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Abstract. In this paper, we extend Deligne’s functorial Riemann-Roch isomor-
phism for hermitian holomorphic line bundles on Riemann surfaces to the case
of flat, not necessarily unitary connections. The Quillen metric and ?-product
of Gillet-Soulé is replaced with complex valued logarithms. On the determinant
of cohomology side, the idea goes back to Fay’s holomorphic extension of de-
terminants of Dolbeault laplacians, and it is shown here to be equivalent to the
holomorphic Cappell-Miller torsion. On the Deligne pairing side, the logarithm is
a refinement of the intersection connections considered in [16]. The construction
naturally leads to an Arakelov theory for flat line bundles on arithmetic surfaces
and produces arithmetic intersection numbers valued in C/πiZ. In this context we
prove an arithmetic Riemann-Roch theorem. This realizes a program proposed by
Cappell-Miller to show that the holomorphic torsion exhibits properties similar to
those of the Quillen metric proved by Bismut, Gillet and Soulé. Finally, we give
examples that clarify the kind of invariants that the formalism captures; namely,
periods of differential forms.

1. Introduction

Arithmetic intersection theory was initiated by Arakelov [1] in an attempt to
approach the Mordell conjecture on rational points of projective curves over number
fields by mimicking the successful arguments of the function field case. The new
insight was the realization that an intersection theory on arithmetic surfaces could
be defined by adding some archimedean information to divisors. This archimedean
datum consists of the so-called Green’s functions that arise from smooth hermitian
metrics on holomorphic line bundles. The use of a metric structure is also natural
for diophantine purposes, as one may want to measure the size of integral sections
of a line bundle on an arithmetic surface.

Arakelov’s foundational work was complemented by Faltings, who proved
among other things the first version of an arithmetric Riemann-Roch type formula
[14]. Later, in a long collaboration starting with [17], Gillet and Soulé vastly
extended the theory both to higher dimensions and to more general structures
on the archimedean side. Their point of view is an elaboration of the ideas of
Arakelov and is cast as a suitable “completion” of the usual Chow groups of classical
intersection theory over a Dedekind domain. Their formalism includes arithmetic
analogues of characteristic classes of hermitian holomorphic vector bundles [18, 19].
This led them to develop and prove a general Grothendieck-Riemann-Roch type
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theorem in this setting [20]. A key ingredient is the analytic torsion of the Dolbeault
complex associated to a hermitian holomorphic bundle over a compact Kähler
manifold. Their proof requires deep properties of the analytic torsion due to Bismut
and collaborators [2, 3, 4, 5, 6, 7]. In [13], Deligne proposed a program to lift the
Grothendieck-Riemann-Roch theorem to a functorial isomorphism between line
bundles that becomes an isometry when vector bundles are endowed with suitable
metrics. In the case of families of curves this goal was achieved. He establishes a
canonical isometry between the determinant of cohomology of a hermitian vector
bundle with the Quillen metric, and some hermitian intersection bundles, involving
in particular the so-called Deligne pairings of line bundles.

In our previous work [16], we produced natural connections on Deligne pairings
of line bundles with flat relative connections on families of compact Riemann
surfaces. These were called intersection connections, and they recover Deligne’s
constructions in the case where the relative connections are the Chern connections
for a hermitian structure. As in the case of Deligne’s formulation, intersection
connections are functorial, and via the Chern-Weil expression they realize a natural
cohomological relationship for Deligne pairings. Moreover, we showed that in the
case of a trivial family of curves, i.e. a single Riemann surface and a holomorphic
family of flat line bundles on it, we could interpret Fay’s holomorphic extension of
analytic torsion for flat unitary line bundles [15] as the construction of a Quillen
type holomorphic connection on the determinant of cohomology, and as a statement
that the Deligne-Riemann-Roch type isomorphism is flat with respect to these
connections. The contents of [16] are summarized in Section 2 below.

The principal results of the present paper are the following.

• We extend the flatness of the Deligne isomorphism to nontrivial families
of smooth projective curves. The proof makes use of the idea of a logarithm
for a line bundle with connection.

• The holomorphic extension of analytic torsion naturally defines an example
of a logarithm which we call the Quillen logarithm. We show that the Quillen
logarithm coincides with the torsion invariant defined by Cappell-Miller
in [12].

• We initiate an arithmetic intersection theory where the archimedean data
consists of flat, not necessarily unitary, connections.

Below we describe each of these items in more detail.

1.1. Logarithms. The results in [16] on intersection and Quillen connections are
vacuous for a single Riemann surface and a single flat holomorphic line bundle, since
there are no interesting connections over points! To proceed further, and especially
with applications to Arakelov theory in mind, we establish “integrated” versions of
the intersection and holomorphic Quillen connections that are nontrivial even when
the parameter space is zero dimensional. The nature of such an object is what we
have referred to above as a logarithm of a line bundle L→ S over a smooth variety S.
This takes the place of the logarithm of a hermitian metric in the classical situation.
More precisely, a logarithm is an equivariant map LOG : L× → C/2πiZ. It has
an associated connection which generalizes the Chern connection of a hermitian
metric, but which is not necessarily unitary for some hermitian structure. Although
the notion of a logarithm is equivalent simply to a trivialization of theGm-torsor L×,
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it nevertheless plays an important role in the archimedean part of the arithmetic
intersection product, as we explain below.

The logarithm provides a refinement of the relationship between intersection
connections, the holomorphic extension of analytic torsion, and the Deligne isomor-
phism. More precisely, let (X, p) be a compact Riemann surface with a base point, X
the conjugate Riemann surface, andL→ X, Lc

→ X rigidified (at p) flat complex line
bundles with respective holonomies χ and χ−1, for some character χ : π1(X, p)→ C×.
Applied to these data, Deligne’s canonical (up to sign) isomorphism for L and Lc

gives

D :
{
λ(L − OX) ⊗C λ(Lc

− OX)
}⊗2
∼
−−→ 〈L,L ⊗ ω−1

X 〉 ⊗C 〈L
c,Lc
⊗ ω−1

X
〉 (1)

where λ denotes the (virtual) determinant of cohomology for the induced holo-
morphic structure, and 〈 , 〉 denotes the Deligne pairing (see Section 2 below for
a review of Deligne’s isomorphism). Choosing a hermitian metric on TX, one can
define a holomorphic extension of analytic torsion as in [15], and this gives rise
to a natural Quillen logarithm LOGQ on the left hand side of (1), and an associated
generalization of the Quillen connection. On the other hand, we shall show in
Section 4 that the intersection connection of [16] can be integrated to an intersection
logarithm LOGint on the right hand side of (1). The first main result is the following
(see Section 5 below, especially Theorem 5.1 and Corollary 5.3):

Theorem 1.1. Deligne’s isomorphism (1) is compatible with LOGQ and LOGint, modulo
πiZ. That is,

LOGQ = LOGint ◦D mod πiZ (2)
Moreover, in families the Deligne isomorphism is flat with respect to the Quillen and
intersection connections.

The proof we give relies on our previous work. The idea is to deform the line bun-
dles to the universal family over the Betti moduli space MB(X) = Hom(π1(X, p),C×),
over which we have previously proven the compatibility of Deligne’s isomorphism
with holomorphic Quillen and intersection connections. In [16, Sec. 5.3], these
connections where shown to be flat over MB(X). Since the Quillen and intersection
logarithms are primitives for the logarithms, the logarithms must therefore coincide
up to a constant. The constant is fixed by evaluation on unitary characters, for which
Deligne’s isomorphism is an isometry. The ambiguity of sign in the isomorphism
(1) is responsible for taking the values in the equality in the theorem modulo πiZ,
instead of 2πiZ.

1.2. The Quillen-Cappell-Miller logarithm. In recent years, several authors have
developed complex valued analogues of analytic torsion for flat line bundles
[24, 9, 27]. In the holomorphic case, this is due to Cappell-Miller [12]. With the
notation above, the Cappell-Miller holomorphic torsion can be seen as a trivialization
of λ(L) ⊗C λ(Lc) that depends on the hermitian metric on TX and the connections
on the line bundles. Hence, it gives raise to a logarithm, which we temporarily call
the Cappell-Miller logarithm. In [12], the authors ask whether their torsion has
similar properties to the holomorphic torsion, as in the work of Bismut-Gillet-Soulé
and Gillet-Soulé. Our second main result is that this is indeed the case for Riemann
surfaces and line bundles. In fact, we prove the following (see Section 6 and
Theorem 6.12 below):
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Theorem 1.2. The Cappell-Miller logarithm and the Quillen logarithm coincide.

In light of the theorem, we may also call LOGQ the Quillen-Cappell-Miller logarithm.
The idea of the proof is again by deformation to the universal case over MB(X). We
prove that Cappell-Miller’s construction can be done in familes and that it provides
a holomorphic trivialization of the “universal” determinant of cohomology on MB(X).
The strategy is analogous to the observation in [6], according to which Bismut-
Freed’s construction of the determinant of cohomology and Quillen’s metric are
compatible with the holomorphic structure of the Knudsen-Mumford determinant
[25]. However, these authors work with hermitian vector bundles, and their
reasoning is particular to the theory of self-adjoint Laplace type operators. As our
operators are not self-adjoint, this argument does not directly apply. Nevertheless,
the operators we consider are still conjugate, à la Gromov, to a fixed self-adjoint
laplacian on a fixed domain. This presentation exhibits a holomorphic dependence
with respect to parameters in MB(X). In this context, Kato’s theory of analytic
perturbations of closed operators [23, Chap. VII] turns out to be well-suited, and
provides the necessary alternative arguments to those in [6]. Once this is completed,
we obtain two holomorphic logarithms on the universal determinant of cohomology
that agree on the unitary locus. By a standard argument this implies that they must
coincide everywhere. A posteriori, we remark that the analogue of the curvature
theorems of Bismut-Freed and Bismut-Gillet-Soulé for the Cappell-Miller torsion is
empty, since we prove the latter gives rise to a flat Quillen type connection in the
family situation. This makes our functorial approach essential in order to establish
nontrivial finer properties of the Cappell-Miller torsion.

1.3. The Arithmetic-Riemann-Roch theorem. The third aim of this paper is to use
the results above to initiate an Arakelov theory for flat line bundles on arithmetic
surfaces (Section 7). The quest for such a theory was made more conceivable by
Burgos’ cohomological approach to Arakelov geometry, which interprets Green
currents as objects in some truncated Deligne real cohomology [10]. This evolved
into the abstract formalism of Burgos-Kramer-Kühn [11], allowing one to introduce
integral Deligne cohomology instead. Despite these developments, to our knowl-
edge, the attempts so far have been unsuccessful. It turns out that the intersection
logarithm is the key in the construction of an arithmetic intersection pairing for
flat line bundles. At the archimedean places, the nature of our tools forces us to
work simultaneously with a Riemann surface and its conjugate, and pairs of flat
line bundles with opposite holonomies. We find an analogue of this apparatus
in the arithmetic setting which we call a conjugate pair L] of line bundles with
connections (see Definition 7.6). Through Deligne’s pairing and the intersection
logarithm, we attach to conjugate pairs L] and M] an object 〈L],M]

〉, which consists
of a line bundle over SpecOK together with the data of intersection logarithms
at the archimedean places. For such an object there is a variant of the arithmetic
degree in classical Arakelov geometry, denoted deg], which takes values in C/πiZ
instead of R. The construction also applies to mixed situations; for instance, to a
rigidified conjugate pair L] and a hermitian line bundle M. When the dualizing
sheaf ωX/S is equipped with a smooth hermitian metric, we can define λ(L])Q, the
determinant of cohomology of L] with the Quillen-Cappell-Miller logarithms at the
archimedean places. Using this formalism, we prove an arithmetic Riemann-Roch
type theorem for these enhanced line bundles (Theorem 7.12 below):
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Theorem 1.3 (Arithmetic Riemann-Roch). Let X → S = SpecOK be an arithmetic
surface with a section σ : S → X. Suppose the relative dualizing sheaf ωX/S is endowed
with a smooth hermitian metric. Let L] be a rigidified conjugate pair of line bundles with
connections. Endow the determinant of cohomology of L] with the Quillen-Cappell-Miller
logarithm. Then the following equality holds in C/πiZ.

12 deg] λ(L])Q − 2δ = 2(ωX/S, ωX/S) + 6(L],L]) − 6(L], ωX/S)

− (4g − 4)[K : Q]
(
ζ′(−1)
ζ(−1)

+
1
2

)
,

(3)

where δ =
∑
p np log(Np) is the “Artin conductor” measuring the bad reduction of

X→ SpecOK. If K does not admit any real embeddings then the equality lifts to C/2πiZ.

In the theorem it is possible to avoid the rigidification of L] along the section
σ, at the cost of taking values in C/πiZ[1/hK], where hK is the class number of K.
The particular choice of section is not relevant: none of the quantities computed by
the formula depends upon it. However, the existence of a section is needed for the
construction. A variant of the formalism (including an arithmetic Riemann-Roch
formula) consists in introducing conjugate pairs of arithmetic surfaces and line
bundles. This makes sense and can be useful when K is a CM field. The arithmetic
intersection numbers are then valued in C/2πiZ.

Contents

1. Introduction 1
1.1. Logarithms 2
1.2. The Quillen-Cappell-Miller logarithm 3
1.3. The Arithmetic-Riemann-Roch theorem 4
2. Deligne-Riemann-Roch and intersection connections 6
3. Logarithms and Deligne Pairings 8
3.1. Logarithms and connections on holomorphic line bundles 8
3.2. Construction of naive logarithms 11
3.3. The connection attached to a naive logarithm 14
3.4. Dependence of naive logarithms on liftings 17
4. The Intersection Logarithm 20
4.1. Intersection logarithms in conjugate families 20
4.2. Intersection logarithm in the universal case 23
4.3. Explicit construction for families 25
4.4. The mixed case over SpecC 27
5. Logarithm for the Determinant of Cohomology 27
5.1. The Quillen logarithm 27
5.2. The Deligne-Riemann-Roch isomorphism and logarithms 30
6. The Quillen logarithm and the Cappell-Miller torsion 32
7. Arithmetic Intersection Theory for Flat Line Bundles 39
7.1. Conjugate pairs of line bundles with logarithms on SpecOK 39
7.2. Conjugate pairs of line bundles with connections 40
7.3. Mixed arithmetic intersection products 42
7.4. Variants over R and C, argument and periods 43
7.5. Arithmetic Riemann-Roch theorem 45
References 47



6 FREIXAS I MONTPLET AND WENTWORTH

2. Deligne-Riemann-Roch and intersection connections

In this section we briefly review those results from our previous work [16] that are
relevant for the present article. Let π : X→ S be a smooth and proper morphism of
quasi-projective and smooth complex varieties, with connected fibers of dimension
1. Let L and M be two holomorphic line bundles on X. The Deligne pairing of L
and M is a holomorphic line bundle 〈L,M〉 on S, that can be presented in terms of
generators and relations. Locally on S (i.e. possibly after replacing S by an open
subset), the line bundle is trivialized by symbols 〈`,m〉, where div ` and div m are
disjoint, finite and étale1 over an open subset of S (for simplicity, we say that `
and m are in relative general position). Relations, inducing the glueing and cocycle
conditions, are given by

〈 f `,m〉 = Ndiv m/S( f )〈`,m〉,

whenever f is a meromorphic function such that both symbols are defined, as
well as a symmetric relation in the other “variable”. Here, Ndiv m/S( f ) denotes the
norm of f along the divisor of m. It is multiplicative with respect to addition of
divisors, and it is equal to the usual norm on functions for finite, flat divisors over
the base. The construction is consistent, thanks to the Weil reciprocity law: for two
meromorphic functions f and g whose divisors are in relative general position, we
have

Ndiv f/S(g) = Ndiv g/S( f ).
The Deligne pairing can be constructed both in the analytic and the algebraic
categories, and it is compatible with the analytification functor. This is why we
omit specifying the topology. The Deligne pairing is compatible with base change
and has natural functorial properties in L and M.

Let ∇ : L → L ⊗ Ω1
X/S be a relative holomorphic connection, and assume for

the time being that M has relative degree 0. We showed that there exists a C∞
X

connection ∇̃ : L→ L ⊗A1
X

, compatible with the holomorphic structure on L (this
is ∇̃0,1 = ∂L), such that the following rule determines a well defined compatible
connection on 〈L,M〉:

∇tr〈`,m〉 = 〈`,m〉 ⊗ trdiv m/S

 ∇̃``
 .

