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Abstract. This paper presents a Meyer-Vietoris type gluing formula for a conformal
invariant of a Riemannian surface with boundary that is de�ned by the determinant of
the Dirichlet-to-Neumann operator. The formula is used to bound the asymptotics of
the invariant under degeneration. It is shown that the associated height function on the
moduli space of hyperbolic surfaces with geodesic boundary is proper only in genus zero.
Properness implies a compactness theorem for Steklov isospectral metrics in the case of
genus zero. The formula also provides asymptotics for the determinant of the Laplacian
with Dirichlet or Neumann boundary conditions. For the proof, we derive an extension of
Kirchho�'s weighted matrix tree theorem for graph Laplacians with an external potential.

1. Statement of results

Let (M, g) be a connected compact oriented Riemannian surface with nonempty boundary
of total length ℓ(∂M). The Dirichlet-to-Neumann operator DN(M) is a self-adjoint pseudo-
di�erential operator of order 1 in L2(∂M), which contains a great deal of information about
M . In fact, DN(M) essentially determines the conformal class of the metric g, and hence the
Riemann surface structure of M (see [21], and also [13]). The spectrum of DN(M) consists
of the Steklov eigenvalues, which have been studied by many authors. For a survey, see [10],
[11], or [4], and the references therein.

Because DN(M) is a self-adjoint elliptic operator of positive order, the formal product of
the Steklov eigenvalues can be de�ned via the zeta-regularized determinant Det∗(DN(M)),
according to the Ray-Singer procedure [23] (the asterisk indicates that the zero eigenvalue
has been omitted). Determinants of elliptic operators often package global information
through heat invariants in a way that re�ects the geometry more transparently than the
individual eigenvalues themselves. The determinant of the Dirichlet-to-Neumann operator
for planar domains was �rst considered by Edward and Wu [7], who showed that for a
simply connected bounded domain Ω ⊂ C with smooth boundary, Det∗(DN(Ω)) = ℓ(∂Ω),
the length of the boundary. More generally, in [12, Theorem 1.1], Guillarmou and Guillopé
proved that for any compact Riemannian surface M with boundary,

(1) I (M) :=
Det∗(DN(M))

ℓ(∂M)
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is a conformal invariant of the metric on M . Eq. (1) therefore de�nes a positive, real-valued
function of the underlying biholomorphic equivalence class of the Riemann surface structure.
We shall refer to I (M) as the DN-invariant of a Riemann surface M with boundary.

What kind of information does the DN-invariant provide about M? To give some idea, in
this paper we prove a Meyer-Vietoris type expression for I (M) similar to the gluing formulas
obtained in [3, 8, 31]. Using this we show that I (M) detects the existence of long thin
separating cylinders inM (or in terms of hyperbolic geometry, short geodesics), at least when
there are relatively few �isolated� components. This in turn leads to a compactness theorem
for families of genus zero hyperbolic surfaces with geodesic boundary and the same Steklov
eigenvalue spectrum. We make the observation that the invariant I (M) may be expressed
as a ratio of determinants of Laplace operators onM with Neumann and Dirichlet conditions
(see Proposition 2.2 below), whereas by doubling the surface we have an expression for the
product of these determinants. Therefore, combining the asymptotic properties arising from
the Meyer-Vietoris theorem in this paper with the results of Wolpert for closed hyperbolic
surfaces (see [32]), we obtain bounds on the asymptotic behavior of the determinant of the
Laplacian with Dirichlet and Neumann boundary conditions.

Let us brie�y explain the gluing formula. Suppose Γ ⊂ M is a disjoint collection of
oriented closed smoothly embedded curves γ : S1 ↪→ M not meeting ∂M . Let MΓ denote
the (possibly disconnected) surface with boundary obtained from M \ Γ by adjoining two
boundary components for every component of Γ. By I (MΓ) we mean the product of the DN-
invariants over the connected components of MΓ. Let N(M,Γ) denote the Neumann jump
operator on L2(Γ) (cf. [3]). This is simply the pairwise sum of the DN operators associated to
MΓ for each component in Γ. We emphasize that in de�ning N(M,Γ), Dirichlet conditions
are imposed on ∂M . Let NA(M,Γ) the jump operator on MΓ de�ned in [31] for the trivial
bundle with trivial framing and Alvarez boundary conditions on ∂M . More precisely, this
is de�ned for a general surface with boundary as follows. For complex valued functions φ,
let φ′, φ′′ denote the real and imaginary parts, respectively. Also, let ı : ∂M ↪→ M be the
inclusion and ∗ the Hodge operator of the metric induced on the boundary. Then we de�ne

(2) DNA(M)(f, g) := ((∗ı∗(∂̄φ))′, φ′ ◦ ı) ,

where (f, g) are real functions on ∂M , and φ is harmonic on M satisfying

(φ′′ ◦ ı, (∗ı∗(∂̄φ))′′) = (f, g) .

In the case of MΓ, the jump operator NA(M,Γ) on L2(Γ) is then the pairwise sum of
DNA(MΓ) operators as in the case of N(M,Γ). We emphasize that the harmonic extension
is such that φ′′ satis�es Dirichlet boundary conditions on ∂M , whereas φ′ satis�es Neumann
conditions. The operator NA(M,Γ) plays the role of the Neumann jump operator for mixed
Dirichlet-Robin type boundary conditions. A key di�erence, however, is that NA(M,Γ) is a
pseudo-di�erential operator of order zero. Its determinant is de�ned as in [9] with the aide
of an auxiliary pseudo-di�erential operator Q of order 1. For simplicity, in this paper we �x
a particular Q with ζQ(0) = 0 once and for all (cf. (12)). See [31] for more details.

Finally, associated to Γ is a simple graph GΓ whose vertices V (GΓ) are the connected
components {Mi} of M \ Γ and whose edges E(GΓ) are the intersections ∂Mi ∩ ∂Mj for
distinct i and j, which correspond to a union of possibly more than one component of Γ. The
metric g on M gives a weight function on GΓ; namely, a map ωg : E(GΓ) → R+ obtained by
setting ωg(ij) to be the sum total of the lengths of the components of Γ in ∂Mi ∩ ∂Mj . Let
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∆(GΓ,ωg) be the associated weighted graph Laplacian.1 We note in passing that this type
of graph Laplacian has previously appeared in the study of small eigenvalues of Laplace
operators on hyperbolic surfaces (see [24, 5, 2]). We now can state the main result.

Theorem 1.1. For any compact connected oriented Riemannian surface M with ∂M ̸= ∅,
and Γ ⊂ M as above, the following holds:

I (M) = I (MΓ)
(
det∗∆(GΓ,ωg)

) (2 ·Det∗QNA(M,Γ))

(DetN(M,Γ))2
.

In Section 3, we illustrate Theorem 1.1 with an explicit computation for the disk and annulus,
and we use the result to obtain asymptotic formulas in the case of multiply connected planar
domains (see Theorem 3.1).

As discussed in [29, 30, 31], gluing formulas of the type in Theorem 1.1 above are conve-
nient for computing the asymptotic behavior of determinants. In Section 4, we use this to
prove bounds on I (M) for degenerating hyperbolic surfaces. This is contained in Theorems
4.1 and 4.7 below. As a consequence, following [22] we de�ne the height function on the
moduli space of Riemann surfaces with boundary by

H (M) := − logI (M) .

Then we have the following

Theorem 1.2. Fix integers g ≥ 0 and n ≥ 1, where n ≥ 3 if g = 0. Let M(g; b1, . . . , bn)
denote the moduli space of hyperbolic surfaces of genus g and geodesic boundaries of lengths
b1, . . . , bn. Then H (M) is a proper function on M(g; b1, . . . , bn) if and only if g = 0.

The above is analogous to the result of Osgood-Phillips-Sarnak and Khuri on �at surfaces
for the height function associated to the Laplacian with Dirichlet boundary conditions [17].

It is conjectured that nonequivalent surfaces with the same Steklov spectrum are rare
(see [14]). Unfortunately, the height H (M) does not seem to provide much information on
this question in higher genus. In genus zero, however, as in [22] we can draw the following
consequence.

