/2)+3/5*sin(s)*t^2/(9*t^4+9*t^2+1)^(1/2), t^2-1/5*cos(s)*(-1+9*t^4)/(9*t^4+9*t^2+1)^(1/2)/(1+4*t^2+9*t^4)^(1/2)-3/5*sin(s)*t/(9*t^4+9*t^2+1)^(1/2), t^3+3/5*cos(s)*t*(1+2*t^2)/(9*t^4+9*t^2+1)^(1/2)/(1+4*t^2+9*t^4)^(1/2)+1/5*sin(s)/(9*t^4+9*t^2+1)^(1/2)]

Do not be daunted by the complexity of this expression; it won't bother MATLAB. We can use genplot with the option 'plot3' to recreate the plot of the tube that shows the twisting of the constant s curves. Notice that the twisting is more evident with the 'plot3' option of genplot than it was with meshplot.

genplot(tctube,0:.5:2*pi,-1:.1:1,'plot3')

Other surfaces can also be parametrized. In particular, the sphere we plotted as a level surface can also be plotted parametrically, using spherical coordinates. We use ph and th to represent the angles (and (.

syms ph th

sphere=[2*sin(ph)*cos(th),2*sin(ph)*sin(th),2*cos(ph)]

genplot(sphere,0:.05:pi,0:.05:2*pi)

Essentially the same parametrization can be used for an ellipsoid by replacing the numerical coefficients of the three components, all 2 in the case of the sphere, by the lengths of the respective semi-major axes. Hyperboloids can be conveniently parametrized using hyperbolic functions. The essential identity to bear in mind is

[image: image3.wmf]1

sinh

cosh

2

2

=

-

x

x

. The following line parametrizes and plots the hyperboloid of one sheet
[image: image4.wmf]1

2

2

2

=

-

+

z

y

x

.

genplot([cosh(s)*cos(t),cosh(s)*sin(t),sinh(s)],-1:.02:1,0:.02:2*pi)

Problem 4:

Parametrize and replot parametrically the hyperboloid you plotted in Problem 3.

Additional Problems

 1. Plot the hyperboloid of two sheets
[image: image5.wmf]1

2

2

2

-

=

-

+

z

y

x

(a) As a level surface.

(b) By parametrizing the upper and lower sheets separately and plotting the both in the same figure using 'hold on'.

2. Let
[image: image6.wmf]1

)

3

)(

2

(

)

2

)(

1

(

)

,

(

4

4

2

2

2

2

+

+

-

-

+

-

-

=

y

x

y

x

y

x

y

x

h

.

(a) Plot the graph of h(x,y) for a range of x and y sufficient to show the interesting features of the function.

(b) Obtain a contour plot of h(x,y) for the same range.

_1000633021.unknown

_1000633397.unknown

_1000634142.unknown

_996317187.unknown

_996317913.unknown

_996317041.unknown

