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The purpose of this note is two-fold. The �rst is to explain in a little more detail the
discussion of page 458 of [8], and in particular, how to derive the result in Corollary 1.1 from
Theorem 1.2 of that paper. The second is to compare this result with an earlier derivation of
the Deligne constant by Jay Jorgenson [6]. In [7, Remark 1.6], I incorrectly implied that the
two constants were slightly di�erent. In fact, they agree exactly. Moreover, once di�erences
in normalizations are taken into account, these results also agree with the prior work of
Gillet-Soulé [4]. I would like to thank Changwei Zhao, Jay Jorgenson, and Gerard Freixas i
Montplet for discussions of these issues.

1. Fay's constants

Let's begin with a precise summary of the constants appearing in the bosonization for-
mulas of [3], and especially Corollary 5.12 of that work. Let M be a closed Riemann surface
of genus g ≥ 1, and with a �xed symplectic homology basis Ai, Bi. We let {ωi}gi=1 denote
the normalized basis of abelian di�erentials:∫

Ai

ωj = δij ,

∫
Bi

ωj = Ωij ,

where (Ωij) is the period matrix. The associated Riemann divisor ∆ satis�es 2∆ = K,
where K is the canonical divisor of M . Set

λ(M) =
Det∗∆M

A(M) det Im Ω
(1)

where ∆M is the (positive) Laplace-Beltrami operator for a conformal metric on M , and
A(M) is its total area. For convenience of this exposition, I assume here that M has the
Arakelov metric. Let δ(M) denote Faltings' delta invariant. Then we have

δ(M) = cg − 6 log(λ(M) det Im Ω) (2)

for a constant cg depending only on the genus. In fact, in [7, Theorem 1.3] it was shown
that

cg = (1− g)c0 + gc1

c1 = −8 log(2π)

c0 = −24ζ ′(−1) + 1− 6 log(2π)− 2 log 2

(3)

where ζ(s) is the Riemann zeta function.
Below I summarize Fay's constants and their interrelationships.

(i) c0(M) : This is the constant �rst appearing in [3, Theorem 4.9] (see also (14)
below). In general, c0(M) depends on the choice of conformal metric, but here we
have �xed the Arakelov metric once and for all.
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(ii) c1(M) : This is related to the Faltings invariant by

c1(M) = eδ(M)/12(det Im Ω)1/2 (4)

(see [3, eq. (1.43)]).
(iii) δg : This appears in [3, Theorem 5.9] via the relation

c0(M) = δgc1(M) (5)

(iv) κg,n : This appears in [3, Theorem 5.8] and is related to the Mumford isometry
[3, eq. (5.21)']. The result states that κg,n is a constant depending only on the
genus and the tensor powere ∆⊗n of the Riemann divisor taken in the Mumford
isomorphism. By [3, eq. (5.22)],

κg,2 = 4π2c20(M)λ(M) . (6)

(v) εg,d : This constant �rst appears in [3, Theorem 5.11]. We record here the key
relation

κg,n = εg,n(g−1)δ
3(n−1)2
g . (7)

Warning! Please do not confuse Fay's functions c0(M) and c1(M) with the values c0 and c1
of the constants cg appearing in (3); nor should Fay's constant δg be confused with Faltings'
invariant δ(M).

It will be convenient to express c0(M) and c1(M) in terms of λ(M). First, using (2) and
(4), we get

c1(M) = ecg/12(λ(M))−1/2 (8)

Next, using (5), (6), (7), and (8), we have

c20(M) = δ2gc
2
1(M) = δ2ge

cg/6(λ(M))−1 = (2π)−2κg,2(λ(M))−1 = (2π)−2εg,2g−2δ
3
g(λ(M))−1 ;

or,

c0(M) =
1

2π
(εg,2g−2δ

3
g)

1/2(λ(M))1/2 (9)

2. The evaluation of Fay's constants

By (5) and (8),

εg,dc0(M) = εg,dδge
cg/12(λ(M))−1/2

With this change of constants, the bosonization formula in [3, Theorem 5.11] then becomse
the expression appearing in [8, eq. (1.1)].