Corollary 1.3. Fix a surface M of genus zero with at least three boundary components. Let
F be a family of hyperbolic metrics on M with geodesic boundary that are mutually Steklov
isospectral. Then F is precompact in the C∞ topology.

A compactness theorem for Steklov isospectral simply connected planar domains has been
proven in [6] and [15].

We also obtain asymptotic results for determinants of Laplace operators on M . For a
hyperbolic surface M with nonempty geodesic boundary, let [Det∆D]M and [Det∗∆N ]M
denote the zeta-regularized determinants of the Laplace operators ∆D and ∆N on M with
Dirichlet and Neumann boundary conditions on ∂M , respectively. We set {κi} to be the
collection of all eigenvalues for both Dirichlet and Neumann problems on M that satisfy
0 < κi < 1/4. As a consequence of Theorem 4.1 and work of Wolpert on the asymptotic
behavior of the Selberg zeta function [32], in Corollary 5.1 below we give bounds on the
asymptotic behavior of [Det∆D]M and [Det∗∆N ]M . In particular, we have the following.

1Graph Laplacians will appear throughout the paper. Notation and the relevant results can be found in
Section 6, which is independent of the other sections of this paper.
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Corollary 1.4. Let HD(M) := − log[Det∆D]M denote the height function for the determi-
nant of the Laplacian with Dirichlet boundary conditions on ∂M . Then HD(M) is a proper
function on M(g; b1, . . . , bn).

We point out that this result was already shown by Young-Heon Kim. The estimate
obtained in this paper,

HD(M) ≥
∑
γ∈Γ

(
π2

3ℓ(γ)
+

3

2
log ℓ(γ)

)
+

1

2

∑
i

log(1/κi)− logC ,

is on the one hand sharper than that in [18, Thm. 3.3], and in particular it incorporates the
small eigenvalues (as suggested should be possible in [18, Rem. 3.3]). In the case of genus
zero, we also obtain a more precise statement, and an upper bound (see Corollary 5.1). On
the other hand, in Corollary 1.4 the boundary lengths are �xed whereas Kim's result does
not assume this. It may be possible to obtain the additional terms in [18, Thm. 3.3] that
account for varying boundary lengths using the methods here, but we have not pursued this.

Finally, in order to prove Theorem 1.2 we found it necessary to derive a general formula
for the determinant of a weighted graph Laplacian with a positive diagonal potential (see
Theorem 6.1). The result is an extension of Kirchho�'s weighted matrix tree theorem [19],
and thus it may be of independent interest.

2. The gluing formula

2.1. Preliminary remarks on determinants. Here we brie�y review some facts about
determinants of operators. For a strictly positive, self-adjoint, elliptic pseudodi�erential
operator A of positive order acting on a Hilbert space V of functions (or sections of a bundle)
on a compact manifold M , possibly with boundary and elliptic boundary conditions, the
complex power A−s is trace-class for Re s ≫ 0 (see [26, 25]). The trace ζA(s) = trA−s

has a meromorphic continuation to the plane and is regular at s = 0. The zeta-regularized
determinant of A is de�ned as:

(3) DetA := exp
(
−ζ ′A(0)

)
.

This is extended to operators with a kernel by de�ning Det∗A via the restriction of the
trace to (kerA)⊥.

Let A(ε) be a di�erential family of such (invertible) operators with

A = A(0) , B =
d

dε
A(ε)

∣∣
ε=0

,

and suppose A−1B is trace-class. Then

(4)
d

dε
logDetA(ε)

∣∣∣∣
ε=0

= tr(A−1B) .

Determinants of more general operators are de�ned in [20]. For example, if A has order
zero, then a determinant may be de�ned as follows (see [9] for details). De�ne

LogA :=
i

2π

∫
C
dz(log z)(z −A)−1 ,

where log is the principal branch and the contour C contains the spectrum of A. Pick a
positive self-adjoint pseudodi�erential operator Q on M of order 1. We then de�ne:

(5) logDetQA := f.p. tr(Q−s LogA)

∣∣∣∣
s=0

,



THE DETERMINANT OF THE DIRICHLET-TO-NEUMANN OPERATOR 5

where �f.p.� denotes the �nite part of the meromorphic extension. If A is not positive, by
convention we set (see [31, p. 479]):

logDetQA :=
1

2
logDetQ(A

2) .

The formula for variations (4) continues to hold with this de�nition of determinant.
Finally, we need the following result whose proof is straightforward. Suppose that A is

of positive order and acts on V . Let π be the orthogonal projection operator to a �nite
dimensional subspace V0, and V1 = ker(1 − π). With respect to the splitting V = V0 ⊕ V1,
write

A =

(
A0 B†

B A1

)
.

Lemma 2.1. Assume A1 is invertible. Then the operator A−s
1 on V1 is trace class for

Re s ≫ 0. The zeta function ζA1(s) has a meromorphic continuation that is regular at
s = 0. If DetA1 := exp(−ζ ′A1

(0)), then

(6) DetA = det(A0 −B†A−1
1 B)Det(A1) .

Eq. (6) holds for zero-th order operators A as well, replacing Det by DetQ, where we assume
that Q preserves the splitting V0 ⊕ V1.

2.2. Proof of Theorem 1.1. Let us return to the context of the Introduction, where M
is a compact Riemannian surface with nonempty boundary. We begin by giving a di�erent
expression for the invariant I (M).

Proposition 2.2. Let A(M) denote the area of M and κg the geodesic curvature of ∂M .
Then

(7) I (M) =
Det∗∆N

A(M)Det∆D
exp

(
− 1

2π

∫
∂M

κgds

)
.

Proof. By the Polyakov-Alvarez formula [1], the right hand side of (7) is conformally in-
variant (see [28, eqs. (4) and (5)]). Hence, it su�ces to prove (7) in the case of geodesic

boundary. Let M̂ be the double of M along ∂M . Then by decomposing the spectrum with

respect to the isometric involution on M̂ , we have

(8) [Det∗∆]
M̂

= [Det∆D Det∗∆N ]M .

On the other hand, by [3, Theorem B*], cutting M̂ along ∂M gives

(9) [Det∗∆]
M̂

= [Det∆D]
2
M

A(M̂)

ℓ(∂M)
Det∗(2DN(M)) .

Now A(M̂) = 2A(M), and since ζDN(M)(0) = −1 (cf. [12, 30]), we have

Det∗(2DN(M)) =
1

2
Det∗(DN(M)) .

The result now follows from (8), (9), and the de�nition (1). □

Let Γ ⊂ M be as in the Introduction, and recall that Γ is assumed to be oriented.
Hence, the boundary components ofMΓ are signed, depending upon whether the orientations
induced from the outward normals agree with those of Γ. This allows us to de�ne a map δΓ
from functions on ∂MΓ to functions on Γ by taking the di�erence of the values on the two
sheets of the double cover ∂MΓ → Γ. With this understood, we have the following.
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Lemma 2.3. Let Mi, i = 1, . . . , p, denote the connected components of MΓ. Let {Ψj}pj=1

be any basis of locally constant functions on MΓ. Then

det∗(δΨi, δΨj)Γ
det(Ψi,Ψj)MΓ

=
det∗∆(GΓ,ωg)∏p

i=0A(Mi)
.

Proof. The statement is independent of the choice of basis, so choose Ψi to be the charac-
teristic function on Mi. Clearly, det(Ψi,Ψj)MΓ

=
∏p

i=1A(Mi). We also have

(δΨi, δΨj)Γ =

{
ℓ(∂Mi ∩ Γ)∗ i = j ,

−ℓ(∂Mi ∩ ∂Mj) i ̸= j .

The ∗ means we omit components of Γ that bound only Mi. Now the result follows by the
de�nition of (GΓ, ωg) and the graph Laplacian from the Introduction (see Section 6 for more
details). □

Proof of Theorem 1.1. Use a small modi�cation of [3, Theorem B*] to incorporate the
boundary ∂M , and write

[Det∆D]M =

p∏
i=0

[Det∆D]Mi
DetN(M,Γ) .