Notice that it makes sense to take the trace of the differential form ∇̃`/` along div m,
since the latter is finite étale over the base, and the divisors of the sections are
disjoint. The existence of ∇̃ is not obvious, since the rule just defined encodes a
nontrivial reciprocity law, that we call (WR):

trdiv f/S

 ∇̃``
 = trdiv `/S

(
d f
f

)
,

whenever f is a meromorphic function and the divisors of f and ` are in relative
general position. The construction of ∇̃ can be made to be compatible with base
change, and then it is unique up to Γ(X, π−1A1,0

S ). Furthermore, if σ : S → X is a

1Under the most general assumptions (l.c.i. flat morphisms between schemes), it only makes sense to
require flatness of the divisors. In our setting (smooth morphisms of smooth varieties over C), a Bertini
type argument shows we can take them to be étale [16, Lemma 2.8].
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section and L is trivialized along σ, one can isolate a particular extension ∇̃ that
restricts to the exterior differentiation on S along σ (through the trivialization of
L). Then the connection ∇tr can be extended to M of any relative degree, without
ambiguity. We call ∇̃ a (or the) canonical extension of ∇, and ∇tr a trace connection.

Trace connections are manifestly not symmetric, since they do not require any
connection on M. Let ∇̃′ : M→M ⊗A1

X
be a smooth compatible connection on M

and let ∇tr be a trace connection on 〈L,M〉. If the relative degree of M is not zero,
we tacitly assume that L is rigidified along a given section. The trace connection
∇tr can then be completed to a connection that “sees” ∇̃′:

∇int〈`,m〉
〈`,m〉

=
∇tr〈`,m〉
〈`,m〉

+
i

2π
π∗

 ∇̃′mm
∧ F

∇̃

 ,
where F

∇̃
is the curvature of the canonical extension ∇̃ on L. Assume now that ∇̃′

is a canonical extension of a relative holomorphic connection ∇′ : M→M ⊗Ω1
X/S.

Then the intersection connection is compatible with the obvious symmetry of the
Deligne pairing. These constructions carry over to the case when the relative
connections only have a smooth dependence on the horizontal directions, but
are still holomorphic on fibers. The intersection connection reduces to the trace
connection if ∇̃′ is the Chern connection of a smooth hermitian metric on M, flat
on fibers. Finally, the trace connection coincides with the Chern connection of the
metrized Deligne pairing in case ∇̃ is a Chern connection, flat on fibers, as well.

Let us denote λ(L) for the determinant of the cohomology of L, that is

λ(L) = det Rπ∗(L).

The determinant of Rπ∗(L) makes sense, since it is a perfect complex and so the
theory of Knudsen-Mumford [25] applies. It can be extended, multiplicatively,
to virtual objects, namely formal sums of line bundles with integer coefficients.
Deligne [13] proves the existence of an isomorphism

D : λ(L − O)⊗2 ∼
−−→ 〈L,L⊗X/S〉,

where ωX/S is the relative cotangent bundle of π. The isomorphism is compatible
with base change and is functorial in L. It is unique with this properties, up to
sign. It can be combined with Mumford’s canonical (up to sign) and functorial
isomorphism [28], which in the language of Deligne’s pairings reads

λ(O)⊗12 ∼
−−→ 〈ωX/S, ωX/S〉.

Hence, we have a canonical (up to sign) isomorphism

D′ : λ(L)⊗12 ∼
−−→ 〈ωX/S, ωX/S〉 ⊗ 〈L,L⊗X/S〉

⊗6,

which is again compatible with base change and functorial in L. The latter is also
usually called Deligne’s isomorphism.

When the line bundles L and ωX/S are endowed with smooth hermitian metrics,
all the line bundles on S involved in Deligne’s isomorphism inherit hermitian
metrics. On the Deligne pairings, the construction is the metrized counterpart of the
intersection connection definition, and it will not be recalled here. It amounts to the
?-product of Green currents introduced by Gillet-Soulé in arithmetic intersection
theory. The determinant of cohomology can be equipped with the so-called Quillen
metric, whose Chern connection is compatible with the Quillen connection of
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Bismut-Freed [2, 3]. The Deligne isomorphism is, up to an overall topological
constant, an isometry for these metrics. The value of the constant can be pinned
down, for instance by using the arithmetic Riemann-Roch theorem of Gillet-Soulé
[20]. We refer the reader to the survey articles of Soulé [31] and Bost [8], where all
these constructions and facts are summarized. Because the Deligne isomorphism is
an isometry in the metrized case, it is in particular parallel for the corresponding
Chern connections.

One of the aims of [16] is to elucidate to what extent Deligne’s isometry, and
more precisely its Chern connection version, carries over in the case of relative, flat,
compatible connections on L that are not necessarily unitary for some hermitian
structure. In [16, Sec. 5] (see especially Theorem 5.10 and Remark 5.11 therein)
we discuss and solve this question in the particular case of trivial fibrations. The
present article shows that this particular case actually implies the most general
one. More precisely, fix X a compact Riemann surface, a base point p ∈ X, and a
hermitian metric on ωX. As parameter space we take S = MB(X), the affine variety
of characters χ : π1(X, p) → C×. Let X = X ×MB(X), which is fibered over MB(X)
by the second projection. Over X, there is a universal line bundle with relative
connection, (L,∇), whose holonomy at a given χ ∈MB(X) is χ itself. We also need
to introduce the conjugate Riemann surface X (reverse the complex structure), with
same base point and same character variety MB(X). We put Xc = X ×MB(X). There
is a universal line bundle with relative connection (Lc,∇c), whose holonomy at a
given χ ∈MB(X) is now χ−1. Note that if χ is unitary, then Lc

χ is the holomorphic line
bundle on X conjugate to Lχ, but this is not the case for general χ. By using a variant
of the holomorphic analytic torsion introduced by Fay [15], later used by Hitchin
[22], we endowed the product of determinants of cohomologies, λ(L)⊗C λ(Lc), with
a holomorphic and flat connection on MB(X). We then showed that this Quillen
type connection corresponds to the tensor product of intersection connections on
the Deligne pairings, through the tensor product of Deligne’s isomorphisms for L
and Lc.

3. Logarithms and Deligne Pairings

3.1. Logarithms and connections on holomorphic line bundles. Let S be a con-
nected complex analytic manifold and L→ S a C∞S complex line bundle. To simplify
the presentation, the same notation will be used when L is understood to have
the structure of a holomorphic line bundle. Also, no notational distinction will be
made between a holomorphic line bundle and the associated invertible sheaf of OS
modules. Finally, denote by L× the Gm torsor (or principal bundle) given by the
complement of the zero section in the total space of L.

Here we introduce the notion of smooth logarithm for L. For a holomorphic
bundle there is also notion of holomorphic logarithm, and whenever we talk about
holomorphic logarithm it will be implicit that L has a holomorphic structure.
The discussion of logarithms and connections is given in terms of d log deRham
complexes. The reader will notice that this is an additive reformulation of the
notion of trivialization (see Remark 3.2 below).

Definition 3.1. A smooth (resp. holomorphic) logarithm for L is a map

LOG : L× −→ C/2πiZ
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satisfying: LOG(λ · e) = logλ + LOG(e), for λ ∈ Gm and e ∈ L×, and such that the
well-defined C×-valued function exp ◦LOG is smooth (resp. holomorphic) with
respect to the natural structure of smooth (resp. complex analytic) manifold on L×.

Remark 3.2. Clearly, a logarithm is a reformulation of the choice of a trivialization.
The reason for working with logarithms in this paper is to provide a simplification
of some formulas, a direct relationship with connections, as well as a context that
is well-suited for the arithmetic discussion later on. Indeed, in classical Arakelov
geometry the corresponding avatar of a smooth LOG is the ordinary logarithm of
a smooth hermitian metric, and more generally the notion of Green current for a
cycle.

A logarithm LOG can be reduced modulo πiZ. We will write LOG for the
reduction of LOG. By construction, the reduction of a logarithm modulo πiZ
factors through L×/{±1}:

L×

����

LOG // C/2πiZ

����
L×/{±1} LOG // C/πiZ .

Though perhaps not apparent at this moment, the necessity for this reduction will
appear at several points below (notably because of the sign ambiguity in Deligne’s
isomorphism).

Given a smooth (resp. holomorphic) logarithm LOG, we can locally lift it to a well
defined C-valued smooth (resp. holomorphic) function. Therefore, the differential
d LOG is a well-defined differential form on L×. A smooth LOG is holomorphic
exactly when d LOG is holomorphic. We can attach to a smooth logarithm a smooth
and flat connection ∇LOG on L, determined by the rule

∇LOGe
e

= e∗(d LOG), (4)

where e : S◦ ⊂ S → L× is a local frame. If L is holomorphic the connection is
compatible exactly when LOG is holomorphic, as we immediately see by taking the
(0, 1) part of (4) for e holomorphic. The existence of a smooth (resp. holomorphic)
LOG on L is related to the existence of a flat smooth (resp. holomorphic connection).

We will say that a connection ∇ on L is associated to a logarithm, if ∇ = ∇LOG
for some logarithm LOG on L. For the sake of clarity, it is worth elaborating on
this notion from a cohomological point of view. Let us focus on the holomorphic
case, which is the relevant one in the present work (the smooth case is dealt with
similarly). Introduce the holomorphic log-deRham complex:

Ω×S : O×S
d log
−−−−→ Ω1

S
d
−→ Ω2

S −→ · · ·

There is an exact sequence of sheaves of abelian groups

0 −→ τ≥1Ω
•

S −→ Ω×S −→ O×S −→ 1 ,

where Ω•S is the holomorphic deRham complex and τ≥i stands for the filtration bête
of a complex from degree i on. From the hypercohomology long exact sequence,
we derive a short exact sequence of groups

H0(S,Ω1
S) −→H1(S,Ω×S ) −→ Pic(S) .



10 FREIXAS I MONTPLET AND WENTWORTH

The middle group H1(S,Ω×S ) classifies isomorphism classes of holomorphic line
bundles on S with flat holomorphic connections. The vector space H0(S,Ω1

S) maps
to the holomorphic connections on the trivial line bundle. The map to Pic(S) is just
forgetting the connection. We will write by [L,∇] the class inH1(S,Ω×S ) of L with a
holomorphic connection ∇.

Proposition 3.3. There exists a holomorphic LOG for L if, and only if, there exists a
holomorphic connection ∇ on L with [L,∇] = 0. In this case, the connection ∇ is associated
to a LOG.

Proof. We compute the hypercohomology groupH1(S,Ω×S ) with a Čech resolution.
Let U = {Ui}i be an open covering of S by suitable open subsets, and such that L
admits a local holomorphic trivialization ei on Ui. Elements of H1(S,Ω×S ) can be
represented by couples ({ωi}, { fi j}) in

C0(U,Ω1
S) ⊕ C1(U,O×S ),

subject to the cocycle relation

dωi = 0, ωi − ω j = d log( fi j), fi j f jk fki = 1.

Coboundaries are of the form

ωi = d log( fi), fi j = fi/ f j.

Let LOG be a holomorphic logarithm on L. Then the attached flat connection ∇LOG
has trivial class. Indeed, we put

fi = exp LOG(ei), ωi =
∇LOGei

ei
= d log( fi).

Conversely, let ∇ be a holomorphic connection on L with vanishing class. We put

ωi =
∇ei

ei
, ei = fi je j.

The cocycle ({ωi}, { fi j}) is trivial. We can thus find units fi ∈ Γ(Ui,O×S ) with

ωi = d log( fi), fi j = fi/ f j.

Then, we can define a holomorphic logarithm LOG by imposing

LOG(ei) = log( fi) mod 2πiZ,

and extending trivially under the Gm action. For LOG to be well-defined, it is
enough to observe that on overlaps we have, by definition

LOG(ei) = log( fi j) + LOG(e j),

which is compatible with the Gm action. By construction, ∇ = ∇LOG. As a
complement, notice that if f̃i is another choice of functions, then necessarily f̃i = λi fi,
for some nonvanishing constant λi. Moreover, λi = λ j because of the condition
f̃i/ f̃ j = fi j = fi/ f j. Therefore, the change in LOG is just by a constant, as was to be
expected. �

Actually, the proof of the proposition also gives:

Corollary 3.4. A holomorphic connection ∇ on L is associated to a LOG if, and only if,
[L,∇] = 0. In this case, the associated LOG is unique up to a constant.
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3.2. Construction of naive logarithms. Let π : X → S be a smooth proper mor-
phism of smooth quasi-projective complex varieties with connected fibers of relative
dimension one. We assume given a fixed section σ : S→ X and L, M holomorphic
line bundles on X. We require L comes with a rigidification (i.e. a choice of
trivialization) along σ. We consider relative connections

∇
L
X/S : L→ L ⊗A1

X/S, ∇
M
X/S : M→M ⊗A1

X/S,

compatible with the holomorphic structures. Hence, the (0, 1) projection (∇L
X/S)(0,1) =

∂L,, the relative Dolbeault operator on L, and similarly for M. We suppose that
∇
L
X/S is flat, but make no assumption on ∇M

X/S for the time being. The connection on
L can be thought as a smooth family (with respect to S) of holomorphic connections
on L restricted to fibers. Below we use this data to construct a smooth logarithm
map on the Deligne pairing of L and M:

LOGna : 〈L,M〉× −→ C/2πiZ.

and we compute its associated connection. This logarithm is defined so as to give
a direct relationship with the intersection connection on 〈L,M〉. We anticipate,
however, some problems with this construction:

(i) it is only defined locally on contractible open subsets of S;
(ii) it depends on auxiliary data which prevents an extension to the whole of S;

(iii) while it depends on the connection ∇M
X/S, it nearly depends only on the

holomorphic structure of L on fibers (see Remark 3.6 below for the precise
meaning of this assertion) – in particular, it cannot be compatible with the
symmetry of Deligne pairings.

For these various reasons, we shall call it a naive logarithm.
Let νL : S→ H1

dR(X/S)/R1π∗(2πiZ) be the smooth classifying map of (L,∇L
X/S).

This map does not depend on the rigidification. Locally on contractible open subsets
S◦ of S, we can lift νL to a smooth section of H1

dR(X/S), that we write ν̃. We work over
a fixed S◦ and make a choice of lifting ν̃. We take the universal cover X̃→ X |S◦ . Let
`, m be meromorphic sections of L and M, whose divisors are finite and étale over
S◦ (finite, flat and unramified). Using the rigidification σ and ∇L

X/S and a local lifting

σ̃ to X̃, the section ` and can be uniquely lifted to X̃, as a meromorphic function
on fibers, transforming under some character under the action of the fundamental
group (the character depends on the fiber) and taking the value 1 along σ̃. We
denote this lift ˜̀. Precisely, if γ ∈ π1(Xs, σ(s)), the transformation of ˜̀ on X̃s with
respect to translation by γ is

˜̀(γz) = exp
(∫

γ
ν̃ |Xs

)
˜̀(z), z ∈ X̃s. (5)

Notice that the dependence of ˜̀ relative to the base S◦ is only C∞, because the
connections were only assumed to depend smoothly on the horizontal directions.
We declare

LOGna(〈`,m〉) = log( ˜̀(d̃iv m)) −
∫ d̃iv m

σ̃
ν̃ −

i
2π
π∗(
∇m
m
∧ ν̃) mod 2πiZ . (6)

The index na stands for naive. Let us clarify the construction:
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(i) The integrals are computed fiberwise. We notice that in the last term, there
is no need for a global extension of the connection ∇M

X/S.
(ii) ν̃ is to be understood as a differential form η(z, s) on X, which is harmonic

for fixed s and represents ν̃ fiberwise.2 There is an ambiguity in this
representative: it is only unique up to π−1A1

S◦ . This does not affect the
integrals, since they are computed on fibers. Therefore, we can choose to
rigidify η(z, s) by imposing it vanishes along the section σ.

(iii) the notation d̃iv m indicates a lift of div m to the universal cover. Hence, if on
a given fiber Xs we have div m =

∑
i niPi (finite sum), then d̃iv m =

∑
i niP̃i,

where the P̃i are choices of preimages of Pi in the universal cover X̃s. With
this understood, the first two terms in the definition of LOGna expand to∑

i

ni log( ˜̀(P̃i)) −
∑

i

ni

∫ P̃i

σ̃
ν̃.

The integration path from σ̃ to P̃i is taken in X̃s. This expression does not
depend on the choice of liftings σ̃ and P̃i, modulo 2πiZ. For instance, if P
and γP are points in X̃s differing by the action of γ ∈ π1(Xs, σ(s)), then

log( ˜̀(γP)) −
∫ γP

σ̃(s)
ν̃ =

∫
γ
ν̃ + log( ˜̀(P)) −

∫ P

σ̃(s)
ν̃ −

∫ γP

P
ν̃ mod 2πiZ

= log( ˜̀(P)) −
∫ P

σ̃(s)
ν̃ mod 2πiZ .