Next, using [8, Theorem 1.2], we claim that

εg,d = (2π)g−1−d (10)

(see [8, Corollary 1.1]). This is veri�ed as follows: for a hermitian holomorphic line bundle
L → M with admissible metric, let T (L) denote the zeta-regularized determinant Det∗�L

of the Dolbeault laplacian for L (recall that we always assume M has the Arakelov metric).
Choose p ∈ M . For a �at line bundle χ → M , generic in the sense that h0(χ ⊗ ∆) =
h1(χ⊗∆) = 0, we have by [3, Theorem 5.11]:

T (χ⊗∆(p))

‖ω‖2
L2

=
εg,gc0(M)‖ϑ‖2(χ+ p− x)

‖ω‖2(x)
, (11)

where we have made a choice ω of nonzero holomorphic section of χ ⊗ ∆(p), and general
point x. Note that we regard χ as a point in the Jacobian, and we pass freely between
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additive and multiplicative notation for line bundles and their divisors. On the other hand,
by [8, Theorem 1.2],

T (χ⊗∆) = 2π‖ω‖2(p)T (χ⊗∆(p))

‖ω‖2
L2

(12)

Combine (11) and (12) to get

T (χ⊗∆) = 2πεg,gc0(M)
‖ω‖2(p)
‖ω‖2(x)

‖ϑ‖2(χ+ p− x) . (13)

The invariant c0(M) is de�ne in [3, eq. (4.37)] by the equation

T (χ⊗∆) = c0(M)‖ϑ‖2(χ) . (14)

Hence, if we let x → p in (13) we get 1 = 2πεg,g, or εg,g = (2π)−1. A similar argument
using [8, eq. (1.1)] and [8, Theorem 1.2] shows that εg,d+1 = (2π)−1εg,d for all d ≥ g, and
the claim follows.

Combining this with (9) implies

δg =
(2π)2

εg,2g−2
ecg/6 = (2π)g+1ecg/6 . (15)

This is the result that appears in [8, Corollary 1.1].

3. Deligne's constant

We begin with a preliminary result. The insertion formula [8, Theorem 1.1] for line
bundles L→M assumes that h1(L) = 0. We wish to extend this to the sequence

0 −→ K −→ K(q) −→ K(q)
∣∣
q
−→ 0

In the following, G(z, w) denotes the Arakelov-Green's function (see [2, p. 393]), and recall
from that paper the notion of admissible metric.

Proposition 3.1. Let 1q be a nonzero section of OM (q) vanishing at q, and use this to de�ne

an admissible metric ‖1q‖(z) = G(z, q). Let {ωi}gi=1 be normalized abelian di�erentials giving

a basis of H0(M,K), and set ω̂i = ωi⊗1q, so that {ω̂i}gi=1 is a basis for H0(M,K(q)). Then

with respect to the Arakelov metric on M and K and the tensor product metric on K(q), we
have

T (K(q))

det〈ω̂i, ω̂j〉
= 2π · λ(M) .

Proof. Let χ(s), s ∈ D ⊂ C, be a generic family of U(1) characters on π1(M), with χ(0) = 1,
and χ(s) 6= 1 for s 6= 0. We �rst choose an L2-orthonormal basis {νi}gi=1 of H0(M,K). As
in Fay [3], we may �nd independent meromorphic sections ηi(z, s) of χ(s)⊗K with at most
a simple pole at q, and such that ηi(z, 0) = νi(z), for all i = 1, . . . , g. With respect to a �xed
trivialization of χ(s) at q, let ri(s) be the residue of ηi(z, s) at q, r(s) = (r1(s), . . . , rg(s)).
Note that by the assumption on χ(s) we must have r(s) 6= 0 for s 6= 0. For generic choices
we may furthermore assume r′(0) 6= 0. Then there is a unitary martix A = A(0) such that
Ar′(0) = (r̃′1(0), 0, . . . , 0). Extend A(s) holomorphically so that A(s)r(s) = (r̃1(s), 0, . . . , 0),
and set η̃i(z, s) = Aij(s)ηj(z, s). In this way (we henceforth omit the tildes), we reduce to
the case where {ηi(z, s)}gi=1 is a basis of H0(M,χ(s) ⊗ K) for s 6= 0, and η1(z, s) has a
simple pole at q with residue r1(s), and r1(s) has a simple zero at s = 0.
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Let η̂i(z, s) = ηi(z, s)⊗ 1q. Then by [8, Theorem 1.2] we have for s 6= 0,