On the other hand, by a similar modi�cation of [31, Theorem 3.3] we have

[Det∆D Det∗∆N ]M
2A(M)

=

p∏
i=0

[Det∆D Det∗∆N ]Mi

det∗(δΨi, δΨj)Γ
det(Ψi,Ψj)MΓ

Det∗QNA(M,Γ) .

The result now follows from Proposition 2.2 and 2.3. Notice that all the factors involving
geodesic curvature along Γ cancel pairwise. □

3. Examples

3.1. Disks and annuli. By [7] and [12], or alternatively [28] and eq. (7), or indeed by a
direct calculation, it follows that I (M) = 1 for the disk, and I (M) = 2π/ log ρ for the
annulus with modulus (log ρ)/2π, 1 < ρ < ∞. If M is a euclidean disk of radius R and Γ
the circle centered at the origin of radius r, 0 < r < R, then Theorem 1.1 states in this case
that

(10) 1 =
4π

log ρ
(2πr)

Det∗QNA

(DetN)2
,

where ρ = R/r and N, NA denote the operators for the pair (M,Γ), and we have used
that det∗∆(GΓ,ωg) = 2πr in this case. Let us verify (10) directly. The operators N, NA

have eigenvalues 1/r log ρ, and 1/2r log ρ, corresponding to the constant functions on Γ. It
therefore su�ces to show that

(11) (Det′N)2 = (2πr)2Det′QNA ,

where the prime indicates the determinant of the operator restricted to the space L2
0(Γ) ⊂

L2(Γ) orthogonal to the constants. For the operator Q we may choose

(12) Q
(∑
n∈Z

fne
inθ
)
= f0 +

∑
n̸=0

|n|fneinθ ,
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so that ζQ(0) = 0 as in the Introduction. Since ζN(0) = −1, we must prove

(13) logDet′ N̂ =
1

2
logDet′QNA ,

where N̂ = (2πr)N. Set τ = ρ−1.
Now by a direct calculation one �nds (recall (2)):

N
(∑
n̸=0

fne
inθ
)
=
∑
n̸=0

|n|an
r

fne
inθ ,

NA

(∑
n̸=0

(
fn
gn

)
einθ

)
=
∑
n̸=0

an

(
0 −iσ(n)

iσ(n) − 2r
|n|

)(
fn
gn

)
einθ ,

where an = 2
1−τ2|n| and σ(n) is the sign of n. For �xed R, regard N̂ and NA as operators

depending upon τ . Then as τ → 0,

ζ
N̂(0)

(s) = 2(4π)−sζ(s) , (NA(0))
2 = 4 · id ,

where ζ(s) is the Riemann zeta function. Below we use that ζ(0) = −1/2 and ζ ′(0) =
−1

2 log(2π). Hence, on the one hand,

logDet′QNA(0) =
1

2
logDet′Q(NA(0))

2 =
1

2
f.p. tr

(
Q−s log(4) · id

)∣∣
s=0

= 4 log(2) f.p.(ζ(s))
∣∣
s=0

= −2 log(2) .

On the other hand,

−ζ ′
N̂(0)

(0) = 2(log(4π)ζ(0)− 2ζ ′(0)) = − log(2) .

Thus, (13) is satis�ed in this case.
Next, by direct calculation,

d

dτ
logDet′QNA = f.p. tr

(
Q−sN̂−1 d

dτ
N̂

)∣∣∣∣
s=0

.

But since the derivative of an with respect to τ vanishes rapidly with n, the operator

N̂−1(dN̂/dτ) is trace-class, and so

d

dτ
logDet′ N̂ = tr

(
N̂−1 d

dτ
N̂

)
= f.p. tr

(
Q−sN̂−1 d

dτ
N̂

)∣∣∣∣
s=0

=
d

dτ
logDet′QNA .

Thus, (13) is proven.

3.2. Multiply connected planar domains. Next, consider a planar domain M(ε), ε =
(ε1, . . . , εn), obtained by removing disks of radius εi > 0 (with �xed centers at a1, . . . , an)
from a disk of �xed radius, which without loss of generality we may choose to be the unit
disk D. The following generalizes the case of the annulus in the previous section.

Theorem 3.1. lim
ε→0

I (M(ε))

n∏
i=1

log(1/εi) = (2π)n.

Proof. Fix an ε0 > 0, ε0 < 1
2 min{|ai − aj | | i ̸= j}, and such that Dε0(ai) ⋐ D. Then set

ε0 = (ε0, . . . , ε0). We suppose ε < ε0, and let Aεi denote the annulus εi ≤ |z − ai| ≤ ε0.
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Recall that I (Aεi) = 2π/ log(ε0/εi). Then taking Γ in Theorem 1.1 to be the collection of
curves ∂Dε0(ai), we have:

(14) I (M(ε)) = I (M(ε0))(det
∗∆(GΓ,ωg))

(2 ·Det∗QNA(M(ε),Γ))

(DetN(M(ε),Γ))2
×

n∏
i=1

2π

log(ε0/εi)
.

Since the �rst two factors on the right hand side of (14) are �xed independent of the
εi, it su�ces to analyze the determinants of the Neumann jump operators. But by direct
calculation, the Dirichlet-to-Neumann operator on an annulus of modulus ρ (with Dirichlet
conditions on the inner boundary) is equal to the Dirichlet-to-Neumann operator on the disk
of radius ε0 up to a trace-class operator whose norm → 0 as εi → 0. To be precise, on the
n-th Fourier mode, DN(Aε) acts as:

DN(Aε)(gne
inθ) =

|n|
ε0

(
1 +

2ρ−2|n|

1− ρ−2|n|

)
gne

inθ .

It follows that as εi → 0, DetN(M(ε),Γ) tends to the determinant of the correspond-
ing operator on the domain with Aεi replaced by the disk Dε0(ai). The same holds for
NA(M(ε),Γ). Applying the gluing formula once again to the limit, we obtain the result. □

4. Asymptotics of I (M)

4.1. Genus zero. As we have seen in Section 3.2, general bounds on the invariant I (M)
are obtained from Theorem 1.1 by judicious choices of Γ. This can be done on a case-by-case
basis; to get overall uniform estimates is combinatorially complicated. For simplicity, here
we treat only the genus zero case in complete generality. In higher genus, we �nd rough
estimates that su�ce for the application to the Laplacian with Dirichlet conditions. Recall
that by a �short geodesic� on a hyperbolic surface, we mean a simple closed geodesic of
length less than the absolute constant c0 appearing in the collar lemma (cf. [16]).

Theorem 4.1. Fix positive numbers b1, · · · , bn, n ≥ 3, and δ > 0. Then there is a constant
C ≥ 1 depending only on c0, (b1, · · · , bn), and δ, such that the following holds. For any
hyperbolic surface M of genus zero with geodesic boundary components of lengths b1, · · · , bn,
let Γ be the collection of short geodesics on M and ∆(GΓ,ωg) the graph Laplacian from the
Introduction. Then

(15) C−1

∏
γ∈Γ ℓ(γ)

det(∆(GΓ,ωg) +D)
≤ I (M) ≤ C

∏
γ∈Γ ℓ(γ)

det(∆(GΓ,ωg) +D)
,

where D is the diagonal matrix with entries δ for the vertices corresponding to the components
of MΓ that intersect ∂M , and zeros elsewhere.

Proof. The proof proceeds in several steps. Recall that we denote the connected components
of M \ Γ by Mi.

Step 1. First, about each γ ∈ Γ we choose an annulus Aγ of modulus ρ(γ). We choose a
local coordinate 1/ρ(γ) ≤ |z| ≤ 1 for Aγ . By a conformal change we adjust the hyperbolic
metric to be euclidean in a neighborhood of the boundary ∂Aγ . Introduce the notation

(16) λ(γ) := 1/ log ρ(γ) .

The signi�cance of λ(γ) is that it is the value of the DN-operator for Aγ at the boundary
|z| = 1 for the characteristic function of this boundary. The value the DN-operator at the
other boundary is −λ(γ). By the collar lemma and Wolpert's estimate (cf. [33]), we may
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choose Aγ such that the length ℓ(γ) (in the hyperbolic metric) of the geodesic in (M, g)
homotopic to γ satis�es ℓ(γ) ∼ 2π2/ log ρ(γ). Thus, we have a comparison between λ(γ)
and ℓ(γ) that is uniform as ℓ(γ) → 0.