And if we change the lifting σ̃ to σ∗ = γσ̃, then the new lifting of ` is `∗ with

`∗(z) = exp
(
−

∫
γ
ν̃

)
˜̀(z),

and from this relation it follows the independence of the lift σ̃ modulo
2πiZ.

(iv) There are several facts that can be checked similarly to our previous work
[16, Sec. 3 and 4]. For instance, the compatibility to the relations defining
the Deligne pairing, most notably under the change f 7→ f m ( f a rational
function), follows from various reciprocity laws for differential forms, plus
the observation

π∗

(
d f
f
∧ ν̃

)
= ∂π∗(log | f |2 · ν̃) = 0.

Here we used that ν̃ as above is fiberwise ∂-closed (by harmonicity), and
also that ν̃ is a 1-form while π reduces types by (1, 1).

With this understood, we conclude that LOGna is a smooth logarithm for 〈L,M〉|S◦ .
Let us start exploring the dependence of the naive logarithm on the connections.

Lemma 3.5. Let θ be a differential 1-form on X|S◦ , holomorphic on fibers. Assume that
∇
M
X/S is either flat or the relative Chern connection of a smooth hermitian metric on M.

Then the definition of LOGna is invariant under the change ∇L
X/S 7→ ∇

L
X/S + θ.

2The construction of η requires the intermediate choice of a metric on TX |S◦ and the use of elliptic
theory applied to Kodaira laplacians, with smooth dependence on a parameter. The vertical projection
of η does not depend on the choice of metric. This is particular to the case of curves.
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Proof. Notice the change of connections translates into changing ν̃ by ν̃ + θ. For the
new connection, the lift ˜̀′ compares to ˜̀ by

˜̀′(z) = exp
(∫ z

σ̃
θ

)
˜̀(z), z ∈ X̃s.

Therefore

log( ˜̀′(z)) −
∫ z

σ̃(s)
(ν̃ + θ) = log( ˜̀(z)) −

∫ z

σ̃(s)
ν̃ mod 2πiZ.

This settles the first two terms. For the last term in LOGna, we first suppose ∇M
X/S is

flat. Hence it is holomorphic on fibers, and we have∫
Xs

∇m
m
∧ (ν̃ + θ) =

∫
Xs

∇m
m
∧ ν̃,

for type reasons: both ∇m/m and θ are of type (1, 0) on fibers. If ∇M
X/S is the Chern

connection of a smooth hermitian metric ‖ · ‖ on M, then the last term actually
vanishes! Indeed,∫

Xs

∇m
m
∧ ν̃ =

∫
Xs

∂ log ‖m‖2 ∧ ν̃ =

∫
Xs

∂ log ‖m‖2 ∧ ν̃′′

=

∫
Xs

∂(log ‖m‖2 · ν̃′′) =

∫
Xs

d(log ‖m‖2 · ν̃′′)

= 0 .

We again used that the vertical representatives of ν̃ are harmonic and that the
singular differential form log ‖m‖2 · ν̃′′ has no residues on Xs. This concludes the
proof. �

Remark 3.6. The content of the lemma is that for these particular connections on
M, LOGna nearly depends only on the (relative) Chern connection on L. The only
subtle point is that for this to be entirely true, we would need the invariance of
LOGna under the additional transformation ν̃ 7→ ν̃ + θ, for θ a horizontal section
of R1π∗(2πiZ) |S◦ . This is however not the case! This issue will be addressed by
considering the conjugate family at the same time. The resulting logarithm will
then depend on the full connection ∇L

X/S.

Let us now focus on the case when M is endowed with a Chern connection.

Lemma 3.7. Assume ∇M
X/S is the relative Chern connection of a smooth hermitian metric

on M. Endow the line bundle M ⊗ O(−(degM)σ), of relative degree 0, with a relative flat
unitary connection. Finally, equip σ∗(L) with the holomorphic logarithm induced by the
rigidification σ∗(L) ∼−−→ OS. Then, the isomorphism of Deligne pairings

〈L,M〉 ∼−−→ 〈L,M ⊗ O(−(degM)σ)〉 ⊗ σ∗(L)⊗degM

is compatible with the respective logarithms. In particular, the naive logarithm on 〈L,M〉
does not depend on the particular choice of Chern connection ∇M

X/S.

Proof. For the Deligne pairing on the left hand side, as we already saw in the proof
of Lemma 3.5, we have

LOGna(〈`,m〉) = log( ˜̀(d̃iv m)) −
∫ d̃iv m

σ̃
ν̃,
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because ∇M
X/S is a Chern connection. Assume now that ` does not have a pole or a

zero along σ. Then, by the very construction of ˜̀, we have on the one hand

log( ˜̀(d̃iv m)) = log( ˜̀(d̃iv m − (degM)σ̃)) + (degM) log(σ∗`),

while on the other hand it is obvious that∫ d̃iv m

σ̃
ν̃ =

∫ d̃iv m−(degM)σ̃

σ̃
ν̃.

The lemma follows from these observations. �

3.3. The connection attached to a naive logarithm. We maintain the notations so
far. We wish to compute the connection associated to LOGna, this is d LOGna. This
requires differentiation of functions on S◦ of the form∫ d̃iv m

σ̃
ν̃, π∗

(
∇m
m
∧ ν̃

)
.

For instance, in the first integral we have to deal with the horizontal variation of
both d̃iv m and ν̃ (we are allowed to suppose that d̃iv m is given by sections, after
possibly changing S◦ by some open cover). The path of integration, in fibers, from
σ̃ to d̃iv m can be seen as a smooth family of currents on fibers. We need to explain
how to differentiate these. For lack of an appropriate reference, we elaborate on
this question below.

3.3.1. Families of currents on cohomology classes and differentiation. A family of currents
on S relative to a smooth and proper morphism π : X→ S, of degree d, is a section
of the sheaf of C∞S -modules π∗(Dd

X/S), where Dd
X/S is the (sheafified) C∞S -linear

topological dual of the sheaf An−d
X/S,0 of smooth relative differentials with compact

support. In other words, by definition, Dd
X/S is the subsheaf of the sheaf of currents

Dd
X

on X which are π−1C∞S -linear (compatibly with multiplication of currents by

smooth functions) and vanish on (Ap
X
∧π∗An−d−p

S )∩An−d
X,0 for 0 ≤ p < n− d (the index

0 indicates compact support). The space of sections of Dd
X/S(U) over an open U ⊂ X

is a closed subspace of Dd
X

(U). Because π is proper, we have a pairing

π∗(Dd
X/S) × π∗(An−d

X/S,0) −→ C∞S,0.

Write T• ∈ π∗(Dd
X/S)(U) for a smooth family of currents, viewed as an association

s 7→ Ts, where Ts is a current on Xs, smoothly depending on s ∈ U. This can be
rigorously formulated as follows. Let θ be a degree n − d differential form on a
given fiber Xs0 . Because π is submersive, it can be trivialized in a neighborhood
of s0. Let ϕ be a smooth function on S, with compact support in a neighborhood
of s0, and taking the value 1 in a neighborhood of s0. Using the trivialization of
π and the function ϕ, one extends θ to a compactly supported form θ̃ on X, with
support in a neighborhood of the fiber Xs0 . Then we put Ts0 (θ) = T•(θ̃)(s0). The
construction does not depend on any choices. Indeed, let θ̃ and θ̃′ be two such
extensions, depending on local trivializations and choices of compactly supported
functions ϕ and ϕ′ on S, as before. Then, one can write θ̃ = θ̃′ +

∑dim S
i=1 ρiωi, where

the ρi are smooth functions on S, vanishing at s0, and the ωi are smooth differential
forms on X with compact supports. But because T• is C∞S -linear, compatible with
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multiplication of currents by smooth functions, we have T•(ρiωi) = ρiT•(ωi), which
vanishes at s0 = 0. Thus, T•(θ̃)(s0) = T•(θ̃′)(s0). Furthermore, if s 7→ θs is a smooth
family of differential forms on fibers Xs, then s 7→ Ts(θs) is a smooth function. Both
points of view, the sheaf theoretic one and s 7→ Ts, are easily seen to be equivalent.
We will confuse them from now on.

A smooth family of currents can be differentiated with respect to the parameter
space S. It gives raise to a smooth family of currents with values in 1-differential
forms, given by a pairing

π∗(Dd
X/S) × π∗(An−d

X/S,0) −→ A1
S,0.

Locally on S, we can trivialize A1
S as a sheaf of C∞S -modules (by taking a basis of

smooth vector fields) and see such objects as vectors of smooth families of currents.
This is legitimate, since our relative currents are C∞S -linear, and any two (local) basis
of vector fields on S differ by a matrix of C∞S coefficients. We can now iterate this
procedure, and talk about families of currents with values in differential forms of
any degree, and differentiate them. The differential of a family of currents T• is
denoted dST•. One checks d2

S = 0.
Assume now that the morphism π is of relative dimension 1, as is the case in this

article. Then we can extend families of currents to relative cohomology classes. We
begin with T• a smooth family of currents of degree n− 1, with values in differential
forms of degree d. To simplifiy the notations, we assume T• is defined over the
whole S. Let θ be a smooth section of H1

dR(X/S). We define a differential form T•(θ)
on S, by using harmonic representatives: relative to a contractible S◦, we represent
θ by a smooth family of differential forms η(z, s) on fibers Xs, which are harmonic
for fixed s ∈ S◦. Then, on S◦ we put

T•(θ) |S◦= (T•) |S◦ (η) ∈ Ad
S(S0).

Here the construction is best understood in the interpretation s 7→ Ts of smooth
families of currents. Because the harmonic representative η is unique modulo
π−1A1

S◦ and T• is a relative current, the expression T•(θ) |S◦ is well defined and can
be globalized to the whole S. We write the resulting differential form T•(θ).

Let ∇GM : H1
dR(X/S)→ H1

dR(X/S) ⊗A1
S be the Gauss-Manin connection. With the

previous notation for T• and θ, we can also define T•(∇GMθ), by the following
prescription. On contractible S◦ we write

∇GMθ =
∑

i

θi ⊗ βi,

where the θi are flat sections of H1(X/S)
∣∣∣
S◦ , and the βi are smooth 1-forms on S◦.

Then, because T• is C∞S -linear, the expression

T•(∇GMθ) :=
∑

i

T•(θi) ∧ βi.

is independent of choices made. Hence, it is well-defined and extends to S.
With these conventions, the following differentiation rule is easily checked:

dS(T•(θ)) = (dST•)(θ) + (−1)dT•(∇GMθ). (7)

To do so, one computes the Gauss-Manin connection by locally trivializing the
family and applying Stokes’ theorem (this is the so-called Cartan-Lie formula [32,
Sec. 9.2.2]). Alternatively, the equation is an easy consequence of the construction
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of the canonical extension of a relative flat connection in [16, Sec. 4], in this case
applied to the relative connection determined by θ (an auxiliary local choice of a
section of π is needed). Notice that the rule is indeed compatible with the expected
property d2

S = 0 on families of currents, as we see by applying dS to (7) and recalling
that ∇2

GM = 0. The main examples of currents that will fit into this framework
are currents of integration against differential forms or families of paths, as in the
proposition below.

3.3.2. Differentiation of naive logarithms. The next statement provides an illustration of
differentiation of currents on cohomology classes in the context of naive logarithms.

Proposition 3.8. Let (L,∇L
X/S), (M,∇M

X/S), ν̃ be as above. Suppose given a global extension
∇
M : M→M ⊗A1

X/C of ∇M
X/S, compatible with the holomorphic structure. Then

d LOGna〈`,m〉 =
∇

int
〈L,M〉

〈`,m〉

〈`,m〉
−

i
2π
π∗(F∇M ∧ ν̃),

where F∇M is the curvature of ∇M.

Proof. We collect the following identities. First, since we suppose that ν̃ is rigidified,
i.e. vanishes, along σ, the differentiation law (7) gives

d
∫ d̃iv m

σ̃
ν̃ = trdiv m/S◦ (ν̃) +

∫ d̃iv m

σ̃
∇GMνL. (8)

This still holds even for nonrigidified ν̃. Similarly, we have

i
2π

dπ∗
(
∇m
m
∧ ν̃

)
=

i
2π
π∗(F∇M ∧ ν̃) − trdiv m/S◦ (ν̃) +

i
2π
π∗(
∇m
m
∧ ∇GMνL), (9)

where we used the Poincaré-Lelong equation of currents

i
2π

d
[
∇m
m

]
+ δdiv m =

i
2π

F∇M .

Now we observe that, in terms of the curvature of the canonical extension ∇L of
∇
L
X/S, we have

i
2π
π∗(
∇m
m
∧ ∇GMνL) = −

i
2π
π∗

(
∇m
m
∧ F∇L

)
. (10)

We recall the definition of the intersection connection:

∇
int
〈L,M〉

〈`,m〉

〈`,m〉
=

i
2π
π∗

(
∇m
m
∧ F∇L

)
+ trdiv m/S◦

(
∇
L`
`

)
(11)

and that by the very definition of the canonical extension ∇L

trdiv m/S◦

(
∇
L`
`

)
= trd̃iv m/S◦

(
d ˜̀
˜̀

)
−

∫ d̃iv m

σ̃
∇GMνL. (12)

Putting together equations (8)–(10), and taking into account the defining equations
(11)–(12), we conclude with the assertion of the theorem.

�
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Remark 3.9. Recall that the curvature of the intersection connection above in terms
of the curvatures of ∇L (the canonical extension of ∇L

X/S) and ∇M is given by

F〈L,M〉int = π∗(F∇L ∧ F∇M ).

This was proven in [16, Prop. 3.16]. This formula is consistent with:

d
∇

int
〈L,M〉

〈`,m〉

〈`,m〉
= d2 LOGna〈`,m〉 +

i
2π

dπ∗(F∇M ∧ ν̃)

= 0 −
i

2π
π∗ (F∇M ∧ ∇GMνL)

=
i

2π
π∗ (F∇L ∧ F∇M ) .

Observe the sign in the second line, according to (7).

3.4. Dependence of naive logarithms on liftings. Continuing with the notation of
Section 3.2, we now study the dependence of the construction of LOGna for Deligne
pairings 〈L,M〉 on the lifting ν̃ of νL. Let θ be a flat section of R1π∗(2πiZ) on the
contractible open subset S◦ of S. We think of θ as a smooth family of cohomology
classes with periods in 2πiZ. As usual, on fibers we will confuse the notation θ
with its harmonic representative. We wish to study the change of LOGna under the
transformation ν̃ 7→ ν̃ + θ. A first remark is that given a meromorphic section ` of
L, the lifting ˜̀ does not depend on the choice of θ. Therefore, we are led to study
the change of the expression∫ d̃iv m

σ̃
ν̃ +

i
2π
π∗

(
∇m
m
∧ ν̃

)
;

that is, the factor ∫ d̃iv m

σ̃
θ +

i
2π
π∗

(
∇m
m
∧ θ

)
. (13)

Observe that a change of representatives in σ̃ or d̃iv m does not affect this factor
modulo 2πiZ, because θ has periods in 2πiZ. Since the expression is a function
on S◦, we can reduce to the case when the base S is a point, and thus work over a
single Riemann surface X.

There is no general answer for the question posed above unless we make some
additional assumptions on ∇M. The first case to consider is when ∇M is the Chern
connection of a smooth hermitian metric on M. Then, we already saw during the
proof of Lemma 3.5 that∫

X

∇m
m
∧ ν̃ =

∫
X

d(log ‖m‖2ν̃) = 0.

We are then reduced to ∫ d̃iv m

σ̃
θ.

This quantity does not vanish in general. In this case, the lack of invariance under
the tranformation ν̃ 7→ ν̃ + θ will be addressed later in Section 4.1 by introducing
the conjugate datum.

The second relevant case is when ∇M is holomorphic. Let ϑ be a harmonic
differential form whose class in MdR(X) = H1(X,C)/H1(X, 2πiZ) corresponds to the
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connection ∇M. Then, the associated Chern connection corresponds to ϑ′′ − ϑ
′′

,
and we have the comparison

∇
M = ∇Mch + ϑ′ + ϑ

′′

. (14)

Also, because θ has purely imaginary periods, we have a decomposition

θ = θ′′ − θ
′′

. (15)

These relations will be used in the proof of the following statement.

Proposition 3.10 (Refined Poincaré-Lelong equation). Assume ∇M is holomorphic
and choose a harmonic one form ϑ representing the class of ∇M in MdR(X). Let θ be a
harmonic one form with periods in 2πiZ. Then∫ d̃iv m

σ̃
θ +

i
2π

∫
X

∇m
m
∧ θ =

i
2π

∫
X
ϑ ∧ θ mod 2πiZ. (16)

Remark 3.11. Before giving the proof, let us observe that this relation is a refinement
of the Poincaré-Lelong equation applied to θ. Indeed, in a family situation,
we may differentiate (16) following the differentiation rules for currents (7) (the
indeterminacy of 2πiZ is locally constant and thus killed by differentiation). In a
family situation θ is necessarily flat for the Gauss-Manin connection: ∇GMθ = 0.
We obtain

trdiv m(θ) + π∗

(
d
[
∇m
m

]
∧ θ

)
=

i
2π
π∗(F∇M ∧ θ).