2π · ‖η̂1‖2(q, s)
T (χ(s)⊗K(q))

det〈η̂i, η̂j〉
=
T (χ(s)⊗K)

det〈ηi, ηj〉
(16)

By [3, Theorem 4.2],

T (χ(s)⊗K) =
4π2

A(M)
|r′1(0)|2s2T (K) +O(|s|3) (17)

On the other hand, in a local coordinate z centered at q we may write

η̂1(z, s) = r1(s)
dz

z
⊗ 1q(z) + regular

‖η̂1‖2(z, s) = |r1(s)|2‖dz‖2
G2(z, q)

|z|2
+O(|z|)

‖η̂1‖2(q, s) = |r1(s)|2 lim
z→0
‖dz‖2G

2(z, q)

|z|2
= |r′1(0)|2s2 +O(|s|3) (18)

because OM (q) has an admissible metric and M has the Arakelov metric. Using (17) on the
right hand side of (16), and (18) on the left, and taking the limit as s→ 0, we have

T (K(q))

det〈ν̂i, ν̂j〉
=

2π

A(M)

T (K)

det〈νi, νj〉
The result now follows by changing the basis {νi} to {ωi}. �

For the following, see [6, Theorem 1.2] (and note that there is a di�erent sign convention).

De�nition 3.2. Deligne's constant a(g) is de�ned by the expression

−a(g)

4
= log T (χ⊗∆) +

1

2
log λ(M)− log ‖ϑ‖2(χ)

where ∆ is the Riemann divisor and χ is chosen so that h0(χ⊗∆) = h1(χ⊗∆) = 0.

Using the insertion method of Faltings, we now derive

Proposition 3.3. The following equality holds for all g ≥ 1:

a(g) + cg + 4π(g + 1) log(2π) = 0 .

Proof. Choose generic points p1, . . . , pg, q, and let L = K(−p1−· · ·−pg+q). The genericity
condition is chosen so that h0(L) = h1(L) = 0. Notice that L = χ ⊗∆, where the divisor
of χ is ∆− p1 − · · · − pg + q. Choose a basis {ηi}gi=1 of H

0(K) so that ηi(pj) 6= 0 ⇔ i = j.
For k = 0, . . . , g − 1, and i > k let

η
(k)
i = ηi ⊗ 1q ⊗ 1−1p1 ⊗ · · · ⊗ 1−1pk .

Then {η(k)i }
g
i=k+1 is a basis for H0(K(q − p1 − · · · − pk), and η

(k+1)
i ⊗ 1pk+1

= η
(k)
i . Put

admissible metrics on the bundles K(q − p1 − · · · − pk). We have the exact sequence

0 −→ K(q − p1 − · · · − pk+1) −→ K(q − p1 − · · · − pk) −→ K(q − p1 − · · · − pk)
∣∣
pk+1
−→ 0

given by η
(k)
k+1. Hence, by [8, Theorem 1.2],

2π · ‖η(k)k+1‖
2(pk+1)

T (K(q − p1 − · · · − pk)
det〈η(k)i , η

(k)
j 〉

=
T (K(q − p1 − · · · − pk+1)

det〈η(k+1)
i , η

(k+1)
j 〉

.
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We also have

‖η(k)k+1‖
2(pk+1) =

‖ηk+1‖2G2(q, pk+1)∏
i≤kG

2(pi, pk+1)

Iterating this for k = 0, . . . , g − 1, we obtain

(2π)g
∏g
i=1 ‖ηi‖2(pi)G2(q, pi)∏
i<j G

2(pi, pj)

T (K(q)

det〈η(0)i , η
(0)
j 〉

= T (L)

Replacing the basis {ηi} with {ωi}, and using Proposition 3.1 and De�nition 3.2, we arrive
at

(2π)g+1‖detωi(pj)‖2G2(q, pi)∏
i<j G

2(pi, pj)
λ(M) = λ(M)−1/2e−a(g)/4‖ϑ‖2(p1 + · · ·+ pg − q −∆) .