Let

Γ̃ :=
⋃
γ∈Γ

∂Aγ ,

and set M̃i to be the connected component of

M̊
Γ̃
:= M \

⋃
γ∈Γ

Aγ

that intersects Mi. We let M
Γ̃
denote the (possibly disconnected) Riemann surface obtained

by �capping o�� M̊
Γ̃
, i.e. replacing each annulus Aγ by a pair of disks. An important point

is the bounded geometry of M̃i as M varies in the moduli space of hyperbolic metrics with

�xed set Γ of short geodesics. See [32, 33]. In the following, we shall call M̃i an isolated

component if ∂M̃i ∩ ∂M = ∅.

Step 2. Let N = N(M, Γ̃) and NA = NA(M, Γ̃) be the Neumann jump operators acting

on L2(Γ̃). For each i, let χi ∈ L2(Γ̃) denote the function de�ned by boundary values of the

characteristic function of the component M̃i, i.e. χi is locally constant on Γ̃, and is equal to

1 on ∂M̃i and 0 otherwise. Let us write an orthogonal decomposition

L2(Γ̃) = V0 ⊕ V1 ,

where V0 is the span of all χi for isolated components M̃i. By a similar analysis to the one
carried out in [29, 30, 31], for example, on the orthogonal complement V1, as the ℓ(γ) → 0
the operators N and NA converge in trace-class to the corresponding operators N and NA

on the capped o� components of M
Γ̃
(see also the proof of Lemma 4.6 below).

Step 3. We must analyze the small eigenvalues of N and NA, which occur from the restric-
tion to V0. For NA, this refers to the φ′′ component. The analysis is therefore identical for

both N and NA, and so henceforth we deal only with N. For the isolated components M̃i,

the harmonic function on M̃i with the boundary values of χi is χi itself, and so the Dirichlet-

to-Neumann operator for M̃i annihilates this. On the other hand, if ∂M̃i ∩ ∂M ̸= ∅, then
since Dirichlet conditions are imposed on ∂M , the DN operator is nonzero on the boundary
values of χi. For each collar Aγ , DN is rotationally symmetric, and so preserves constants.
In terms of the splitting V0 ⊕ V1, we may write:

(17) N =

(
A B†

B N0

)
.

Now N0 is uniformly invertible as the lengths ℓ(γ) → 0. By Lemma 2.1, we have

(18) DetN = det(A−B†N−1
0 B)Det(N0) .

It follows that DetN is estimated by det(A−B†N−1
0 B). Recall the weighted graph (GΓ, ωg)

from the Introduction. The key result is the following

Proposition 4.2. Fix δ > 0. There is a constant C ≥ 1 depending only on c0, (b1, . . . , bn),
and δ, such that

C−1 det(∆(GΓ,ωg) +D) ≤ det(A−B†N−1
0 B) ≤ C det(∆(GΓ,ωg) +D) .
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M̃i M̃j

γij

χi,γij χj,γij

Figure 1.

We postpone the proof of this proposition to the next section.

Step 5. Assuming Proposition 4.2, we complete the proof of the theorem. By de�nition:

I (M
Γ̃
) = I (M̊

Γ̃
)
∏
γ∈Γ

I (Aγ) .

Now I (Aγ) = 2π/ log ρ(γ) ≃ ℓ(γ)/π, and because M̊
Γ̃
has bounded geometry over the

moduli space, I (M̊
Γ̃
) is bounded from above and below away from zero. Hence, there is an

estimate (above and below):

I (M
Γ̃
) ≃ C

∏
γ∈Γ

I (Aγ) ≃ C
∏
γ∈Γ

ℓ(γ) .

Apply Theorem 1.1 to Γ̃. The lengths of the elements of Γ̃ are bounded away from zero, so
the factor det∗∆(G

Γ̃
,ωg) in Theorem 1.1 remains bounded above and below away from zero.

From the discussion in Step 2 above, eq. (18), and Proposition 4.2, we have

Det∗QNA(M, Γ̃)

(DetN(M, Γ̃))2
∼ 1

DetN(M, Γ̃)
,

and

C−1 det(∆(GΓ,ωM ) +D) ≤ DetN(M, Γ̃) ≤ C det(∆(GΓ,ωM ) +D) ,

for a constant C. Putting this all together completes the proof. □

4.2. Proof of Proposition 4.2. Here, we relate the action of N on the locally constant

functions in L2(Γ̃) associated to the isolated components of M̊
Γ̃
to the graph Laplacian

∆(GΓ,ωM ). This relationship is contained in the matrix A appearing in (17). Now the key
point is that in terms of the graph Laplacian, the form of the modi�cation to the matrix
A in Proposition 4.2, B†N−1

0 B, corresponds to adding edges with weights that are at least
quadratic in the weights of the graph GΓ. Using the results in Section 6, we then argue that
for small weights such a modi�cation gives only a small perturbation of determinants.

To spell this out precisely, let us introduce some convenient notation. Enumerate the

components M̃i of M̊Γ̃
, and let Lij denote the adjacency matrix of GΓ. By the assumption

of genus zero, if Lij ̸= 0, then there is a unique element γij ∈ Γ bounding Mi and Mj (by

de�nition: γij = γji). Associated to γij are two elements of Γ̃, one bounding M̃i and the

other M̃j . Let χi,γij and χj,γij denote the characteristic functions of these two components

of Γ̃. We de�ne a weight function on GΓ by

(19) ωM (ij) :=

{
λ(γij) Lij ̸= 0

0 Lij = 0
,
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where λ(γ) is de�ned in (16) above. By the discussion in Step 1 of the previous section,
there is a constant κ ≥ 1, uniform as the ℓ(γ) → 0, such that for all i, j,

(20) κ−1ωg(ij) ≤ ωM (ij) ≤ κωg(ij) .

Let G0 ⊂ GΓ be the (possibly disconnected) subgraph obtained by deleting nonisolated
vertices and their edges. We identify the vertices of G0 with the basis elements χi of V0.
Then we

Claim 4.3. The matrix A in (17) is the restriction to G0 of the graph Laplacian ∆(GΓ,ωM ).

Proof. Let M̃i and M̃j be isolated components. The claim amounts to the statement that

⟨N(χi), χj⟩ = −Lijλ(γij) ,

⟨N(χi), χi⟩ =
∑

k isolated

Likλ(γik) +
∑

k not isolated

Likλ(γik) .
(21)

This follows by direct calculation of the harmonic extensions of the locally constant functions
χi (cf. Step 1 of the previous section). □

We next consider the other entries of the decomposition (17). As in (21), we have

(22) Bχi =
∑
j

Lijλ(γij)
{
(χi,γij )

⊥ − (χj,γij )
⊥
}

.

Here, ⊥ indicates the orthogonal projection to V1 in the decomposition V0 ⊕ V1. Note that

the sum is over all components M̃j , not just isolated ones. Also, by de�nition N0χi = 0.
Let us de�ne

(23) Pij :=
∑
k,k′

LikLjk′λ(γik)λ(γjk′)
〈
N−1

0 χi,γik −N−1
0 χk,γik , χj,γjk′ − χk′,γjk′

〉
Since the summand in (23) is skew-symmetric in j and k′, we have

∑
j Pij = 0, and

therefore

(24) Pii = −
∑
j ̸=i

Pij .

Let ĜΓ denote the complete graph on the vertices of GΓ; similarly Ĝ0 ⊂ ĜΓ denotes the

complete graph on G0. De�ne weights for ĜΓ (possibly zero or nonpositive) by:

(25) ω̂M (ij) = ωM (ij) + Pij , i ̸= j .

If we set (see (32))
µ̂M (i) = µM (i)− Pii ,

then it follows from (24) that

µ̂M (i) =
∑
j ̸=i

ω̂M (ij) .

Moreover, if M̃i and M̃j are both isolated, then from (22) we have Pij = ⟨N−1
0 Bχi, Bχj⟩.