This is a relative version of the Poincaré-Lelong equation applied to θ!

Proof of Proposition 3.10. The statement is the conjunction of various reciprocity
laws. They involve the boundary of a fundamental domain delimited by (liftings
of) simple curves αi and βi whose homology classes provide with a symplectic basis
of H1(X,Z), with intersection matrix(

0 +1g
−1g 0

)
.

We can take d̃iv m in the chosen fundamental domain based at σ̃, because we already
justified (13) does not depend on representatives. Applying the reciprocity formula
to θ′ and the meromorphic differential form ∇Mch m/m = ∂ log ‖m‖2 (where ‖ · ‖ stands
for a flat metric on M), we have∫ d̃iv m

σ̃
θ′ =

1
2πi

∑
j

∫
α j

θ′
∫
β j

∂ log ‖m‖2 −
∫
β j

θ′
∫
α j

∂ log ‖m‖2. (17)

Now we take into account that θ′ = −θ
′′

, and conjugate the previous expression to
obtain

−

∫ div m̃

σ̃
θ′′ =

1
2πi

∑
j

∫
α j

θ′′
∫
β j

∂ log ‖m‖2 −
∫
β j

θ′′
∫
α j

∂ log ‖m‖2.

But observe that for a closed curve γ disjoint from the divisor of m, we have by
Stokes’ theorem, ∫

γ
d log ‖m‖2 = 0,
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and therefore ∫
γ
∂ log ‖m‖2 = −

∫
γ
∂ log ‖m‖2.

We thus derive∫ d̃iv m

σ̃
θ′′ =

1
2πi

∑
j

∫
α j

θ′′
∫
β j

∂ log ‖m‖2 −
∫
β j

θ′′
∫
α j

∂ log ‖m‖2. (18)

Equations (17)–(18) together lead to∫ div m̃

σ̃
θ =

1
2πi

∑
j

∫
α j

θ

∫
β j

∂ log ‖m‖2 −
∫
β j

θ

∫
α j

∂ log ‖m‖2. (19)

But now, modulo 2πiZ, we have∫
γ
∂ log ‖m‖2 =

∫
γ
(ϑ′′ − ϑ

′′

). (20)

Because the periods of θ are in 2πiZ, eqs. (19)–(20) summarize to∫ d̃iv m

σ̃
θ =

1
2πi

∑
j

∫
α j

θ

∫
β j

(ϑ′′ − ϑ
′′

) −
∫
β j

θ

∫
α j

(ϑ′′ − ϑ
′′

)

modulo 2πiZ. The last combination of periods can be expressed in terms of
integration over the whole X, and we conclude:∫ d̃iv m

σ̃
θ =

1
2πi

∫
X
θ ∧ (ϑ′′ − ϑ

′′

). (21)

Let’s now treat the second integral:∫
X

∇m
m
∧ θ =

∫
X

∇chm
m
∧ θ +

∫
X

(ϑ′ + ϑ
′′

) ∧ θ.

The first integral on the right hand side vanishes:∫
X

∇chm
m
∧ θ =

∫
X

d(log ‖m‖2θ′′) = 0,

where we use that θ′′ is closed and that the differential form log ‖m‖2θ′′ has no
residues. Hence we arrive at

i
2π

∫
X

∇m
m
∧ θ =

i
2π

∫
X

(ϑ′ + ϑ
′′

) ∧ θ =
1

2πi

∫
X
θ ∧ (ϑ′ + ϑ

′′

). (22)

We sum (21) and (22) to obtain∫ d̃iv m

σ
θ +

i
2π

∫
X

∇m
m
∧ θ =

1
2πi

∫
X
θ ∧ ϑ

modulo 2πiZ, as was to be shown. �

Remark 3.12. The integral

i
2π

∫
X
ϑ ∧ θ mod 2πiZ

depends only on the class of ϑ modulo the lattice H1(X, 2πiZ), or equivalently on
the point [∇M] in MdR(X).
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4. The Intersection Logarithm

4.1. Intersection logarithms in conjugate families. As previously, X is a compact
Riemann surface and σ ∈ X a fixed base point. We regard X as a smooth projective
algebraic curve over C, and then we write X→ SpecC for the structure map. Let X
be the conjugate Riemann surface to X. As a differentiable manifold X coincides
with X, and in particular π1(X, σ) = π1(X, σ). The almost complex structures of X
and X are related by J = −J, and hence the orientations are opposite to each other.
We can also canonically realize X as the complex analytic manifold associated to
the base change of X→ SpecC by the conjugation C→ C.

Introduce (Lc,∇L,c) the canonically rigidified (at σ) holomorphic line bundle with
connection attached to the differential form −ν̃, regarded as a differential form on X.
Equivalently, if χ : π1(X, σ)→ C× is the holonomy character of ∇L, then (Lc,∇L,c)
is the flat holomorphic line bundle on X with holonomy character χ−1. We say
that (L,∇L) and (Lc,∇L,c) is a conjugate pair. We emphasize that this terminology
does not refer to the complex structure. As rank 1 local systems, these bundles are
mutually complex conjugate exactly when the character χ is unitary.

For the connection ∇M, from now on we focus on two cases:

• ∇
M is a Chern connection (not necessarily flat). In this case, Mc denotes

the complex conjugate line bundle to M on X. We let ∇M,c be the conjugate
of the connection ∇M.

• ∇
M is flat. Then we assume that M is rigidified at σ. Then (Mc,∇M,c) is the

flat holomorphic line bundle on X, canonically rigidified at σ, with inverse
holonomy character to (M,∇M).

There is an intersection between these two situations: the flat unitary case. The
conventions defining (Mc,∇M,c) are consistent. By these we mean both are mutually
isomorphic: there is a unique isomorphism respecting the connections and rigidifi-
cations. In either case, we write LOGc

na for the corresponding naive logarithm for
〈Lc,Mc

〉.

Proposition 4.1. The sum of logarithms LOGna and LOGc
na, for 〈L,M〉 and 〈Lc,Mc

〉,
defines a logarithm for

〈L,M〉 ⊗C 〈L
c,Mc

〉,

that only depends on the point [∇L] in MdR(X), the rigidifications, and on ∇M. If ∇M is
flat, then the dependence on ∇M factors through MdR(X) as well.

Proof. Let θ be a harmonic 1-form with periods in 2πiZ. We consider the change
of LOGna and LOGc

na under the transformation ν̃ 7→ ν̃ + θ, and observe that they
compensate each other.

We start with the Chern connection case on M. Let m be a meromorphic section
of M. It defines a complex conjugate meromorphic section mc of Mc. On X = X, the
divisors div m and div mc are equal. We saw that the change in LOGna(〈`,m〉) under
ν̃ 7→ ν̃ + θ is reduced to ∫ d̃iv m

σ̃
θ.
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The change in LOGc
na(〈`′,mc

〉) will be∫ d̃iv mc

σ̃
(−θ).

But now, independently of the liftings d̃iv m and d̃iv mc in X̃ = X̃, we have∫ d̃iv m

σ̃
θ +

∫ d̃iv mc

σ̃
(−θ) = 0 mod 2πiZ.

More generally, we can change mc by a meromorphic function. For if f is meromor-
phic on X, we have ∫ d̃iv f

σ̃
θ = 0,

precisely by Proposition 3.10 applied to the trivial line bundle in place of M. Hence,
mc may be taken to be any meromorphic section of Mc. All in all, we see that
LOGna + LOGc

na is invariant under ν̃ 7→ ν̃ + θ.
Now for the flat connection case on M. We introduce a harmonic representative

ϑ of the class of ∇M in MdR(X). Then ∇M,c admits −ϑ as a harmonic representative
in MdR(X). After Proposition 3.10, for any meromorphic section m of M on X, we
have ∫ d̃iv m

σ̃
θ +

i
2π

∫
X

∇m
m
∧ θ =

1
2πi

∫
X
θ ∧ ϑ mod 2πiZ. (23)

And if mc is a meromorphic section of Mc on X, we analogously find∫ d̃iv mc

σ
(−θ) +

i
2π

∫
X

∇mc

mc ∧ θ =
1

2πi

∫
X

(−θ) ∧ (−ϑ) mod 2πiZ. (24)

We take into account that X has the opposite orientation to X, so that

1
2πi

∫
X

(−θ) ∧ (−ϑ) = −
1

2πi

∫
X
θ ∧ ϑ.

Hence, the change in the sum of logarithms is (23)+(24)=0. Notice from the formulas
defining the logarithms, that the dependence on∇M trivially factors through MdR(X).
The statement follows. �

Remark 4.2. From the definition of the naive logarithm, it is automatic that there is
no need to rigidify M. However, Mc is rigidified by construction.

Let us examine the variation of LOGna + LOGc
na in a family. Because the construc-

tion we did of logarithms is a pointwise one (they are functions), the proposition
extends to the family situation. We consider π : X→ S, a section σ, and its conjugate
family π : X → S with conjugate section σ. The conjugate family is obtained by
changing the holomorphic structure on X and S to the opposite one. This induces
the corresponding change of holomorphic structure and orientation on the fibers.
Let (L,∇L

X/S) and (M,∇M
X/S) be line bundles with relative compatible connections on

X. We suppose∇L
X/S is flat, and∇M

X/S is either flat or the Chern connection associated
to a smooth hermitian metric on M.

When both connections are flat, we have the smooth classifying sections νL and
νM of H1

dR(X/S)/R1π∗(2πiZ). We then assume that on X we have rigidified line
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bundles with relative flat connections (Lc,∇L,c
X/S

) and (Mc,∇M,c
X/S

), corresponding to
the smooth sections −νL and −νM of

H1
dR(X/S)/R1π∗(2πiZ) = H1

dR(X/S)/R1π∗(2πiZ)

(as differentiable manifolds). The existence is not always guaranteed, but below
we deal with relevant situations when it is. The local construction of Section 3.2
produces local naive logarithms LOGna and LOGc

na, by taking local liftings ν̃ and −ν̃
for νL and −νL, and using the canonical extensions of ∇M

X/S and ∇M,c
X/S. Proposition

4.1 ensures that the a priori locally defined combination LOGan + LOGc
an on the

smooth line bundle
〈L,M〉 ⊗C∞S 〈L

c,Mc
〉,

actually globalizes to a well defined logarithm, that we call intersection logarithm:

LOGint := LOGna + LOGc
na .

When ∇M
X/S is the relative Chern connection attached to a smooth hermitian

metric on M, we take Mc to be the conjugate line bundle M on X, with its conjugate
Chern connection ∇M,c

X/S. For L, as above we assume the existence of a rigidified
(Lc,∇L,c), with classifying map −νL. Again, by Proposition 4.1 the locally defined
LOGan + LOGc

an extends to a global logarithm that we also denote LOGint.
We summarize the main features of LOGint.

Proposition 4.3.
(i) When all connections are flat, the construction of LOGint does not depend on the

section σ and rigidifications.
(ii) In general, the smooth connection attached to LOGint is the tensor product of

intersection connections.

Proof. We begin with the case when both connections are flat. The first item can
be checked pointwise. Let us examine the terms in the definition of LOGna, LOGc

na
and LOGint. Suppose we fix another base point σ′ (and lifting σ̃′) and another
rigidification. Let ˜̀ and ˜̀′ be equivariant meromorphic functions with character
χ, lifting the same meromorphic section of L. Then, for some λ ∈ C×, we have
˜̀′ = λ ˜̀. Therefore, evaluating multiplicatively over a degree 0 divisor D (say in a
fundamental domain), we see that ˜̀′(D) = ˜̀(D). The same happens for Lc. Also, in
LOGna we have the change ∫ z

σ̃
ν̃ =

∫ σ̃′

σ̃
ν̃ +

∫ z

σ′
ν̃.

The evaluation at a divisor is defined to be additive. Therefore, for a divisor D we
find ∫ D

σ̃
ν̃ = (deg D)

∫ σ̃′

σ̃
ν̃ +

∫ D

σ̃′
ν̃.

We are concerned with the case D = d̃iv m, when deg D = 0. This shows the
independence of this term of the base point. The same argument applies to Lc.
Finally, there is nothing to say about the remaining terms in the definition of
LOGna and LOGc

na, since they only depend on the vertical connections ∇M and
∇
M,c (as we see pointwise) and ν̃, and hence do not depend on base points nor

rigidifications. The dependence on the choice of ν̃ modulo R1π∗(2πiZ) was already
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addressed (Proposition 4.1). We conclude that LOGint does not depend on σ and
the rigidifications.

For the second item, it is enough to observe that

π∗(F∇M,c ∧ ν̃) = −π∗((−F∇M ) ∧ (−ν̃))

(opposite orientation on fibers) and apply Proposition 3.8. We obtain

d LOGint(〈`,m〉 ⊗ 〈`′,m′〉) =
∇

int
〈L,M〉

〈`,m〉

〈`,m〉
+
∇

int
〈Lc,Mc〉

〈`′,m′〉

〈`′,m′〉
.

Now we treat the second item when ∇M
X/S is a Chern connection. We need to justify

that
π∗(F∇M ∧ ν̃) + π∗(F∇M,c ∧ (−ν̃)) = 0.

Here, ∇M is the global Chern connection attached to the smooth hermitian metric
on M, and ∇M,c is the conjugate connection. Therefore, the relation between their
curvatures is F∇M = −F∇M,c . The claim follows as in the flat case, i.e. because the
fibers of π and of π have opposite orientation. �

Corollary 4.4. Given (L,∇L
X/S), (M,∇M

X/S),(Lc,∇L,c
X/S

), (Mc,∇M,c
X/S

) with flat connections
and no assumption on rigidifications, the smooth line bundle 〈L,M〉 ⊗C∞S 〈L

c,Mc
〉 has a

canonically defined smooth logarithm, LOGint, that coincides with the previous construction
in presence of a rigidification. Its attached connection is the tensor product of intersection
connections.

Proof. Locally over S, we can find sections and rigidify our line bundles. We
conclude by Proposition 4.3. �

Remark 4.5. In the flat case, and if S has dimension at least 1, the relation of LOGint
to the intersection connection shows that LOGint is compatible with the symmetry
of Deligne pairings, up to a constant. Of course this argument cannot be used
when S is reduced to a point. We will show below that LOGint is indeed symmetric
(Proposition 4.6).

4.2. Intersection logarithm in the universal case. An important geometric setting
when an intersection logarithm can be defined is the “universal" product situation.
A study of this case will lead below to the proof of the symmetry of intersection
logarithms.

Let (X, σ) be a pointed Riemann surface and MB(X) the Betti moduli space of
complex characters of π1(X, σ). Let (X, σ) be the conjugate Riemann surface, and
identify MB(X) with MB(X). We have relative curves X ×MB(X) → MB(X) and
similarly for X. There are universal rigidified holomorphic line bundles with
relative flat connections (Lχ,∇χ) and (Lc

χ,∇
c
χ), whose holonomy characters over a

given χ ∈MB(X) are χ and χ−1 respectively. Observe on the conjugate surface X the
character we use is not χ. This is important since we seek an intersection logarithm
that depends holomorphically on χ. We take the Deligne pairing

〈Lχ,Lχ〉 ⊗OMB (X) 〈L
c
χ,L

c
χ〉.

On the associated smooth line bundle, a slight modification of the construction of
LOGint produces a well defined logarithm, still denoted LOGint. The only difference
is that now we do not need to change the holomorphic structure on MB(X). It is
proven in [16, Sec. 5] that this LOGint is actually a holomorphic logarithm. More
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generally, we may work over S = MB(X) ×MB(X). On X × S and X × S we consider
the pairs of universal bundles (Lχ1 ,Mχ2 ) and (Lc

χ1
,Mc

χ2
). We also have a universal

intersection logarithm LOGint on

〈Lχ1 ,Mχ2〉 ⊗OS 〈L
c
χ1
,Mc

χ2
〉,

whose connection is the sum of intersection connections.
It proves useful to establish the symmetry of general intersection logarithms:

Proposition 4.6. The intersection logarithms for line bundles with relative flat connections
are symmetric, i.e. compatible with the symmetry of Deligne pairings.

Proof. This is a pointwise assertion. Deforming to MB(X), it is enough to deal
with the universal situation parametrized by S = MB(X) ×MB(X). Because the
intersection connection is symmetric, and S is connected, we see that the intersection
logarithm is symmetric up to a constant. Now it is enough to specialize to the pair
of trivial characters, when the intersection logarithm is indeed symmetric, by Weil’s
reciprocity law. This concludes the proof. �

Corollary 4.7. The intersection logarithm on the universal pairing

〈Lχ1 ,Mχ2〉 ⊗OS 〈L
c
χ1
,Mc

χ2
〉,

parametrized by MB(X) ×MB(X) is holomorphic.