Using the de�nition of the Faltings invariant [2, p. 402], this becomes

(2π)g+1λ(M)3/2ea(g)/4 = e−δ(M)/4(det Im Ω)−3/2 ,

and so

a(g) + 4(g + 1) log(2π) + δ(M) + 6 log(λ(M) det Im Ω) = 0 .

Now use the de�nition (2) of the constant cg. This completes the proof. �

Remark 3.4. This result also follows from the expressions in the previous section. Namely,
using De�nition 3.2 and (14), we have

−a(g)

4
= log c0(M) +

1

2
log λ(M)

= − log(2π) +
1

2
log(εg,2g−2δ

3
g) (by (9))

= − log(2π)− 1

2
(g − 1) log(2π) +

3

2
(g + 1) log(2π) +

cg
4

(by (10) and (15))

= (g + 1) log(2π) +
cg
4

a(g) = −4(g + 1) log(2π)− cg
The proof given on the previous page is, however, direct and only uses the insertion formula
and the expression for the Faltings invariant.

Finally, by Proposition 3.1 and the expression (3), we obtain

a(g) = (1− g)a(0)

a(0) = 24ζ ′(−1)− 1 + 2 log 2 + 2 log(2π)
(19)

This agrees with the result in [6, Theorems 3.13 and 6.3], where we again note the di�erence
in sign.

4. Comparison with the result of Gillet-Soulé

The �rst derivation of Deligne's constant is due to Gillet-Soulé [4] (see also [1] and [5]),
and their formulation of the constant gives the value:

ã(g) = (1− g)ã(0)

ã(0) = 24ζ ′(−1)− 1
(20)
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The goal of this section is to show that once normalizations are accounted for, the result for
a(g) in the previous section is consistent with the value of ã(g) above. To this end, we �rst
state a well-known result on the scaling of determinants.

Lemma 4.1. Let L → M be a hermitian holomorphic line bundle of degree d, and set

�̃L = c�L for some c > 0. Then

Det∗ �̃L = c
1
3
(1−g)+d/2−h0(L) Det∗�L .

Proof. The zeta functions for �̃L and �L are related by: ζ�̃L
(s) = c−sζ�L(s), and so

ζ ′
�̃L

(s) = −(log c)ζ ′
�̃L

(s) + c−sζ ′�L
(s) .

Hence,

log Det∗ �̃L := −ζ ′
�̃L

(0) = (log c)ζ�L(0) + log Det∗�L ,

and the result follows from the fact that

ζ�L(0) =
1

3
(1− g) +

d

2
− h0(L)

(see [3, eq. (2.38)]). �

There are three di�erences in the normalizations that go into the de�nitions of a(g) and
ã(g). The normalizations for a(g) are the ones used in [3], [7], and [8]. The normalizations
for ã(g) are used by Bismut-Gillet-Soulé (BGS). Here are the di�erences:

(i) BGS de�ne the Dolbeault laplacian as

�L,BGS = ∂̄∗L∂̄L = (1/2)�L .

Thus, if L has degree g − 1 with h1(L) = 0, then by Lemma 4.1,

Det�L,BGS = 2−
1
6
(g−1) Det�L ;

Det∗∆M,BGS = 2
1
3
(g−1)+1 Det∗∆M .

(21)

(ii) Following Deligne, BGS introduce a factor of 1/2π into the L2-norms. This changes

the normalization of the Quillen metric by a factor of (2π)−χ(L).
(iii) The metric we use on the canonical bundle is twice that of BGS. Hence, for example,

for the normalized abelian di�erentials,

i

2

∫
M
ωi ∧ ωj =

1

2

∫
M
〈ωi, ωj〉BGS dA

det Im Ω =
1

2g
det〈ωi, ωj〉BGS

Because of the changes in (ii) and (iii), we have by (21) that

λ(M)BGS = 2
1
3
(g−1)+1−g(2π)−(g−1)λ(M) = 2−

2
3
(g−1)(2π)−(g−1)λ(M) . (22)

Using De�nition 3.2, along with (21) and (22), we see that

ã(g)

4
=
a(g)

4
+

1

6
(g − 1) log 2 +

1

3
(g − 1) log 2 +

1

2
(g − 1) log(2π)

ã(g) = a(g)− 2(1− g) log 2− 2(1− g) log(2π) .

The claim then follows from the expressions in (19) and (20).
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