Combining this with Claim 4.3, we therefore have the following:

Claim 4.4. The matrix A − B†N−1
0 B is the restriction to Ĝ0 of the graph Laplacian

∆
(ĜΓ,ω̂M )

.

By the discussion in Section 6 below (cf. (41)), we conclude:
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Lemma 4.5. Fix δ > 0, and let D denote the diagonal matrix with entry δ for all noniso-
lated components, and zeros elsewhere. Then det(A − B†N−1

0 B) is the coe�cient of δk in
det(∆

(ĜΓ,ω̂M )
+D), where k is the number of nonisolated components.

Given distinct vertices vi, vj ∈ V (GΓ), then since GΓ is a tree there is a unique geodesic
gij in GΓ from vi to vj . Moreover, there is a 1-1 correspondence Γ ↔ E(GΓ). For γ ∈ Γ, we
shall say γ ∈ gij if the edge associated to γ lies on gij .

Lemma 4.6. Fix ε0, 0 < ε0 < 1. There are constants κ ≥ 1 and C > 0 such that if λ(γ) is
su�ciently small with respect to ε0 for all γ ∈ Γ, then:

(26) κ−1ωM (ij) ≤ ω̂M (ij) ≤ κω(ij) , Lij ̸= 0 ;

(27) |ω̂M (ij)| ≤ C
∏
γ∈gij

λ(γ) , Lij = 0 .

Proof. By explicit computation, we may write N0 = N0+R, where R is diagonal with respect
to the orthogonal decomposition V1 ∩ ⊕γ∈ΓL

2(∂Aγ), and the component pieces Rγ → 0 in
trace class as λ(γ) → 0. If fn denotes the n-th Fourier mode of a function f on one boundary
component of ∂Aγ , n ̸= 0, then the n-th Fourier mode of Rγ(f) on this component is

|n|ρ−2|n|

1− ρ−2|n| fn ,

and on the other component of ∂Aγ it is

− 2|n|ρ−|n|

1− ρ−2|n| f−n .

In particular, given ε0 then for su�ciently small λ(γ) the norm of R is bounded by ε0λ(γ).

Since N
−1
0 is uniformly bounded, we have N0 = N0(1+N

−1
0 R), where N

−1
0 R has small norm

in trace class bounded on each component by ℓ(γ). Let f be supported on ∂M̃i and g on

∂M̃j , and �x p ≥ 1. We claim there is a constant C ′ > 0, independent of i, j, p and the λ(γ),
such that

|⟨(N−1
0 R)pf, g⟩| ≤ C ′εp0∥f∥∥g∥

∏
γ∈gij

λ(γ) .

This follows easily by induction on p. We now apply this estimate, and use the expression

N−1
0 = N

−1
0 +

∞∑
p=1

(−1)p(N
−1
0 R)pN

−1
0

in the de�nition (23) of Pij . For example, for i ̸= j, one of the terms is∑
k,k′

LikLjk′λ(γik)λ(γjk′)⟨N−1
0 χk,γik , χk′,γjk⟩ =

∑
k

LikLjkλ(γik)λ(γjk)⟨N
−1
0 χk,γik , χk,γjk⟩

+
∑
k,k′

LikLjk′λ(γik)λ(γjk′)O
( ∏
γ∈gkk′

λ(γ)
)
,(28)

where we have used the fact that N
−1
0 (χk,γik) is supported on ∂M̃k for any i. Notice that

the second term on the right hand side of (28) contains λ(γ) for every γ ∈ gij , and therefore
satis�es both (i) and (ii). The �rst term vanishes if Lij ̸= 0, and so automatically satis�es (i).
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Figure 2.

If Lij = 0, it contributes λ(γik)λ(γjk) for each vertex k �subadjacent� to i and j (see Figure
2). In particular, this term satis�es (ii). The other terms in (23) are treated similarly. □

Finally, we complete the proof of Proposition 4.2. Fix δ > 0, and suppose MΓ has k
nonisolated components. By the result of Lemma 4.5 and the expansion (33), if the weights
λ(γ) are su�ciently small compared to δ for all γ ∈ Γ, then the determinants are dominated
by the δk coe�cients. It therefore su�ces to relate det(∆

(ĜΓ,ω̂M )
+D) to det(∆(GΓ,ωg)+D).

From (27) and Corollary 6.4, there is a constant C ≥ 1 such that

C−1 det(∆(GΓ,ω̃M ) +D) ≤ det(∆
(ĜΓ,ω̂M )

+D) ≤ C det(∆(GΓ,ω̃M ) +D) ,

where ω̃M is the restriction of the weight function ω̂M on ĜΓ to GΓ. By (26) and Corollary
6.2, there is constant C1 ≥ 1 such that

C−1
1 det(∆(GΓ,ωM ) +D) ≤ det(∆(GΓ,ω̃M ) +D) ≤ C1 det(∆(GΓ,ωM ) +D) .

Finally, using (20) and the same comparison between ωM and ωg gives upper and lower
bounds on det(∆(GΓ,ωg) +D). Combining these statements completes the proof of Proposi-
tion 4.2.

4.3. Higher genus. In higher genus, the graph GΓ will not be a tree in general. This leads
to a more complicated perturbation of the graph Laplacian. Nevertheless, it is clear from

the proof of Theorem 4.1 that there is a uniform upper bound on DetN(M, Γ̃). Indeed,
the discussion concerned the low eigenvalues, whereas as the operator on the orthogonal
complement in the previous section converges in trace-class. As a consequence, directly
from Theorem 1.1, we have the following

Theorem 4.7. Fix positive numbers g ≥ 1 and b1, · · · , bn, n ≥ 1. Then there is a positive
constant C, depending only on c0 and (b1, · · · , bn), such that the following holds. For any
hyperbolic surface M of genus zero with geodesic boundary components of lengths b1, · · · , bn
and short geodesics Γ,

C−1
∏
γ∈Γ

ℓ(γ) ≤ I (M) .

5. Further results

5.1. Properness and Steklov isospectral surfaces. Now we provide proofs of the other
consequences of Theorems 1.1 and 4.1.

Proof of Theorem 1.2. Let {Mj} be a sequence of genus zero hyperbolic surfaces with geo-
desic boundaries of �xed lengths b1, . . . , bn. After passing to a subsequence, we may assume
there is a nonempty collection Γj of geodesics all of whose lengths ℓ(γ) → 0 as j → ∞, and
all other geodesics have lengths bounded away from zero. Since the Mj have genus zero, In
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this case, (#Γ+1)
∏

ωMj (γ) = det∗∆(GΓ,ωMj
) (see (39)), and each ωMj (γ) is comparable to

the length ℓMj (γ). We can then use (15) and Corollary 6.3 below to conclude that

(29) I (Mj) ≤ C max {ℓ(γ1) · · · ℓ(γk−1) | γ1, . . . , γk−1 ∈ Γj distinct} ,

where k is the number of nonisolated components of (Mj)Γj that intersect ∂Mj . We may
assume k is constant and C is independent of j. Then (29) implies that

(30) H(Mj) ≥ (k − 1) min
γ∈Γj

log(1/ℓj(γ))− logC .

For a connected tree with more than one vertex, there are at least two vertices having only
a single edge. Since the components of (Mj)Γj must have at least 3 boundary components,
this implies k ≥ 2. Since ℓj(γ) → 0, (30) implies that H(Mj) is unbounded along {Mj}.