Proof. The holomorphy along the diagonal χ1 = χ2 holds, since the intersection
connection is holomorphic there by [16, Sec. 5.3]. For the general case, we reduce
to the diagonal. First, the multiplication map (χ1, χ2) 7→ χ1χ2 is holomorphic, and
induces the identification

Lχ1χ2 = Lχ1 ⊗ Lχ2 ,

and similarly for Mχ1χ2 , etc. Second, we have the “polarization formula”,

〈L ⊗M,L ⊗M〉 = 〈L,L〉 ⊗ 〈L,M〉 ⊗ 〈M,L〉 ⊗ 〈M,M〉.

and the symmetry of intersection logarithms already proven. These observations
and the proposition are enough to conclude the result. �

A variant concerns the pairing of the universal bundles with a fixed hermitian
line bundle M on X, trivially extended to X ×MB(X).

Corollary 4.8. Let M be a line bundle on X, M its conjugate line bundle on X, and
suppose that they are both endowed with a Chern connection. Extend trivially these data to
X ×MB(X) and X ×MB(X) by pull-back through the first projection. Then the intersection
logarithm on

〈Lχ,M〉 ⊗ 〈L
c
χ,M〉,

parametrized by MB(X), is holomorphic and does not depend on the choices of Chern
connections.

Proof. By Lemma 3.7, we can suppose that (i) M is of relative degree 0 and rigidified
along σ and (ii) its Chern connection is flat. Similarly, we can assume its conjugate
line bundle comes with the conjugate connection. Therefore, there exists χ0 a
unitary character and an isomorphism of rigidified line bundles with connections

(Lχ0 ,∇χ0 ) ∼−−→ (M,∇M), (Lc
χ0
,∇c

χ0
) ∼−−→ (M,∇M).

We conclude by Corollary 4.7 restricted to χ2 = χ0. �
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4.3. Explicit construction for families. In view of arithmetic applications, it is
important to exhibit natural geometric situations when the setting of Section 4.1
indeed obtains. With the notations therein, the difficulty is the existence of the
invertible sheaf with connection (Lc,∇L,c

X/S
). Even when the existence is granted,

it would be useful to have at our disposal a general algebraic procedure to build
(Lc,∇L,c

X/S
) from (L,∇L

X/S). By algebraic procedure we mean a construction that can
be adapted to the schematic (for instance the arithmetic) setting.

Let X and S be quasi-projective, smooth, connected algebraic varieties over C.
We regard them as complex analytic manifolds. Let π : X → S be a smooth and
proper morphism of relative dimension 1, with connected fibers. Let L and M be
line bundles on X. We distinguish three kinds of relative flat connections on L

and M: real holonomies, imaginary holonomies, and the “mixed” case. When S is
reduced to a point, the mixed case is actually the general one. Furthermore, it is
then possible to give an explicit description of the intersection logarithm.

4.3.1. Real holonomies. Let L and M be invertible sheaves over X, that we see as
holomorphic sheaves. Let∇L

X/S : L→ L⊗A1
X/S and∇M

X/S : M→M⊗A1
X/S be relative

flat connections, compatible with the holomorphic structures. We suppose here
that the holonomies of ∇L

X/S and ∇M
X/S on fibers are real. On the conjugate variety X,

the conjugate line bundles L and M admit the complex conjugate connections to
∇
L
X/S and ∇M

X/S. Observe the families of holonomy representations do not change,
because of the real assumption. We thus see that

(Lc,∇L,c
X/S) = (L

∨

,−∇
L

X/S), (Mc,∇M,c
X/S) = (M

∨

,−∇
M

X/S).

The bar on the connections stands for complex conjugation.

Explicit description of the intersection logarithm when S = SpecC. When the
base scheme is a point, we write X, p, L, M, ∇L, ∇M instead of X, σ, L, M, ∇L

X/S,
∇
M
X/S. The first important remark is that since the connections ∇L and ∇M have real

holonomy characters χL and χM, they determine unique real harmonic differential
forms ν and ϑ. Namely, harmonic differential forms on the Riemann surface X,
invariant under the action of complex conjugation. The relation is

χL(γ) = exp
(∫

γ
ν

)
, χM(γ) = exp

(∫
γ
ϑ

)
, γ ∈ π1(X(C), p).

Because ν and ϑ are real, we can write them

ν = ν′ + ν′, ϑ = ϑ′ + ϑ
′

,

where ν′ and ϑ′ are holomorphic. In terms of these forms, we first provide the
action of the naive logarithms on standard sections. Let ` and m be rational sections
of L and M on X, with disjoint divisors. After a choice of rigidification of L, we lift
` to a meromorphic function on the universal cover X̃ (with its natural complex
structure), transforming like χL under the action of π1(X, p). Also, we lift div m to
d̃iv m. The naive logarithm for the complex structure on X is determined by

LOGna(〈`,m〉) = log( ˜̀(d̃iv m)) −
∫ d̃iv m

p̃
ν −

i
2π

∫
X

∇m
m
∧ ν.
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Recall that the first two terms together do not change under a transformation
ν 7→ ν + θ, for θ holomorphic. Using the relation with the Chern connections

∇L = ∇L,ch + 2ν′, ∇M = ∇M,ch + 2ϑ′,

we simplify the naive logarithm to

LOGna(〈`,m〉) = log( ˜̀ch(d̃iv m)) −
∫ d̃iv m

p̃
(ν′ − ν′) −

i
2π

∫
X
ϑ′ ∧ ν′.

We denoted ˜̀ch the lift of ` using the Chern connection ∇L,ch. Changing the
holomorphic structure (and hence reversing the orientation in the last integral), the
naive logarithm LOGc

na computed with the conjugate sections ` and m is

LOGc
na(〈`

∨

,m∨〉) = log( ˜̀ch(d̃iv m)) −
∫ d̃iv m

p̃
(ν′ − ν′) +

i
2π

∫
X
ϑ
′

∧ ν′.

All in all, we find

LOGint(〈`,m〉 ⊗ 〈`
∨

,m∨〉) = log | ˜̀ch(d̃iv m)|2 −
1
π

Im
(∫

X(C)
ϑ′ ∧ ν′

)
= log ‖〈`,m〉‖2 +

1
π

Im
(∫

X(C)
ϑ′ ∧ ν′

)
.

The norm on the Deligne pairing is the canonical one for pairings of degree 0 line
bundles. As predicted by Proposition 4.3, the formula does not depend on the
rigidification. Notice also this expression is real valued.

4.3.2. Unitary connections. We suppose the holomorphic line bundles L, M come
with relative flat unitary connections ∇L

X/S, ∇M
X/S. Their family holonomy represen-

tations are thus unitary. For the complex conjugate family, it is therefore enough to
take

(Lc,∇L,c
X/S) = (L,∇

L

X/S), (Mc,∇M,c
X/S) = (M,∇

M

X/S).

Contrary to the real case, we do not need to dualize the complex conjugate line
bundles.

In this case, the intersection logarithm LOGint amounts to the logarithm of a
smooth hermitian metric. If ` and m are rational sections of L, M, with finite, étale,
disjoint divisors over some Zariski open subset of S, then one easily sees

LOGint(〈`,m〉 ⊗ 〈`,m〉) = log ‖〈`,m〉‖2.

That is, the log of the square of the natural norm on the Deligne pairing.

4.3.3. Mixed case. Suppose that L is equipped with a flat relative connection
(compatible with the holomorphic structure), with real holonomies, and M with
a relative flat unitary connection. Then the tensor product of connections on
P = L ⊗M is no longer real nor unitary. Nevertheless, we can still define Pc and
∇
P,c
X/S on the conjugate family:

(Pc,∇P,c
X/S) = (L

∨

⊗M, (−∇
L

X/S) ⊗ ∇
M

X/S).

In this case, we postpone the explicit description of the intersection logarithm to
the next paragraph.
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4.4. The mixed case over SpecC. Suppose now that the base scheme S is a point.
Therefore, we are dealing with a single compact Riemann surface X. We fix a base
point p ∈ X. Let P be a line bundle over X with a connection

∇P : P −→ P ⊗Ω1
X/C.

Let χ be the holonomy representation of ∇P. The absolute value |χ| is the holonomy
representation of a line bundle L on X endowed with a holomorphic connection ∇L.
We set

M := P ⊗ L∨, ∇M = ∇P ⊗ (−∇L).
Then M is a line bundle with a flat unitary connection ∇M, and P = L ⊗ M,
∇P = ∇L ⊗ ∇M are as in the mixed case.

Explicit description of the intersection logarithm. Let L and M be line bundles
over X. Let ∇L and ∇M be arbitrary holomorphic connections on L and M. We wish
to describe the intersection logarithm. Taking into account the decomposition of L
and M in terms of real/unitary holonomy flat bundles as above, the new case to
study is when ∇L has real holonomy χL and ∇M is unitary (for the reverse case we
invoke the symmetry of the intersection logarithm, Proposition 4.6).

Let `,m be rational sections of L,M respectively, with disjoint divisors. After
trivializing L at p, we lift ` to a meromorphic function ˜̀ on the universal cover X̃,
transforming like χL under the action of π1(X, p). We lift div m to d̃iv m. The naive
logarithm for the natural complex structure on X is determined by

LOGna(〈`,m〉) = log( ˜̀(d̃iv m)) −
∫ d̃iv m

p̃
ν −

i
2π

∫
X

∇m
m
∧ ν

= log( ˜̀(d̃iv m)) −
∫ d̃iv m

p̃
ν.

(25)

We wrote ν for the real harmonic differential form determined by χL. The second
equality uses that ∇M is a Chern connection. There is a similar expression for the
naive logarithm LOGc

na. In the present case it takes the form

LOGc
na(〈`

∨

,m〉) = − log( ˜̀(d̃iv m)) −
∫ d̃iv m

p̃
(−ν). (26)

Adding (25) and (26) and simplifying, we find for the intersection logarithm

LOGint(〈`,m〉 ⊗ 〈`
∨

,m〉) = 2i arg( ˜̀(d̃iv m)). (27)

This quantity is purely imaginary. Again, it does not depend on the trivialization
of L, because div m is a degree 0 divisor. The discussion is also valid if M has
arbitrary degree and is endowed with a hermitian metric. However, in this case the
intersection logarithm depends on the rigidification of L.

5. Logarithm for the Determinant of Cohomology

5.1. The Quillen logarithm. In this section we proceed to define a logarithm which
is analog to the so-called Quillen metric, on the determinant of the cohomology of a
line bundle. Later on, in Section 6, we relate our construction to the holomorphic
Cappell-Miller torsion [12].
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Let (X, p) be a Riemann surface with a point. Fix a hermitian metric hTX on the
holomorphic tangent bundle TX. Take a complex character χ : π1(X, p)→ C× and
write Lχ for the canonically trivialized (at p) holomorphic line bundle with flat
connection, whose holonomy representation is χ. This depends on the base point p.
On the conjugate Riemann surface X we consider the flat holomorphic line bundle
Lc
χ attached to the character χ−1 of π1(X, p) = π1(X, p). Consider the product of

determinants of cohomology groups

det H•(X,Lχ) ⊗C det H•(X,Lc
χ).

We will construct a canonical determinant on this complex line, but before we
make several observations regarding these cohomology groups. To simplify the
discussion, we assume that Lχ is not trivial. Then

H0(X,Lχ) = H0(X,Lc
χ) = 0.

Their determinants are canonically isomorphic to C, that affords the usual log-
arithm on C× (modulo 2πiZ). Let us examine the H1’s. By Hodge theory and
uniformization, there is a canonical isomorphism

H1(X,Lχ) ∼−−→ H0,1(χ),

where H0,1(χ) denotes the space of antiholomorphic differential forms on the
universal cover X̃ (with the complex structure compatible with X), with character χ
under the action of π1(X, p) (anti-holomorphic Prym differentials). Similarly,

H1(X,Lc
χ) ∼−−→ H1,0(χ−1),

the space of holomorphic differential forms on X̃, with character χ−1 (holomorphic
Prym differentials). In this identification, we see anti-holomorphic differential forms

on X̃ as holomorphic differential forms on X̃. Given α ∈ H0,1(χ) and β ∈ H1,0(χ−1),
the differential form β ∧ α is a π1(X, p) invariant (1, 1) differential form on X̃. It thus
descends to a smooth (1, 1) form on X.

Let us now consider a nonvanishing tensor

η1(χ) ∧ . . . ∧ ηg−1(χ) ⊗ η1(χ−1) ∧ . . . ∧ ηg−1(χ−1)

in the product of determinants. Up to a small caveat, we would like to define

LOGL2 (η1(χ) ∧ . . . ∧ ηg−1(χ)⊗η1(χ−1) ∧ . . . ∧ ηg−1(χ−1)) =

log det
(

i
2π

∫
X
η j(χ−1) ∧ ηk(χ)

)
jk
∈ C/2πiZ.

By duality, we derive a L2 logarithm on the determinant of cohomology. Notice,
however, the determinant could vanish. We now follow terminology introduced by
Fay [15]. We define V0 ⊆MB(X) as the locus of characters χ with Lχ trivial. This is
equivalent to dim H0(X,Lχ) ≥ 1, and by the semi-continuity theorem of coherent
cohomology, shows that V0 is a closed analytic subset. It is actually nonsingular
of codimension g. We let V be the locus of characters in MB(X) \ V0 for which the
determinant vanishes. By Grauert’s theorem, on MB(X) \ V0 we can locally choose
cohomology bases that depend holomorphically on χ, so that V is a divisor in
MB(X) \ V0. Only for χ , V, the logarithm LOGL2 can be defined.
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We introduce another logarithm on the determinant of cohomology. We start
with χ < V0, χ < V. Then we put

LOGQ = LOGL2 − log T(χ),

where T(χ) is the complex valued analytic torsion introduced by Fay3, and spec-
trally described in [16, Sec. 5]. As a consequence of results by Fay [15, Thm. 1.3],
exp ◦LOGQ depends holomorphically on χ < V, and can be uniquely and holomor-
phically extended to MB(X) \ V0, with values in C (notice the possible vanishing!).
See also [16, Sec. 5] for an explicit expression of T(χ), that relates to the determinant
of the matrix of Prym differentials, from which the claim follows as well. Therefore,
contrary to LOGL2 , LOGQ can be extended to MB(X) \ V0. An alternative approach
to the spectral interpretation will follow later from Section 6, in the comparison of
LOGQ with the holomorphic Cappell-Miller torsion.

A final remark indicates the relation to the Quillen metric in the unitary case. If
χ < (V ∪ V0) is unitary, then we can chose the bases of Prym differentials so that

ηk(χ−1) = ηk(χ).

Also, T(χ) is the usual real valued analytic torsion in this case. We thus see that

LOGQ(η1(χ)∧ . . .∧ ηg−1(χ)⊗ η1(χ−1)∧ . . .∧ ηg−1(χ−1)) = log ‖η1(χ)∧ . . .∧ ηg−1(χ)‖2Q.

Hence, LOGQ is a natural extension of the (log of the) Quillen metric in this case!
The logarithm LOGQ will be called Quillen logarithm.

We will also need to deal with the case of the trivial line bundle. In this case, we
start by defining a logarithm on

det H0(X,OX) ⊗ det H0(X,OX) = C.

This is done by assigning to 1 the volume of the normalized Kähler form on X:
locally in a holomorphic coordinate z,

i
2π

hTX

(
∂
∂z
,
∂
∂z

)
dz ∧ dz.

For H1’s, as before Hodge theory provides canonical identifications

H1(X,OX) ∼−−→ H0,1(X) (anti-holomorphic differential forms on X)

H1(X,OX) ∼−−→ H1,0(X) (holomorphic differential forms on X).

Then, to a nonvanishing tensor like element

α1 ∧ . . . ∧ αg ⊗ β1 ∧ . . . ∧ βg ∈ det H1(X,OX) ⊗ det H1(X,OX),

we associate the number

log det
(

i
2π

∫
X
β j ∧ αk

)
∈ C/2πiZ.

In the determinant does not vanish. It is always possible to choose αk = βk, and
in this case the logarithm is univalued and takes values in R. The combination

3It is necessary to normalize Fay’s definition so that it coincides with the holomorphic analytic
torsion on unitary characters. The normalization requires the introduction of a constant, depending
only on the genus of X.
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of both logarithms is again denoted LOGL2 . If T(OX) is the analytic torsion of the
trivial hermitian line bundle on X, then we put

LOGQ = LOGL2 − log T(OX).

Because T(OX) is a strictly positive real number, we see that LOGQ actually amounts
to the (logarithm of the) Quillen metric.

5.2. The Deligne-Riemann-Roch isomorphism and logarithms. Let (X, p) be a
pointed compact Riemann surface with conjugate (X, p). Fix a hermitian metric hTX

on TX. It defines a hermitian metric on TX, and also on ωX and ωX. Let (L,∇) be a
holomorphic line bundle, rigidified at p, with a flat compatible connection. Let χ
be the associated holonomy character of π1(X, p). Hence we can identify L and Lχ,
and also build a conjugate pair (Lc,∇c) on X, corresponding to the character χ−1.
The notations employed here are customary, and unravel to

λ(L − OX) = det H•(X,L) ⊗ det H•(X,OX)−1, (28)

and similarly for λ(Lc
− OX). The left hand side of the Deligne isomorphism

carries the combination of Quillen logarithms detailed in the previous section. The
right hand side is endowed with the intersection logarithm, where ωX and ωX are
endowed with the Chern connections for the choice we made of hermitian metrics.
Observe that the logarithms on both sides depend on the rigidification of L at p
(used to identify L to Lχ). Indeed, this is the case for LOGL2 (although not of T(χ)),
and of the intersection logarithm of the pairing of (L,Lc) against (ωX, ωX).

Theorem 5.1. Assume χ ∈MB(X) \V0. Deligne’s isomorphism is compatible with LOGQ
and LOGint modulo πiZ, that is

LOGQ = LOGint ◦D.

Remark 5.2. The explanation for the reduction modulo πiZ is that Deligne’s
isomorphism is only canonical up to a sign. Hence, at most we are able to show
that the two logarithms correspond up to log(±1), which is zero modulo πiZ.

Proof of Theorem 5.1. We provide two arguments. Both exploit the universal product
fibrations X = X ×MB(X) → MB(X) = S and Xc = X ×MB(X) → MB(X) with the
universal line bundles Lχ and Lc

χ. There is a universal Deligne type isomorphism

Dχ : (λ(Lχ − OX) ⊗OS λ(Lc
χ − OXc ))⊗2 ∼

−−→ 〈Lχ,Lχ ⊗ ω
−1
X 〉 ⊗OS 〈L

c
χ,L

c
χ ⊗ ω

−1
X
〉.

The first argument refers to [16, Sec. 5], where we showed that over the connected
open subset MB(X) \ (V ∪ V0),

d LOGQ = d LOGint ◦Dχ.

This implies the equality LOGQ = LOGint ◦D holds, up to a constant κ, on MB(X) \
(V ∪ V0). By smoothness of the logarithms, the same is true over MB(X) \ V0. Now
we need only to check that the constant is zero modulo πiZ. For this, it is enough
to evaluate at a suitable χ and suitable sections. Let us take χ unitary, χ < (V ∪ V0).
Since unitary characters lie in the complement of V, and it is enough to take it to be
nontrivial. Then, Lc

χ is complex conjugate to Lχ. Let `, m be rational sections of Lχ
with disjoint divisors, that we see as holomorphic functions ˜̀, m̃ on the universal
cover X̃ with character χ under the action of Γ. The complex conjugate sections of `
and m are defined by conjugating ˜̀ and m̃, and we write ¯̀ and m̄. They can also
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be obtained algebraically from `, m by effecting the base change SpecC→ SpecC
induced by complex conjugation. Also, let θ be a meromorphic section of ωX, with
complex conjugate θ. We may assume the divisor of θ is disjoint from div ` ∪ div m.
Then, because the Deligne isomorphism commutes to base change, we have

〈`,m ⊗ θ−1
〉 ⊗ 〈`,m ⊗ θ

−1
〉

corresponds under D−1
χ to a nonvanishing tensor of the form

±(η1 ∧ . . . ∧ ηg−1 ⊗ η1 ∧ . . . ∧ ηg−1)⊗2
⊗ (α1 ∧ . . . ∧ αg ⊗ α1 ∧ . . . ∧ αg)⊗2.

But for these sections, we have on the one hand

LOGint(〈`,m ⊗ θ−1
〉 ⊗ 〈`,m ⊗ θ

−1
〉) = log ‖〈`,m ⊗ θ−1

〉‖
2

= log | ˜̀(div m̃ − d̃ivθ)|2,
(29)

and on the other hand

LOGQ(±(η1 ∧ . . . ∧ ηg−1 ⊗ η1 ∧ . . . ∧ ηg−1)⊗2
⊗ (α1 ∧ . . . ∧ αg ⊗ α1 ∧ . . . ∧ αg)⊗(−2))

= log(±1) + 2 log ‖η1 ∧ . . . ∧ ηg−1‖
2
Q − 2 log ‖α1 ∧ . . . ∧ αg‖

2
Q (30)

But now, log(±1) = 0 modulo πiZ and the Deligne isomorphism is an isometry
in the unitary case. Hence, the expressions (29) and (30) are equal modulo πiZ.
Therefore, the constant κ is zero modulo πiZ.

The second argument is similar, but replaces [16, Sec. 5] by the following self-
contained remarks. On the one hand, the intersection logarithm on the Deligne
pairings is holomorphic on MB(X), after Corollaries 4.7–4.8. On the other hand, the
Quillen logarithm is holomorphic on its domain MB(X) \ (V0 ∪ V), by construction.
Finally, both logarithms coincide on the unitary locus of MB(X) \ (V0 ∪ V), which is
a maximal totally real subvariety. Hence, by a standard argument (cf. [16, Lemma
5.12]) both holomorphic logarithms must coincide on the whole MB(X) \ (V0 ∪ V).
In either approach, the proof of the theorem is complete. �

Corollary 5.3. The Quillen logarithm LOGQ, initially defined on MB(X) \ (V0 ∪ V),
uniquely extends to the whole MB(X). The extension is compatible with Deligne’s isomor-
phism (modulo πiZ) and is holomorphic.

Proof. The extension of the Quillen logarithm, modulo πiZ, follows from the
theorem and the fact that the intersection logarithm is already defined on the whole
MB(X). At the same time, this logarithm is defined modulo 2πiZ on a dense open
subset. Both observations together imply that the Quillen logarithm can be extended
everywhere. For the holomorphy, by the very construction of LOGQ, it is satisfied
on a dense open subset of MB(X), and hence everywhere (for the extension). Indeed,
this amounts to the vanishing on the well defined smooth (0, 1)-form ∂LOGQ, and
it is enough to check the vanishing on a dense open subset.

�

It is important to notice that the theorem implies the compatibility of Deligne’s
isomorphism for general conjugate families moduloπiZ, as well as the compatibility
with the Quillen type connections and the intersection connections.
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Corollary 5.4. In the case of general Kähler fibrations4 and for a conjugate pair of data
π : X → S, (L,∇L

X/S), and π : X → S, (Lc,∇L,c
X/S

), with rigidifications along a given
section, the Deligne isomorphism

D : (det Rπ∗(L − OX) ⊗C∞S det Rπ∗(Lc
− O

X
))⊗2

∼
−−→ 〈L,L ⊗ ω−1

X/S〉 ⊗C∞S 〈L
c,Lc
⊗ ω−1

X/S
〉

(31)

transforms LOGQ into LOGint, modulo πiZ. As a consequence, the Deligne isomorphism
D is parallel with respect to the connections ∇Q on the left hand side of (31) and ∇int on the
right.

6. The Quillen logarithm and the Cappell-Miller torsion

In this section, we prove Theorem 6.12, to the effect that the construction of
the Quillen logarithm is equivalent to a variant of holomorphic analytic torsion,
proposed by Cappell-Miller [12]. Our observation is that the Cappell-Miller torsion
behaves holomorphically in holomorphic families of flat line bundles on a fixed
Riemann surface. In the proof, we make essential use of Kato’s theory of analytic
perturbations of linear closed operators [23, Chap. VII], which turns out to be
particularly well-suited for these purposes.

Let X be a fixed compact Riemann surface with a smooth hermitian metric on TX,
p a base point, and (X, p) the conjugate datum. Let MB(X) be the space of characters
of π1(X, p), and L, Lc the holomorphic universal bundles on X := X ×MB(X) and
Xc := X ×MB(X). Recall the fibers Lχ, Lc

χ at χ ∈MB(X), are canonically trivialized
at the base point and have holonomy representations χ and χ−1, respectively. There
are corresponding universal relative holomorphic connections. Write π and πc for
the projection maps onto MB(X).

Inspired by Quillen [26], Bismut-Freed [2, 3] and Bismut-Gillet-Soulé [4, 5, 6], we
present the determinant of cohomology λ(L) = det Rπ∗(L) as the determinant of a
truncated Dolbeault complex of finite dimensional holomorphic vector bundles. The
difference with the cited works is in the holomorphicity of these vector bundles.
One can similarly proceed for Lc.

Introduce the relative Dolbeault complex of L, considered as a smooth complex
line bundle with a ∂̄-operator. More precisely, this is the complex of sheaves of
C∞MB(X)-modules

DX/MB(X) = DX/MB(X)(L) : 0 −→ A0,0
X/MB(X)(L)

∂X
−→ A0,1

X/MB(X)(L) −→ 0.

We have decorated the relative Dolbeault operator ∂X with the index X to emphasize
the fact that we are in a product situation, and we are only differentiating in
the X direction. The cohomology sheaves of the complex π∗DX/MB(X) will be
written H

0,p

∂X
(L). After [6, Thm.3.5], there are canonical isomorphisms of sheaves of

C∞MB(X)-modules

ρp : Rpπ∗(L) ⊗ C∞MB(X)
∼
−−→ H

0,p

∂X
(L).

4For a Kähler fibration, here we mean a smooth family of curves π : X→ S with a choice of smooth
hermitian metric on ωX/S. This is not the standard definition in higher relative dimensions.
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By Proposition 3.10 of loc. cit., there is a natural holomorphic structure on H
0,p

∂X
(L),

defined in terms of both the relative and the global Dolbeault complexes of L. For
the sake of brevity, we refer to it as the holomorphic structure of Bismut-Gillet-Soulé.
They prove their structure coincides with the holomorphic structure on the coherent
sheaves Rpπ∗(L), through the isomorphism ρp. Finally, in [6, Lemma 3.8] it is shown
that π∗DX/MB(X) (E • in the notation of the cited paper) is a perfect complex in the
category of sheaves of C∞MB(X)-modules. As a result, to compute higher direct images
and the determinant of cohomology, we can equivalently work with the complex
π∗DX/MB(X) and the holomorphic structure of Bismut-Gillet-Soulé.

Associated to the relative connection on L and the hermitian metric on TX, there

are non-self-adjoint Laplace operators ∆0,p = (∂X + ∂
]

X)2 on π∗DX/MB(X). Fiberwise,
they restrict to the Laplace type operators of Cappell-Miller. We use the notation
∆

0,p
χ for the restriction to the fiber above χ, and similarly for other operators. Let us

explicitly describe them. Let X̃ be the universal cover of X, with fundamental group
Γ = π1(X, p) and the complex structure induced from X. The Dolbeault complex of
Lχ is isomorphic to the Dolbeault complex

A0,0(X̃, χ) ∂
−→ A0,1(X̃, χ),

where A0,p(X̃, χ) indicates the smooth differential χ-equivariant forms of type (0, p),
and ∂ is the standard Dolbeault operator on functions on X̃. In the identification,
we are implicitly appealing to the canonical trivialization of Lχ at the base point
p. The metric on TX induces a metric on TX̃ and a formal adjoint ∂

∗

, defined as

usual in terms of the Hodge ∗ operator. Let D0,p = (∂ + ∂
∗

)2. Then, the Dolbeault
complex ofLχ and ∆0,•

χ are identified to (A0,•(X̃, χ), ∂,D0,•). To make the holomorphic
dependence on χ explicit, we parametrize MB(X) by H1

dR(X,C), and further identify
cohomology classes with harmonic representatives. In particular, let ν be a harmonic
representative for χ. Define the invertible function

Gν(z) = exp
(∫ z

p̃
ν

)
.

We build the isomorphism of complexes

A0,0(X̃, χ) ∂ //

G−1
ν ·

��

A0,1(X̃, χ)

G−1
ν ·

��
A0,0(X̃)Γ ∂−ν′′ // A0,1(X̃)Γ.

Accordingly, the operators ∂
∗

and D0,p can be transported to the new complex,
through conjugation by Gν. We indicate with an index ν the new conjugated
operators, so that for instance ∂ν = ∂ − ν′′, and similarly for ∂

∗

ν and D0,p
ν . After all

these identifications, we see that ∂
]

χ will correspond to ∂
∗

ν and ∆
0,p
χ will correspond

to D0,p
ν .

Lemma 6.1.
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(i) The operators D0,p
ν form a holomorphic family of type (A) in the sense of Kato [23,

Chap. VII, Sec. 2]: i) they all share the same domain A0,p(X) and are closed with
respect to the L2 structure induced by the choice of hermitian metric on TX and ii)
they depend holomorphically in ν.

(ii) The operators D0,p
ν have compact resolvent, and spectrum bounded below and

contained in a “horizontal" parabola.

Proof. For the first item, we notice that the D0,p
ν are differential operators of order

2 and share the same principal symbol with D0,p, hence they are elliptic since the
latter is. This also implies that the D0,p

ν are closed as unbounded operators acting on
A0,p(X) and with respect to the L2 structure. We have thus checked the first condition
in Kato’s definition. For the holomorphicity, introduce a basis of holomorphic
differentials {ωi} of X and write

ν =
∑

i

(siωi + tiωi).

The holomorphic dependence on ν amounts to the holomorphic dependence on the
parameter si, t j, which is obvious from the construction of D(0,p)

ν by conjugation by
Gν: given θ ∈ A0,p(X), the differential form D(0,p)

ν θ is holomorphic in the parameters
si, ti. This establishes the second condition, so the first claim.

For the compact resolvent property, this is done in [15] (especially p. 111), where
Fay explicitly constructs the Green kernel for (∆0,p

χ − s(1 − s))−1 (see also the remark
below). The spectrum assertion is an observation of Cappell-Miller [12, Lemma
4.1]. �

Remark 6.2. Actually, for holomorphic families of type (A) in a parameter χ on a
domain, compactness of the resolvent for all χ follows from the compactness of the
resolvent at a given χ0 [23, Thm. 2.4]. Therefore, the compactness asserted by the
lemma is automatic from the classical compactness in the unitary and self-adjoint
case, for instance when ν = 0.

We now look at a given χ0 ∈ MB(X). Let b > 0 not in the spectrum of ∆
0,p
χ0

. By
the Lemma 6.1 and [23, Chap. VII, Thm. 1.7], there exists a neighborhood Uχ0 of
χ0 such that the same property still holds for ∆

0,p
χ , if χ ∈ Uχ0 . Hence, the set Ub of

those χ ∈MB(X) such that b is not the real part of any generalized eigenvalue of ∆
0,p
χ ,

forms an open set. Because b > 0, it is easy to see that this open set does not depend
on whether we work with ∆0,0

χ or ∆0,1
χ : it is the same for both. Such open subsets

Ub form an open cover of MB(X). We define V
0,p

b,χ ⊂ A0,p(Lχ) the subspace spanned

by generalized eigenfunctions of ∆
0,p
χ , of generalized eigenvalue λ with Re(λ) < b.

If c > b > 0 are not the real parts of the eigenvalues at some χ0, we can similarly
introduce V

0,p
(b,c),χ on Ub ∩Uc, by consideration of generalized eigenfunctions with

eigenvalues whose real part is in the open interval (b, c).

Proposition 6.3. For χ ∈ Ub (resp. Ub ∩Uc), the vector spaces V
0,p

b,χ (resp. V
0,p

(b,c),χ) define
a holomorphic vector bundle on Ub (resp. Ub ∩Uc) with locally finite ranks.

Proof. In view of Lemma 6.1, this is a reformulation of [23, Chap. VII, Thm. 1.7].
The proof of loc. cit. provides an illuminating construction by means of spectral
projectors. �
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We denote by
V

0,p
b = V

0,p
b (L) ⊂ π∗A

0,p
X/MB(X)(L)

∣∣∣
Ub

the holomorphic bundle on Ub thus defined. The differential on the Dolbeault
complex π∗DX/MB(X) induces a differential on V

0,p
b , and ∂X(V 0,0

b ) ⊂ V 0,1
b . Indeed, the

relative ∂ operator of L commutes with the operators ∆
0,p
χ . We introduce similar

notation for eigenspaces with real parts in (b, c).