If g ̸= 0, then we may �nd a family of surfaces Mε with a geodesic γε of length ℓ(ε) ∼
1/ log(1/ε), such that Mε \γε consists of two components: one component M ′

ε containing all
components of the boundary ∂M(ε), and an isolated component Nε obtained by removing
a disk of radius ε from a genus one Riemann surface N . As in the proof above, we may
choose an annulus Aε about γε whose boundary lengths are bounded above and below. Now
apply Theorem 1.1 to the case where Γ = ∂Aε. Then the Neumann jump operators N

and NA both have a small eigenvalue ∼ 1/ log(1/ε) corresponding to the constant function
1 on the component of ∂Aε meeting Nε, and 0 on the other component of ∂Aε. As in
the proof above, orthogonal to this space, the operators converge up to trace-class to the
corresponding operators on N and the surfaceM ′

ε union a disk. The small eigenvalue cancels
the vanishing of I (Aε) in the gluing formula, with the remaining factors bounded. Hence,
H(Mε) remains bounded as ε → 0. □

Proof of Corollary 1.3. By [10, Theorem 1.7], the lengths of the boundary components of
all the members of F are equal to some �xed lengths (b1, . . . , bn). From Theorem 1.2, F is
contained in a compact subset of the moduli space M(0; b1, . . . , bn). The result then follows
as in [22]. □

5.2. Dirichlet and Neumann Laplacians.

Corollary 5.1. Consider the situation in Theorem 4.1. Let {κi} be the collection of small
eigenvalues, as in the Introduction. Then the constant C may be chosen such that for any
hyperbolic surface M of genus zero with geodesic boundary components of lengths b1, · · · , bn,

C−1
∏
γ∈Γ

exp(−π2/3ℓ(γ))ℓ−3/2(γ)
(
det(∆(GΓ,ωM ) +D)

∏
κi

)1/2
≤ [Det∆D]M

≤ C
∏
γ∈Γ

exp(−π2/3ℓ(γ))ℓ−3/2(γ)
(
det(∆(GΓ,ωM ) +D)

∏
κi

)1/2
,

and

C−1
∏
γ∈Γ

exp(−π2/3ℓ(γ))ℓ−1/2(γ)

( ∏
κi

det(∆(GΓ,ωM ) +D)

)1/2

≤ [Det∗∆N ]M

≤ C
∏
γ∈Γ

exp(−π2/3ℓ(γ))ℓ−1/2(γ)

( ∏
κi

det(∆(GΓ,ωM ) +D)

)1/2

.



THE DETERMINANT OF THE DIRICHLET-TO-NEUMANN OPERATOR 15

For g ≥ 1 and n ≥ 1, we have

[Det∆D]M ≤ C
∏
γ∈Γ

exp(−π2/3ℓ(γ))ℓ−3/2(γ)
(∏

κi

)1/2
.

Proof. Let M̂ be the double of M . Then decomposing the spectrum with respect to the

isometric involution, the small eigenvalues for the Laplacian on the closed surface M̂ are
exactly the collection {κi}. Moreover, since the boundary lengths of M are �xed, we may

ignore them in the asymptotics. Hence, the short geodesics of M̂ correspond to the short
geodesics in M and their mirrors in the double. By [32, Theorem 5.3] there is a constant
B > 1 such that

(31) B−1 ≤
[Det∗∆]

M̂∏
γ∈Γ exp(−2π2/3ℓ(γ))ℓ−2(γ)

∏
i κi

≤ B .

On the other hand, from (7) and (8), we have

[Det∆D]
2
M =

[Det∗∆]
M̂

A(M)I (M)
, [Det∆N ]2M = [Det∗∆]

M̂
A(M)I (M) .

The result now follows from (31) and Theorems 4.1 and 4.7. □

6. Graph Laplacians

6.1. Matrix tree theorem with potential. For the proof of Theorem 1.2 we require the
results in this section, perhaps well-known, but for which we have been unable to locate
precise statements in the vast literature on this subject. For the sake of completeness, we
therefore provide proofs here. This will also allow us to review the construction and basic
facts of graph Laplacians. The main result, Theorem 6.1, is an extension of the weighted
matrix tree theorem of Kirchho� for the graph Laplacian with an added diagonal potential.
Corollary 6.3 then gives a comparison of the determinants of the graph Laplacians with and
without the potential.

Let G be an undirected graph with vertex and edge sets V (G) and E(G), respectively.
Label the elements of V (G) by vi ∈ V , i = 1, . . . , n. For i ̸= j we say (ij) ∈ E(G) if there
is an edge between vi and vj . We always assume G is simple, by which we mean there is
at most one edge between distinct vertices, and no edge from a vertex to itself. A weight
function on G is a map ω : E(G) → R. The weight de�nes (and is determined by) an
associated n× n matrix:

ωij :=

{
ω(ij) if (ij) ∈ E ,

0 otherwise.

If we set µi =
∑

(ij)∈E

ωij , then the (weighted) graph Laplacian is the n× n matrix:

(32) (∆(G,ω))ij =


−ωij (ij) ∈ E ,

µi i = j ,

0 otherwise.

The weight ω is positive if ω(ij) > 0 for all (ij) ∈ E(G). When the weights are positive,
the matrix ∆(G,ω) is positive semide�nite with a zero eigenvalue of multiplicity 1 if G is
connected. We let det∗∆(G,ω) denote the product of the nonzero eigenvalues. By a potential
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we mean a function δ : V (G) → R. If δi = δ(vi), then δ is represented by a diagonal matrix
with entries δi, which we will typically denote by D. Given a potential, we shall say a vertex
v is marked if δ(v) ̸= 0. The potential is positive if δ(v) is either zero or positive for every
v.

For a connected graph G, let Sp(G) be the set of spanning trees of G, i.e. connected
trees T ⊂ G such that V (T ) = V (G). For a tree T with ℓ marked vertices v1, . . . , vℓ, let
E (T ; v1, . . . , vℓ) denote the set of collections of (ℓ − 1) edges e1, . . . , eℓ−1 ∈ E(T ) such that
each of the ℓ connected components of T \ e1∪ · · ·∪ eℓ−1 contains exactly one marked vertex
vj . Finally, for T ∈ Sp(G) and S ∈ E (T ; v1, . . . , vℓ), we de�ne a multiplicity :

m(T, S) = #
{
(T ′, S′) | T ′ ∈ Sp(G) , S′ ∈ E (T ′; v1, . . . , vℓ) , T ′ \ S′ = T \ S

}
For elements of the set above, we shall say that (T ′, S′) is equivalent to (T, S). With this
understood, we are ready to state the main result.

Theorem 6.1. Let (G,ω) be a connected weighted graph with n vertices v1, . . . , vn, and let
∆(G,ω) be the graph Laplacian. Fix a potential δ : V (G) → R, δi = δ(vi) with associated
diagonal matrix D. Then

(33) det(∆(G,ω) +D) =
∑

T∈Sp(G)

n∑
ℓ=1

∑
1≤i1<···<iℓ≤n

∑
S∈E (T ;vi1 ,...,viℓ )

δi1 · · · δiℓ
m(T, S)

∏
e∈E(T )\S

ω(e) .

Theorem 6.1 will be proved in the next section. First, let us draw some conclusions. An
immediate consequence of (33) is the following important

Corollary 6.2. Suppose (G,ω) is a connected graph with positive weights and a positive
potential δ. For κ ≥ 1, there is C ≥ 1 depending only on κ, G, and δ, such that the
following holds. For any weight function ω̃ on G with

(34) κ−1ω(e) ≤ ω̃(e) ≤ κω(e)

for all e ∈ E(G), we have

C−1 det(∆(G,ω) +D) ≤ det(∆(G,ω̃) +D) ≤ C det(∆(G,ω) +D)

In the following, we suppose δ has exactly k nonzero entries δ1, . . . , δk at v1, . . . , vk,
1 ≤ k ≤ n. Suppose �rst that k = 1. Notice that in this case, no edges are removed: in the
expression (33) the sum over S (and therefore also the multiplicities) is absent. For ε > 0,

d

dε
log det(∆(G,ω) + εD) = tr

(
(∆(G,ω) + εD)−1D

)
= δ1(∆(G,ω) + εD)−1

11 ;

d

dε
det(∆(G,ω) + εD) = δ1 det((∆(G,ω) +D)[1]) = δ1 det(∆

[1]
(G,ω)) .

Here, we have introduced the following notation: if A = (Aij) is an n×n matrix, we denote

by A[k] the (n− 1)× (n− 1) matrix obtained by deleting the k-th row and the k-th column.
Since det∆(G,ω) = 0, by integration we get

(35) det(∆(G,ω) +D) = δ1 det(∆
[1]
(G,ω)) .

Now by the weighted matrix tree theorem (cf. [27, Thm. VI.27]),

(36) det(∆
[1]
(G,ω)) =

∑
T∈Sp(G)

∏
e∈E(T )

ω(e) ,
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and so we obtain (33). In the proof of Theorem 6.1 below, we do not reprove (36) but rather
use it as a starting point for an inductive argument.

For k ≥ 2, the appearance of the multiplicity m(T,E) is a new feature in the generalized
matrix tree expression (33). Its necessity is immediate from the δn term in case k = n,
δ1 = · · · = δn = δ. More illuminating is the simple example in Figure 3. Here, the weights
are δ(vi) = δi, i = 1, 2 and zero otherwise. Then one calculates the δ1δ2 term directly:

(37) det(∆(G,ω) +D) = δ1δ2(ω13 + ω23)(ω14 + ω24) + · · ·

There are 4 spanning trees for G, obtained by removing a single edge. For each tree T , there
are two possible edges S that can be removed to separate v1 from v2. Thus there are 8 terms
in the δ1δ2 sum in (33). But the multiplicity of each pair (T, S) is clearly 2, corresponding
to switching the edge removed to de�ne the tree T with the edge S removed from T . The 8
terms thus reduce to the 4 terms in (37).

A second special case is where G is a tree. For δi > 0, i = 1, . . . , k, and zero otherwise,
from (33) we have

(38) det(∆(G,ω) +D) ≥ δ1 · · · δk min {ω(e1) · · ·ω(en−k) | e1, . . . , en−k ∈ E(G) distinct}

We are mostly interested in the case where the edge weights are much smaller than the δi's.
The estimate above can probably be improved. However, notice that in the example (37),
ω13ω23 (or ω14ω24) do not appear in the δ1δ2 term. If ω14 and ω24 are big compared to the
other two weights, we cannot replace min by max in (38).

For a connected graph, the weighted matrix tree theorem (the equality (36), which holds
for any principal minor) implies,

(39) det∗∆(G,ω) = n
∑

T∈Sp(G)

∏
e∈E(T )

ω(e) .

In case G is a tree, there is only one term in the sum. Hence, from (35), (36), and (38) we
obtain

Corollary 6.3. Let (G,ω) be a weighted tree with n vertices, and suppose D has exactly
k ≥ 1 nonzero entries δ1, . . . , δk > 0. Then if k = 1,

det∗∆(G,ω) =
n

δ1
det(∆(G,ω) +D) ,

and if k ≥ 2,

det∗(∆(G,ω))

det(∆(G,ω) +D)
≤ n

δ1 · · · δk
max {ω(e1) · · ·ω(ek−1) | e1, . . . , ek−1 ∈ E(G) distinct} .
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Finally, an important technical result for this paper is the following, which is used in
Section 4. Let (G,ω) be a connected, weighted tree with n vertices and positive weights.

Let Ĝ be the complete graph on the vertices of G. Fix κ0 > 0. Suppose ω̂ is a system of

weights (not necessarily positive) for Ĝ satisfying

(i) ω̂(e) = ω(e) for all e ∈ E(G);

(ii) For ê ∈ E(Ĝ) \ E(G) between vertices v1 and v2,

|ω̂(ê)| ≤ κ0ω(e)

for any e ∈ E(G) along the geodesic in G from v1 to v2.

Corollary 6.4. Fix (G,ω) as above, and let δ : V (G) → R≥0 be a positive potential. Then
for κ0 > 0 su�ciently small (depending upon (G,ω) and δ), there is a constant C ≥ 1

depending only on G, δ, and κ0, such that if (Ĝ, ω̂) satis�es (i) and (ii) above,

C−1 det(∆(G,ω) +D) ≤ det(∆
(Ĝ,ω̂)

+D) ≤ C det(∆(G,ω) +D) .

Proof. We wish to compare the terms appearing in (33) for (G,ω) and (Ĝ, ω̂). Let T̂ be a

spanning tree for Ĝ. Consider a component subtree T̂ ′ of T̂ \ Ŝ, for a separating set of edges
Ŝ. Suppose that T̂ ′ contains an edge ê not in E(G). Let v1 and v2 be the two vertices of

ê. Since T̂ ′ contains only one marked vertex, we may assume v1 is not marked. Let g be

the geodesic in G from v1 to v2. Because T̂ ′ is a tree, we cannot have g ⊂ T̂ ′, since then
g ∪ ê would be a cycle. Hence, let e be the �rst edge in g (going from v1 to v2) that is not

contained in T̂ ′. Then if we replace ê by e we obtain a new spanning tree T̂1 (with the same

separating set Ŝ) with fewer edges that are not in E(G). Moreover, by (ii) the product of

the edges in T̂ \ Ŝ is strictly less (in absolute value) than that of T̂1 \ Ŝ. Continuing in this

way, we �nd a new spanning tree T̂• of Ĝ such that T̂• \ Ŝ ⊂ G. Now there is a unique

separating set S ⊂ E(G) such that T̂• \ Ŝ = G \ S. Thus, the term in the expansion (33)

for Ĝ corresponding to (T̂ , Ŝ) is dominated by the term (G,S) in the expansion for G. This
completes the proof. □

6.2. Proof of Theorem 6.1. The proof is by induction on n and k = the number of
nonzero entries of D. Thus, we assume (33) holds for graphs with fewer than n vertices and
any D. We have seen in (36) that by the usual weighted matrix tree theorem, the result
holds for all n and k = 1. Suppose now that k ≥ 2, and that (33) holds for n vertices
and potentials with fewer than k nonzero entries. We must show that for D with exactly k
nonzero entries,

(40) det(∆(G,ω) +D) =
∑

T∈Sp(G)

k∑
ℓ=1

∑
1≤i1<···<iℓ≤k

∑
S∈E (T ;vi1 ,...,viℓ )

δi1 · · · δiℓ
m(T, S)

∏
e∈E(T )\S

ω(e) .

Set δk = δ(vk). By the same argument used above to derive (36), we have

(41) det(∆(G,ω) +D) = det(∆(G,ω) +D)
∣∣
δk=0

+ δk det((∆(G,ω) +D)[k]) .

We view the second term on the right hand side as the determinant of a new weighted graph

G̃ with potential D̃, obtained by deleting vk and all edges at vk. The weight function ω̃ is

the restriction of ω to G̃. Importantly, since the edges of vk have been deleted, the µj di�er
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from µ̃j , and D̃ is determined by the rule

(42) δ̃j =

{
δj (jk) ̸∈ E(G) ,

δj + ωjk (jk) ∈ E(G) ,

for all vj ∈ G̃. With this interpretation we have

(43) det((∆(G,ω) +D)[k]) = det(∆
(G̃,ω̃)

+ D̃) .

By induction on k, we may assume the �rst term on the right hand side of (41) satis�es
(33), with δk set to zero. This accounts for all the terms on the right hand side of (40)
where iℓ ≤ k − 1. The remaining terms all have iℓ = k, and therefore a factor of δk. Given
(43), in order to complete the proof we must show that

det(∆
(G̃,ω̃)

+ D̃) =

k∑
ℓ=1

∑
1≤i1<···<iℓ−1≤k−1

δi1 · · · δiℓ−1

×
∑

T∈Sp(G)

∑
S∈E (T ;vi1 ,...,viℓ−1

,vk)

1

m(T, S)

∏
e∈E(T )\S

ω(e) .

(44)

In the sum above, ℓ = 1 is taken to mean that no δi's appear. Let w1, . . . , wm be the vertices
adjacent to vk, with edges f1, . . . , fm. See Figure 4. Let us �rst assume that

(i) G \ {vk} is connected ;
(ii) None of the wj's are marked in G.