Proposition 6.4.
(i) The inclusion of complexes

(V 0,•
b ⊗ C∞Ub

, ∂X) ↪→ π∗DX/MB(X)

∣∣∣
Ub

(32)

is a quasi-isomorphism. Therefore, the complex V 0,•
b ⊗ C∞Ub

computes H
0,p

∂X
(L)

restricted to Ub.
(ii) The cohomology sheaves of V 0,•

b have natural structures of coherent sheaves on Ub,
compatible with the holomorphic structures of Bismut-Gillet-Soulé on H

0,p

∂X
(L).

Therefore, the complex V 0,•
b computes Rπ∗(L) restricted to Ub.

(iii) The complex V 0,•
(b,c) is acyclic.

Proof. First, by [6, Lemma 3.8] we know that the relative Dolbeault complex is
perfect as a complex of C∞MB(X)-modules, and its cohomology is bounded and finitely
generated. Second, Cappell-Miller show that (32) is fiberwise a quasi-isomorphism
[12, top of p. 151]. Finally, the V 0,•

b ⊗C∞Ub
are vector bundles, hence projective objects

in the category of sheaves of C∞Ub
-modules. The three assertions together are enough

to conclude the first assertion.
That the cohomology of V 0,•

b is formed by coherent sheaves is immediate, being
the cohomology sheaves of a complex of finite rank holomorphic vector bundles.
For the compatibility of holomorphic structures, taking into account the construction
of Bismut-Gillet-Soulé, it is enough to observe the following. Assume θ is a local
holomorphic section of V

0,p
b . Hence, it depends holomorphically on χ and ∂Xθ = 0.

Because X = X ×MB(X) is a product, we can assume that θ is a global (0, p) form,
with ∂Xθ = 0 and depending holomorphically on χ. By the very construction
of the universal bundle L, this is tantamount to saying ∂Lθ = 0. Here ∂L is the
Dolbeault operator of L on X. But now ∂Lθ = 0 is exactly the condition defining
the holomorphic structure of Bismut-Gillet-Soulé [6, p. 346] in our case.

The last assertion is left as an easy exercise. �

Let us graphically summarize the proposition with a diagram:

Hp(V 0,•
b , ∂X) ⊗ C∞Ub

αp,b ∼

��

βp,b

vvn n n n n n n

Rpπ∗(L) ⊗ C∞Ub ρp

∼ // H
0,p

∂X
(L) |Ub .

(33)

The complex structures on H
0,p

∂X
(L)

∣∣∣
Ub

induced by ρp and αp,b are compatible by

the proposition, and hence βp,b is induced by an isomorphism of coherent sheaves.
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There are corresponding arrows between determinants of cohomologies, that we
indicate ρ, αb and βb. In particular, by an abuse of notation the isomorphism βb can
be identified with an isomorphism of holomorphic line bundles

βb : det(V 0,•
b ) ∼−−→ det Rπ∗(L) |Ub .

Here, we used the canonical isomorphism between the determinant of cohomology
of V 0,•

b and the determinant of its cohomology. A parallel digression applies to Lc,
and we use the index c for the corresponding objects. There is also a variant that
applies to L ⊗ ωX and Lc

⊗ ωX, where we incorporate the Chern connections on
ωX and ωX, with respect to the fixed hermitian metric. We leave the details to the
reader. We introduce the notations V

0,p
b (L ⊗ ωX), etc. when confusions can arise.

We now have a fundamental duality phenomenon.

Proposition 6.5. The operator ∂
]

X induces a homological complex of holomorphic vector
bundles on Ub

V 0,1
b (L)

∂
]

X

−−−−→ V 0,0
b (L).

This complex is OUb -isomorphic (i.e. holomorphically) to the cohomological complex

V 0,0
b ((Lc)∨ ⊗ ωX)

∂
]

X

−−−−→ V 0,1
b ((Lc)∨ ⊗ ωX).

Therefore, there is a canonical isomorphism of holomorphic line bundles

det(V 0,•
b )

βc
b

−−−−→ det Rπc
∗((L

c)∨ ⊗ ωX)∨.

Proof. The first assertion follows because ∂
]

X commutes with ∆0,p. The coincidence

V 0,1
b = V 0,0

b ((Lc)∨ ⊗ ωX)

as holomorphic vector bundles is easily seen. Notice the natural appearance of (Lc)∨,
which has same holonomy characters as L, but the opposite holomorphic structure
fiberwise. Observe that the base point and the trivialization of the universal
bundles at p is implicit in the identification. Moreover, there is an isomorphism
of holomorphic vector bundles given by the Hodge star operator followed by
conjugation, that following [12] we write ?̂:

?̂ : V 0,0
b (L) ∼−−→ V 1,0

b ((Lc)∨ ⊗ ωX).

Observe that ?̂ is complex linear, and this is necessary if we want to preserve
holomorphy. The compatibilities with the differentials are readily checked from the
definitions. This concludes the first assertion. For the second, we just need to stress
that the determinant of V 0,•

b as a cohomological complex is dual to the determinant
of V 0,•

b as a homological complex. �

Corollary 6.6.
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(i) There is a diagram of isomorphisms of holomorphic line bundles on Ub

det(V 0,•
b ) id //

βb

��

det(V 0,•
b )

βc
b

��
det Rπ∗(L) ∼ // det Rπc

∗((Lc)∨ ⊗ ωX)∨.

It induces a holomorphic trivialization τ(b) of det Rπ∗(L) ⊗ det Rπc
∗(Lc) on Ub.

(ii) Let c > b > 0. On Ub ∩Uc, the relation between τ(b) and τ(c) is given by

τ(b) = τ(c)
m∏

j=1

det ∆0,1
(b,c),

where ∆0,1
(b,c) is the endomorphism of the holomorphic vector bundle V 0,1

(b,c) defined

by the laplacians ∆0,1
χ , χ ∈ Ub ∩Uc.

Proof. The first item is a reformulation of the proposition, together with the canonical
Serre duality det Rπ∗((Lc)∨ ⊗ ωX) ' det Rπ∗(Lc). For the second item, it is enough
to check this equality pointwise and use that the determinant of a holomorphic
bundle endomorphism is a holomorphic function. The pointwise relation follows
from [12, Eq. (3.6)]. �

Remark 6.7. The holomorphic function det ∆0,1
(b,c) is to be thought as a trivialization

of the holomorphic line bundle detH•(V0,•
(b,c)).

For a given χ ∈ Ub and b > 0, let us denote Pb the spectral projector on generalized
eigenfunctions of ∆0,1

χ of eigenvalues with real part < b. We put Qb = 1 − Pb, and
define the spectral zeta function of Qb∆

0,1
χ , as usual to be the Mellin transform of

the heat operator e−tQb∆
0,1
χ . This depends on the auxiliary choice of an Agmon angle.

Let this function be ζb,χ(s). It is a meromorphic function on C, regular at s = 0. The
bases for these definitions and claims are due to Cappell-Miller, and rely on Seeley’s
methods [30]. Furthermore, the special value exp(ζ′b,χ(0)) does not depend on the
choice of Agmon angle.

Lemma 6.8. The expression exp(ζ′b,χ(0)) defines a holomorphic function in χ ∈ Ub.

Proof. We adapt the proof of the smoothness property for unitary χ, in the lines
of Bismut-Freed [2, Sec. g)]. Let us explain the main lines. The holomorphicity is
a local property, and hence we can restrict to a small neighborhood Ω of a fixed
χ0 ∈ Ub, where a uniform choice of Agmon angle is possible. We then address the
holomorphicity of ζ′b,χ(0) for χ ∈ Ω, for this uniform choice of Agmon angle.

First of all, the operators ∆0,1
χ define an endomorphism of the finite rank holomor-

phic vector bundle V
0,p

b on Ω. Hence, the operators e−tPb∆
0,1
b are obviously trace class

and
tr(e−tPb∆

0,1
χ )

is an entire function both in t and χ. Second, after possibly restricting Ω, we can lift
χ to harmonic representatives ν = ν(χ), depending holomorphically in χ, as in the
beginning of this section. Then the operators ∆0,1

χ are conjugate to the operators
D0,1
ν acting on A0,1(X), as in Lemma 6.1. These constitute a holomorphic family of
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differential operators of order 2. They differ from the fixed self-adjoint Dolbeault
laplacian D0,1

0 by differential operators of order 1. In particular, the theory of Seeley
[30] and Greiner [21, Sec. 1] applies. From the latter one sees there is an asymptotic
expansion as t→ 0

tr(e−tD0,1
ν ) =

N∑
k=0

t−1+k/2ak(ν) + o(t−1+N/2),

where the ak(ν) are holomorphic functions in ν, and the remainder is uniform in
ν (after possibly shrinking Ω). Hence, one concludes with a similar property for
tr(e−tQb∆

0,1
χ ). Finally, for the large time asymptotics, one can adapt the methods of

Seeley to show
tr(e−tQb∆

0,1
χ ) = O(e−tb),

with a uniform O term on Ω (after again possibly restricting). This makes use of the
resolvent kernel, as constructed by Seeley. These considerations, combined with
the explicit expression for ζ′b,χ(0) provided by [12, Thm. 11.1], prove the statement
of the lemma. �

Proposition 6.9. Let c > b > 0. We have an equality of holomorphic sections on Ub ∩Uc

τ(b) exp(−ζ′b(0)) = τ(c) exp(−ζ′c(0)).

Hence, such expressions can be glued into a single holomorphic trivialization τ
of det Rπ∗(L) ⊗ det Rπ∗(Lc) on MB(X).

Proof. The proof is direct after Corollary 6.6 and the very definition of the spectral
zeta functions. �

The proposition motivates the following terminology.

Definition 6.10. (i) The holomorphic trivialization τ of λ(L) ⊗ λ(Lc) defined by
Proposition 6.9 is called the holomorphic Cappell-Miller torsion.

(ii) The holomorphic logarithm LOG of λ(L) ⊗ λ(Lc) attached to the holomorphic
Cappell-Miller torsion is called the Cappell-Miller logarithm, and written
LOGCM.

Remark 6.11. By construction, at a given χ, the section τ coincides with the
construction of Cappell-Miller. To sum up, our task so far has been to establish that
the Cappell-Miller construction can be put into holomorphic families.

We can now state the main theorem of this section.

Theorem 6.12. The Quillen and the Cappell-Miller logarithms on λ(L)⊗C λ(Lc) coincide.

Proof. First of all, both logarithms are holomorphic. Second, by construction of
the Cappell-Miller torsion and the Quillen logarithm, both coincide on the unitary
locus of MB(X), which is a maximal totally real subvariety. Then by a standard
argument, they coincide on all of MB(X). �

Remark 6.13. (i) A consequence of the theorem, together with Theorem 5.1 and
Corollary 5.3, is that in dimension 1 and rank 1, the Cappell-Miller torsion
enjoys of analogous properties to the holomorphic analytic torsion of Bismut-
Gillet-Soulé, regarding the Riemann-Roch formula. This answers affirmatively
a question of these authors.

(ii) From now on, we will refer to LOGQ as the Quillen-Cappell-Miller logarithm.
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7. Arithmetic Intersection Theory for Flat Line Bundles

7.1. Conjugate pairs of line bundles with logarithms on SpecOK. Let K be a
number field with ring of integers OK. We write S = SpecOK. An invertible sheaf
(or line bundle) L over S can be equivalently seen as a projective OK module of rank
1. We will not make any distinction between both points of view, in order to ease
notations. This particularly concerns base change and tensor product.

Definition 7.1. A conjugate pair of line bundles with logarithms, or simply a conjugate
pair, on S consists in the following data:

(i) a pair of line bundles L and Lc over S;
(ii) for every embedding τ : K ↪→ C, a logarithm LOGτ on the one dimensional

complex vector space Lτ ⊗C L
c
τ
.

We introduce the notation L] for the data (L,Lc, {LOGτ}τ : K↪→C).

Given conjugate pairs L] and M], an isomorphism ϕ] : L] →M] is a pair (ϕ,ϕc)
of isomorphisms, ϕ : L → M and ϕc : Lc

→ Mc, such that for every τ : K ↪→ C,
ϕτ ⊗ ϕc

τ
preserves logarithms. There are standard constructions on conjugate pairs

with logarithms, notably tensor product and duality.

Definition 7.2. The groupoid of conjugate pairs of line bundles with logarithms,
denoted PIC](S), is defined by:
• objects: conjugate pairs of line bundles with logarithms;
• morphisms: isomorphisms of pairs of line bundles with logarithms.

It has the structure of a Picard category. The group of isomorphisms classes of
objects is denoted by Pic](S) and is called the arithmetic Picard group of conjugate
pairs of line bundles with logarithms.

Arithmetic degree. We proceed to construct an arithmetic degree map on Pic](S),

deg] : Pic](S) −→ C/πiZ.

We emphasize that the target group is notC/2πiZ, butC/πiZ. Let L] be a conjugate
pair. Given nonvanishing elements ` ∈ LK, `c

∈ Lc
K, the quantity∑

p

ordp(` ⊗ `c) log(Np) −
∑
τ:K↪→C

LOGτ(`τ ⊗ `c
τ)

taken in C/πiZ does not depend on the choices `, `c. Indeed, for λ, µ ∈ K×, the
following relations hold in C/πiZ:∑

p

ordp(λµ) log(Np) −
∑
τ:K↪→C

log(τ(λ)τ(µ)) =

− log

∏
p

|λ|p
∏
τ:K↪→C

τ(λ)

 − log

∏
p

|µ|p
∏
τ:K↪→C

τ(µ)


= − log(±1) − log(±1) = 0 .

(34)

We then conclude by the very definition of logarithm: modulo 2πiZ, and hence
modulo πiZ, LOGτ satisfies

LOGτ((λ`)τ ⊗ (µ`c)τ) = LOGτ(τ(λ)τ(µ)`τ ⊗ `c
τ) = log(τ(λ)τ(µ)) + LOGτ(`τ ⊗ `c

τ).

Remark 7.3. (i) When the field K cannot be embedded into R, the arithmetic
degree is well defined in C/2πiZ, and the argument in R/2πZ.
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(ii) In general, to obtain an arithmetic degree with values in C/2πiZ, one needs to
add to conjugate pairs a positivity condition at real places (or equivalently, an
orientation). However, our main goal is to prove an arithmetic Riemann-Roch
formula, which relies on the Deligne isomorphism through Theorem 5.1. As
we point out in Remark 5.2, this introduces a log(±1) ambiguity. This is why
we do not impose any positivity conditions in this article.

Example 7.4. Because a Z module of rank 1 admits a basis, which is unique up
to sign, one proves with ease that the arithmetic degree on Pic](SpecZ) is an
isomorphism:

deg] : Pic](SpecZ) ∼−−→ C/πiZ.

We will need the following functorialities for the Picard groups and the arithmetic
degree.

Proposition 7.5. Let F be a finite extension of K and put T = SpecOF. With respect to
the morphism π : T → S, the arithmetic Picard groups satisfy covariant and contravariant
functorialities:

(i) (Inverse images or pull-backs) Tensor product with OF induces a morphism

π∗ : Pic](S) −→ Pic](T).

(ii) (Direct images or push-forwards) The norm down to OK of a projective OF-module
induces a morphism

π∗ : Pic](S) −→ Pic](T).

The arithmetic degree on Pic](OK) factors through the push-forward to Pic](Z).
(iii) The composition π∗π∗ acts as multiplication by [F : K].

Proof. The proof is elementary. �

7.2. Conjugate pairs of line bundles with connections. For the rest of this section,
we fix a square root of −1, i =

√
−1 ∈ C. Let X→ S be an arithmetic surface. By this

we mean a regular, irreducible and flat projective scheme over S, with geometrically
connected generic fiber XK of dimension 1. We fix some conventions on complex
structures.

Conventions on complex structures.
(i) Given an embedding τ : K ↪→ C, we write Xτ for the base change of X to C

through τ. After the choice we made of
√
−1, the set of complex points Xτ(C)

has a complex structure and is thus a Riemann surface. We call this complex
structure the natural one. The other complex structure (corresponding to −i) is
called the reverse, opposite or conjugate one, and as usual we indicate this with a
bar: Xτ(C). With these notations, if τ is a complex, nonreal, embedding, then
Xτ(C) is canonically biholomorphic to Xτ(C).

(ii) If τ is a real embedding, we put Xτ(C) = Xτ(C) (although τ = τ!). For the
natural complex structure on Xτ(C) we then mean the reverse structure on
Xτ(C).

(iii) The same conventions will apply to holomorphic line bundles, and sections
of such, over X. For instance, if L is a line bundle over X and τ is a complex,
nonreal, embedding, the holomorphic line bundles Lτ on Xτ(C) and Lτ on
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Xτ(C) can be identified, after the identification of Xτ(C) with Xτ(C). If τ is real,
then the convention is that Lτ = Lτ on Xτ(C) = Xτ(C).

Definition 7.6. A conjugate pair of line bundles with connections on X consists in the
following data:

(i) two line bundles L,Lc on X;
(ii) holomorphic connections ∇τ on the holomorphic line bundles Lτ, with respect

to the natural complex structure on Xτ(C);
(iii) holomorphic connections ∇c

τ
on the holomorphic line bundles Lτ, with respect

to the natural complex structure on Xτ(C). Observe that by the previous
conventions, if τ is a real embedding, then ∇c

τ
is a holomorphic connection on

the holomorphic line bundle L
c
τ on Xτ(C).

(iv) we impose the following relation: if χτ is the holonomy character of π1(Xτ(C), ∗)
associated to (Lτ,∇τ), and χc

τ
is the character associated to (Lc

τ
,∇c

τ
), then

χc
τ

= χ−1
τ .

We introduce the notation L] = ((L,∇), (Lc,∇c)), with ∇ = {∇τ}τ, ∇c = {∇c
τ}τ.

Remark 7.7. In the definition we do not impose any relationship between χτ and
χτ, in contrast to classical Arakelov geometry. Moreover, we required χc

τ
= χ−1

τ , and
not χc

τ
= χτ. The latter condition only happens in the unitary case, which is the

range of application of classical Arakelov geometry.

There is an obvious notion of isomorphism of conjugate pairs of line bundles
with connections. There are also standard operations that can be performed, such
as tensor products and duals. Base change is possible as well, for instance by
unramified extensions of K (in order to preserve the regularity assumption for
arithmetic surfaces).

Definition 7.8. We denote by PIC](X) the groupoid of conjugate pairs of line
bundles with connections. It is a Picard category. The group of isomorphism classes
is denoted Pic](X) and is called the Picard group of conjugate pairs of line bundles with
connections.

Let us now suppose there is a section σ : S → X. A rigidification along σ of a
conjugate pair of line bundles with connections L], is a choice of isomorphisms
σ∗L ∼−−→ OS and σ∗Lc ∼

−−→ OS. The previous definitions have obvious counterparts in
this setting.

Definition 7.9. Given a section σ : S→ X, we denote by PICRIG](X, σ) the groupoid
of conjugate pairs of line bundles with connections, rigidified along σ.

Remark 7.10. (i) Observe that a rigidification of L] induces rigidifications of Lτ
at στ and Lc

τ
at στ, for τ : K ↪→ C.

(ii) A rigidification is unique up to O×K. Because the norm down toQ of a unit is ±1,
the arithmetic degree is not sensitive to the particular choice of rigidification.

(iii) The Hilbert class field H of K is the maximal unramified abelian extension of
K, and has the property that any invertible OK-module becomes trivial after
base change to OH. Therefore, after possibly extending the base field to H, a
rigidification always exists.
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Arithmetic intersection product. The Deligne pairing and the intersection loga-
rithm constructions allow to define a symmetric bilinear pairing

PIC](X) × PIC](X) −→ PIC](S).

The construction works as follows. Let L] and M] be conjugate pairs of line bundles
with connections. We consider the Deligne pairings 〈L,M〉, 〈Lc,Mc

〉. For every
complex embedding τ : K ↪→ C,

〈L,M〉τ ⊗C 〈L
c,Mc

〉τ = 〈Lτ,Mτ〉 ⊗C 〈L
c
τ,M

c
τ〉

carries an intersection logarithm LOGint,τ, build up from the connections defining
L], M] and intermediate choices of rigidifications (we proved the construction is
independent of these choices). We obtain this way a conjugate pair of line bundle
with logarithms on S, that we denote 〈L],M]

〉. The bilinearity of this pairing is
clear, and the symmetry is a consequence of Proposition 4.6. In terms of this pairing,
the arithmetic intersection product of L] and M] is obtained by taking the arithmetic
degree:

(L],M]) = deg]〈L],M]
〉 ∈ C/πiZ.

One of the aims of this section is to prove an arithmetic Riemann-Roch formula that
accounts for these arithmetic intersection numbers.

Argument of the Deligne pairing. Let L] and M] be conjugate pairs of line bundles
with connections. By the argument of the Deligne pairing of L] and M] we mean the
imaginary part of the intersection product:

arg]〈L],M]
〉 = Im(L],M]) ∈ R/πZ.

7.3. Mixed arithmetic intersection products. The classical arithmetic Picard group
in Arakelov geometry classifies smooth hermitian line bundles, and is denoted
P̂ic(X). There is an obvious groupoid version that we denote P̂IC(X). We constructed
intersection logarithms between conjugate pairs of rigidified line bundles with
connections and hermitian line bundles. With this, we can define a pairing

PICRIG](X) × P̂IC(X) −→ PIC](S)

simply as follows. Given a conjugate pair of line bundles with connections L],
rigidified along σ, and a hermitian line bundle M on X, we define the Deligne
pairing

〈L],M〉 = (〈L,M〉, 〈Lc,M〉, {LOGint,τ}τ).

We denoted LOGint,τ the intersection logarithm on the base change

〈L,M〉τ ⊗C 〈L
c,M〉τ = 〈Lτ,Mτ〉 ⊗C 〈L

c
τ,Mτ〉,

build up using the connections definingL] at τ, the rigidifications, and the hermitian
metric on M. In terms of this Deligne pairing, we define the mixed arithmetic
intersection product

(L],M) = deg]〈L],M〉 ∈ C/πiZ.
Because a rigidification is unique up to O×K, this quantity does not depend on the
particular choice of rigidification, but in general it depends on the section.
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Variant in the absence of rigidification. When a section σ is given, but we do not
have a rigidification, we may follow the observation made in Remark 7.10 and
base change to the Hilbert class field H. Observe the base change XOH is still an
arithmetic surface: because the Hilbert class field H is unramified, the regularity of
the scheme is preserved. Let us indicate base changed objects with a prime symbol.
Given L], the base change L]′ admits a rigidification, which is unique up to unit.
Then, the arithmetic intersection number

(L]′,M
′

) ∈ C/πiZ

is defined. Taking into account the functoriality properties of the arithmetic degree
(Proposition 7.5), it is more natural to normalize this quantity by [H : K], that is the
class number hK. We then write

(L],M) :=
1

hK
(L]′,M

′

) ∈ C/πiZ[1/hK].

In particular, when K = Q, or more generally when hK = 1, the mixed arithmetic
intersection number with values in C/πiZ is always defined, without any reference
to the rigidification (but always depending on the section).

7.4. Variants over R and C, argument and periods. While classical Arakelov
geometry over R or C cannot produce any interesting numerical invariants (only
zero), the present theory has a nontrivial content over these fields. Let us discuss the
case of the base field C. We saw we can still define Pic](SpecC), and an arithmetic
degree deg], now with values in iR/2πiZ. In the construction, one has to take into
account the identity and conjugation embeddings C→ C. We denote the imaginary
part of deg] by arg]:

arg] : Pic](SpecC) −→ R/2πZ.

Let X be a smooth, proper and geometrically irreducible curve over C. We can also
define PIC](X) and a Deligne pairing. The argument of the Deligne pairing is still
defined:

arg]〈L],M]
〉 ∈ R/2πZ.

Similarly there is a well-defined argument of the mixed arithmetic intersection
product, between PICRIG](X) and P̂IC(X).

Interpretation of the argument. Let X be a smooth, projective and irreducible
curve over C. To apply the formalism above, we stress C has to be considered
with its identity and conjugation embeddings. Let L be a line bundle on X and
L the conjugate line bundle on X. We suppose given holomorphic connections
∇L : L→ L ⊗Ω1

X/C and ∇L : L→ L ⊗Ω1
X/C

with real holonomy characters. We do not

impose any further condition. We choose Lc = L∨, and we endow Lc and L
c

with
the dual connections to ∇L, ∇L. This provides an example of conjugate pair of line
bundles with connections on X, that we write L]. Let M be a degree 0 line bundle
on X, that we endow with its unitary connection. On M we put the conjugate
connection. In this case we take Mc = M, with same connections. We proceed to
describe

arg]〈L],M]
〉 ∈ R/2πZ.
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We fix a base point p ∈ X and a trivialization of L. Let ` and m be rational sections of
L and M. Using the connection ∇L, we lift as usual ` to ˜̀, on the universal covering.

We also lift div m to d̃iv m. For the conjugate datum, we lift ` to ˜̀ and div m to d̃iv m.
We will appeal to the explicit description of the intersection logarithm in Section
4.4, in particular formula (27). Because we didn’t impose any relation between ∇L
and ∇L, we cannot conclude with

˜̀(d̃iv m) =
˜̀(d̃iv m).

In words, in general “conjugation does not commute with tilde”. There exists a
holomorphic differential form on X, that we present as θ

′

for some holomorphic
form θ′ on X, such that ∇L = ∇L + θ

′

. Because both connections are supposed to
have real holonomy characters, we see that

exp
(∫

γ
θ
′

)
= exp

(∫
γ
θ′

)
.

Hence, the harmonic differential form θ = θ′ − θ
′

has periods in 2πiZ. Such
differential forms are of course parametrized by H1(X, 2πiZ), which is a rank 2g
Z-module. In terms of θ

′

we have

˜̀(d̃iv m) =
˜̀(d̃iv m) exp

∫ d̃iv m

p̃
θ
′

 .
From this and equation (27), we conclude that

arg]〈L],M]
〉 = −2 Im

∫ d̃iv m

p̃
θ
′

 = Im

∫ d̃iv m

p̃
θ

 .
Because θ has periods in 2πiZ, this quantity does not depend on the choice of
lifting d̃iv m, modulo 2πZ. Moreover, modulo 2πZ it only depends on the rational
equivalence class of div m, namely M itself. And this is again because θ has periods
in 2πiZ. It is also independent of the base point, because M has degree 0. Finally,
the connection on M played no role. This is of course in agreement with the
properties of the intersection pairings. Therefore, given a degree 0 Weil divisor D
on X, we have a well defined argument

arg]〈L],O(D)〉 = Im
(∫ D

p̃
θ

)
∈ R/2πZ.

Let us write θL] for the harmonic differential form above. We thus have a pairing

arg] : PIC](X)re × Pic0(X)(C) −→ R/2πZ

(L],O(D)) 7−→ arg]〈L],O(D)〉 = Im
(∫ D

p̃
θL]

)
,

where the subscript re indicates we restrict to conjugate pairs with real holonomy
connections. The values of this pairing are imaginary parts of integer combinations
of periods!

There is a variant of this pairing when M = O(D) has arbitrary degree. In this
case one needs to equip L] with a rigidification. Because Lc = L∨, it is enough to fix
a rigidification for L. For the argument, one needs to fix a hermitian metric on M
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and use the mixed intersection pairing. The final formula looks exactly the same.
While the result will not depend on the metric on M, it depends on the base point
(since deg D , 0). If we had chosen unrelated rigidifications for L and Lc, the result
would have depended on these choices, as well.

Remark 7.11. There is no simple formula for the general case of an arbitrary
conjugate pair L].

7.5. Arithmetic Riemann-Roch theorem. Let π : X → SpecOK be an arithmetic
surface with a section σ : S → X. Let L] be a rigidified pair of conjugate line
bundles with connections. Recall the notation λ(L) for det Rπ∗(L). It is compatible
with base change. Following the construction of Section 5, for every τ there is a
Quillen-Cappell-Miller logarithm LOGQ,τ on

λ(Lτ) ⊗C λ(Lc
τ) = det H•(Xτ(C),Lτ) ⊗ det H•(Xτ(C),Lc

τ).

We introduce the conjugate pair of line bundles with logarithms on S

λ(L])Q = (λ(L), λ(Lc), {LOGQ,τ}τ).

Notice the construction of the Quillen-Cappell-Miller logarithm requires the rigidi-
fication, in order to identify Lτ to Lχτ and Lc

τ
to Lc

χτ .

Theorem 7.12. Let us endow the relative dualizing sheaf ωX/S with a smooth hermitian
metric. Let L] be a rigidified conjugate pair of line bundles with connections. There is an
equality in C/πiZ

12 deg] λ(L])Q − 2δ = 2(ωX/S, ωX/S) + 6(L],L]) − 6(L], ωX/S)

− (4g − 4)[K : Q]
(
ζ′(−1)
ζ(−1)

+
1
2

)
,

(35)

where δ =
∑
p np log(Np) is the “Artin conductor" measuring the bad reduction of

X→ SpecOK. If K does not admit any real embeddings, then the equality already holds in
C/2πiZ.

Remark 7.13. The mixed arithmetic intersection product (L], ωX/S) involves the
rigidification, and depends on it. This is in agreement with the dependence of the
Quillen logarithm on the rigidification. Nevertheless, it does not depend on the
choice of metric on ωX/S, by Lemma 3.7. Therefore, on the right hand side of the
formula, the dependence in the metric on ωX/S comes from (ωX/S, ωX/S).

Proof of Theorem 7.12. The theorem is derived as a combination of the following
statements:

(i) the Deligne isomorphism applied to X→ S, L, Lc and OX, and its compatibility
to base change under τ : K ↪→ C;

(ii) the arithmetic Riemann-Roch theorem of Gillet-Soulé [20] applied twice to OX

in Deligne’s functorial formulation [13, 31], which guarantees a quasi-isometry

λ(OX)⊗12
Q ⊗ O(−∆) ∼−−→ 〈ωX/S, ωX/S〉,

with norm exp((2g−2)(ζ′(−1)/ζ(−1) + 1/2)). The index Q stands for the Quillen
metric (for the trivial hermitian line bundle in this case), ∆ is the so-called
Deligne discriminant supported on finite primes, and O(∆) is endowed with
the trivial metric (then δ is the arithmetic degree of O(∆)). It is related to Artin’s
conductor through work of T. Saito [29];
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(iii) the fact that our definition of LOGQ for the trivial hermitian line bundle
amounts to the Quillen metric;

(iv) Theorem 5.1 applied to Xτ(C), Lχτ , L
c
χτ ;

(v) the use of the connections and rigidifications in order to identify Lτ to Lχτ and
Lc
τ

to Lc
χτ , plus the compatibility of Deligne’s isomorphism to isomorphisms of

line bundles.
This provides a statement in a finer form, at the level of PIC](S). We conclude by
applying the arithmetic degree deg]. For the last claim, it is enough to observe first
that the arithmetic intersection numbers are well defined in C/2πiZ, and that the
sign ambiguity in Deligne’s isomorphism disappears, since there is an even number
of different embeddings from K into C. �

Variant in the absence of rigidification. In practical situations, while a section σ of
π : X→ S may be given, a natural choice of rigidification may not. As we explained
in Remark 7.10 and in Section 7.3, this can be remedied by base changing to the
Hilbert class field of K. For instance, we justified that mixed intersection products
(L],M) are naturally defined in C/πiZ[1/hK]. For the determinant of cohomology
λ(L]) it is even simpler, since the rigidification is only needed in the construction
of the logarithms, which happen on the archimedean places. Clearly, λ(L]) can be
defined over OK if it is defined after base change to OH.

Corollary 7.14. Let X→ S be an arithmetic surface with σ : S→ X a given section. Fix
a hermitian metric on ωX/S. Let L] be a conjugate pair of line bundles with connections.
Then, the formula (35) holds with values in C/πiZ[1/hK], where hK is the class number of
K.

Proof. After Theorem 7.12, it is enough to base change to the Hilbert class field,
and use the functoriality of the arithmetic degree and the compatibility of the
determinant of cohomology with base change. �

Variant over SpecC. There is an interesting version of Theorem 7.12 when the base
scheme SpecC, when the argument is still well defined and with values in R/2πZ.
The formula dramatically simplifies:

Theorem 7.15 (Argument of arithmetic Riemann-Roch). When the base scheme is
SpecC, there is the following equality of arguments in R/2πZ:

12 arg] λ(L])Q = 6 arg]〈L],L]〉 − 6 arg]〈L], ωX/S〉.

Example 7.16. Let X be a compact Riemann surface with a fixed base point p. Let
L] be a conjugate pair of rigidified line bundles with connections. Assume the
connections have real holonomies, that Lc = L∨ and the rigidification is induced by
a trivialization of L alone. Because we are in the real holonomy case, the explicit
description of the intersection logarithm in Section 4.3.1 shows that arg]〈L],L]〉 = 0.
For the other intersection product, recall we saw in Section 7.4 that L] determines a
harmonic differential form θL] with periods in 2πiZ. Then, if ωX/C = O(K) for some
canonical divisor K, we have

arg]〈L], ωX/C〉 = Im
(∫ K

p̃
θL]

)
.
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Now the argument of the arithmetic Riemann-Roch theorem in this particular case
specializes to

12 arg] λ(L])Q = −6 Im
(∫ K

p̃
θL]

)
in R/2πZ.

This can be seen as an anomaly formula for the imaginary part of the Quillen-
Cappell-Miller logarithm, under a change of connection (within the real holonomy
assumption).
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