Thus, by (42), G̃ has (k +m − 1) marked points at v1, . . . , vk−1 and w1, . . . , wm. Since G̃
has (n− 1) vertices and we have assumed the result holds in this case for all k, by induction
we have

det(∆
(G̃,ω̃)

+ D̃) =
∑

ℓ=1,...,k
ℓ′=0,...,m

∑
1≤i1<···<iℓ−1≤k−1
1≤j1<···<jℓ′≤m

δi1 · · · δiℓ−1

×
∑

T̃∈Sp(G̃)

∑
S̃∈E (T̃ ;vi1 ,...,viℓ−1

,wj1
,...,wjℓ′

)

δ̃j1 · · · δ̃jℓ′
m(T̃ , S̃)

∏
e∈E(T̃ )\S̃

ω(e) ,

(45)

where by ℓ′ = 0 we mean no δ̃j 's appear, and in the sum we do not allow both ℓ = 1 and
ℓ′ = 0. In order to prove the equality of the right hand sides of (44) and (45), for a �xed

choice of i1, . . . , iℓ−1, we must �nd a correspondence between trees and edge sets in G̃ and
G, modulo equivalences.
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Case 1. Suppose �rst that ℓ′ ≥ 1. Let T̃ ∈ Sp(G̃), S̃ ∈ E (T̃ ; i1, . . . , iℓ−1, j1, . . . , jℓ′), so

that #S̃ = ℓ+ ℓ′ − 2. Let ẽ1, . . . , ẽℓ′−1 ∈ S̃ be the edges that separate wj1 , . . . , wjℓ′ . To be

precise, there is a unique geodesic g12 in T̃ from wj1 to wj2 , and by de�nition of the set E

there is an edge in S̃ that is a segment of g12. Choose ẽ1 to be the nearest such edge to
wj1 in the simplicial metric. Now consider the geodesic g23 from wj2 to wj3 . This may or
may not be separated by ẽ1. If it is, then g23 intersects the geodesic g13 from wj1 to wj3 .
We then choose ẽ2 to be the nearest edge to wj1 along this geodesic. If g23 is not separated,
choose ẽ2 to be the nearest edge to wj2 . Continuing in this way, we determine the collection

ẽ1, . . . , ẽℓ′−1 ∈ S̃. Now de�ne T ⊂ G by

T =
(
T̃ \ ẽ1 ∪ · · · ∪ ẽℓ′−1

)
∪ fj1 ∪ · · · ∪ fjℓ′ ∪ {vk} .

We claim that T is a connected tree. Being a subset of T̃ , T ∩ G̃ is a tree. By construction,

wj1 , . . . , wjℓ′−1
are in distinct components of T ∩G̃. It follows that T is a tree as well. That T

is connected follows from the fact that the connected components of T̃ \ ẽ1∪· · ·∪ ẽℓ′−1 are in

1-1 correspondence with the {wji}. Now the remaining ℓ−1 edges in S̃ � let us denote them
e1, . . . , eℓ−1 � provide an element S ∈ E (T ; i1, . . . , iℓ−1, vk). Indeed, removing e1, . . . , eℓ−1

separates the vi1 , . . . , viℓ−1
from all the wj1 , . . . , wjℓ′−1

, and further removing ẽ1 ∪ · · · ∪ ẽℓ′−1

separates the wj1 , . . . , wjℓ′−1
from themselves in T̃ . It follows that in T , vk is separated from

the vi1 , . . . , viℓ−1
as well. It is clear that equivalent pairs (T̃ , S̃) give equivalent counterparts

(T, S). Indeed,

T \ S = (T̃ \ S̃) ∪ fj1 ∪ · · · ∪ fjℓ′ ∪ {vk} .

This construction may be reversed. Starting from the pair (T, S), we construct (T̃ , S̃) as
follows. Let fj1 , . . . , fjℓ′ be all the edges in T \ S from vk. The �rst step is to replace
(T, S) with an equivalent pair (T ′, S′) so that fj1 , . . . , fjℓ′ are the only edges from vk in T ′.

Let fp ∈ S be another such edge, to wp. Let e ∈ E(G̃) be the edge realizing the minimal

distance from the component of T ∩ G̃ containing wp to the other components. Then if
we let T ′ = (T \ fp) ∪ e, S′ = (S \ {fp}) ∪ {e}, then clearly T ′ is a tree. Hence, we may
assume, up to equivalence, that the edges in T from vk are not in S. Now the components

of T ∩ G̃ are in 1-1 correspondence with the wij . Let ẽ1, . . . , ẽℓ′−1 be edges in G̃ minimizing
the distances between these components. We set

T̃ = (T ∩ G̃) ∪ ẽ1 ∪ · · · ∪ ẽℓ′−1 ,

S̃ = {ẽ1, . . . , ẽℓ′−1, e1, . . . , eℓ−1} .

Then the pair (T̃ , S̃) is the desired inverse, modulo equivalence of the previous construction.

Finally, notice from (42) that in this construction, δ̃ji = ω(fji). Hence,∏
e∈T\S

ω(e) = δ̃j1 · · · δ̃jℓ′
∏

e∈T̃\S̃

ω(e) .

We have therefore found a correspondence of terms in (44) with some fj ∈ T \S, and terms

in (45) with ℓ′ ≥ 1. As seen above, equivalent pairs (T̃ , S̃) give equivalent counterparts
(T, S).

Case 2. Now suppose ℓ′ = 0, i.e. none of the points w1, . . . , wm are marked. Note that by

our rule this forces ℓ ≥ 2. Let T̃ ∈ Sp(G̃), S̃ ∈ E (T̃ ; i1, . . . , iℓ−1), so that now #S̃ = ℓ − 2.
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If nonempty, enumerate the elements of S̃ by ẽ1, . . . , ẽℓ−2. Write a disjoint union

{w1, . . . , wm} = C1 ⊔ · · · ⊔ Cq ,

so that each Ci lies in a distinct connected component of T̃ \ ẽ1∪· · ·∪ ẽℓ−2. As in the previous

case, we may choose a subset of S̃, which after renumbering we assume to be ẽ1, . . . , ẽq−1,

so that each Ci lies in a distinct connected component of T̃ \ ẽ1 ∪ · · · ∪ ẽq−1. For each Ci,
choose an edge fji from one of the elements of Ci to vk. We obtain a tree T ∈ Sp(G) by

adding the edges fj1 , . . . , fjq to T̃ , and deleting ẽ1, . . . , ẽq−1. The new edge set is

S = {fj1 , . . . , fjq , ẽq, . . . , ẽℓ−2} ∈ E (T ; vi1 , . . . , viℓ−1
, vk) .

Clearly, the choice of fji 's give equivalent pairs (T, S). Similarly, equivalent pairs (T̃ , S̃) give

equivalent pairs (T, S). In this case, T \ S = (T̃ \ S̃) ∪ {vk}. Going the other way, suppose
the edges from vk of a spanning tree T are fj1 , . . . , fjq , and that these are all contained in

an edge set S. Let ẽq, . . . , ẽℓ−2 denote the remaining edges in S. Then T ∩ G̃ has exactly q

connected components in 1-1 correspondence with the wji . Find ẽ1, . . . , ẽq−1 in G̃ connecting
these components of wij 's, in a manner exactly the same as in Case 1. We then set

T̃ = (T ∩ G̃) ∪ ẽ1 ∪ · · · ∪ ẽq−1 ,

S̃ = {ẽ1, . . . , ẽℓ−2} .

This is inverse to the previous construction. Thus, we have a correspondence between terms

in (44) with fj ̸∈ T \ S, j = 1, . . . ,m, and terms in (45) with no δ̃j 's.
We now address assumptions (i) and (ii). Suppose that G \ {vk} is not connected. Notice

that the right hand side of (45) is multiplicative and that extending spanning trees of each
component of G\{vk} to include vk uniquely determines a spanning tree of G. Hence, since
the analysis above applies to each component assumption (i) may be dropped. For (ii), if
one of the points, e.g. w1, is marked in G, then after relabelling we may assume w1 = vk−1.
Then

δ̃(w1) = δ(vk−1) + ω(f1) ,

and G̃ has k+m− 2 marked points. In the expression (45), terms involving δ̃(w1) split into
terms with δ(vk−1) and those with ω(f1). The latter correspond to terms in (44) with vk−1

unmarked, just as in the cases considered above. The terms involving δ(vk−1) correspond
to terms in (44) with vk−1 marked. In this case, in the de�nition of T , we include f1 in the
set S, but otherwise proceed as above. This completes the proof.
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