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A Hitchin connection on nonabelian theta
functions for parabolic G-bundles

By Indranil Biswas at Greater Noida, Swarnava Mukhopadhyay at Mumbai and
Richard Wentworth at College Park

Abstract. For a simple, simply connected complex affine algebraic group G, we prove
the existence of a flat projective connection on the bundle of nonabelian theta functions on the
moduli spaces of semistable parabolic G-bundles for families of smooth projective curves with
marked points.

1. Introduction

In this paper, we prove the existence of a flat projective connection on spaces of gen-
eralized theta functions on the moduli spaces of parabolic H-bundles for a family of smooth
projective curves with marked points, where H is a connected, complex, simple, affine alge-
braic group. Before stating the precise results, and since it is part of the larger and well-studied
program of geometric quantization, we first provide a brief historical context to this subject.

Quantization as envisioned by Dirac, et al., can be thought of as a deformation of a clas-
sical mechanical system depending on a parameter ~ that recovers the original classical system
in the limit. Kostant-Kirillov-Souriau developed and generalized this notion of “quantizing a
function”, and Auslander-Kostant [6] used it to construct unitary representations of a connected
Lie group (see also Kirillov [45]).

Geometric Quantization. The starting point of the theory is a symplectic manifold
(M, ω) where the symplectic form ω is the curvature of a Hermitian line bundle L with con-
nection ∇. The quantum Hilbert space H is then the L2-completion of the space of global
sections Γ(M, L) of this line bundle. The Lie algebra of functions on M , under the Pois-
son bracket given by the form ω, acts naturally on H . This process of assigning a function
to this Lie algebra satisfying certain commutativity constraints depending on ~ is known as
quantization in the present literature. However, it is not possible to achieve these commuta-
tivity constraints in practice. To remedy this, Kostant [46] and Souriau [68] further consider a
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compatible almost complex structure I on M such that (M,ω, I) is a Kähler manifold. This
induces a holomorphic structure on the line bundleL and leads to the notion of geometric quan-
tization, where the Hilbert space HI is reduced to the space of holomorphic L2-sections of L.
Because the quantization process should arrive at a unique answer, it is natural to investigate
the dependence of the geometric quantization on the choice of almost complex structure I on
M .

In [43], Hitchin analyzes this question in a very important setting (see also [7], [33], [35],
[2]). Here, M = Homirr(π1(Σ), K)/K, is the moduli space of a class of representations of
the fundamental group π1(Σ) to K, where Σ is a closed oriented surface and K ⊂ G is a max-
imal compact subgroup of the earlier mentioned simple, simply connected groupG. The group
K acts by conjugation on a representation ρ : π1(Σ)→ K, and ρ ∈ Homirr(π1(Σ), K) if the
stabilizer of ρ under this action is exactly the center of K. This space has a symplectic form
defined by Atiyah-Bott [5], Narasimhan [54], and Goldman. A choice of a complex structure
I on Σ endows M with a Kähler structure, and via the Narasimhan-Seshadri-Ramanathan the-
orem this complex manifold, which we call MI , can be identified with the space of regularly
stable holomorphic principal G-bundles on C := (Σ, I) (see [61, Prop. 7.7 and Thm. 7.1]).
The role of L is played by a determinant of cohomology line bundle defined via some linear
representation of G, and HI := H0(MI , L⊗k) is the space of nonabelian theta functions of
level k. The connection ∇ is the Chern connection of the Quillen metric. Hitchin found a flat
projective connection on the bundle of nonabelian theta functions over a family of curves of
fixed genus. His construction may be interpreted as a natural identification between the spaces
P(H0(MI ,L⊗k) ∼= P(H0(MI′ ,L⊗k) via parallel transport along a path connecting I and I ′ in
the Teichmüller space.

TUY/WZW connection. As mentioned above, the vector spaces HI that appear in
Hitchin’s geometric quantization have a counterpart in the WZNW-model of a 2d rational con-
formal field theory constructed by Tsuchiya-Ueno-Yamada [74], which appears in the quanti-
zation of a 3d-Chern-Simons theory to a 3d-TQFT as considered by Witten [77]. Let g denote
the Lie algebra of G. Given a positive integer k and an n-tuple λ of dominant weights for g
satisfying a certain integrability condition depending on k, the paper [74] constructs a vector
bundle V†λ(g, k) on the Deligne-Mumford compactificationMg,n of stable n-pointed curves of
genus g. Over the interiorMg,n parametrizing smooth curves, V†λ(g, k) admits a flat projective
connection. These vector bundles of conformal blocks satisfy the axioms of a 2d-rational con-
formal field theory. Moreover, due to work of Beauville-Laszlo [12] and Kumar-Narasimhan-
Ramanathan [48], in the case of a single puncture with trivial weight, we get a canonical (up
to a scalar) identification of HI with the fiber of V†λ(g, k) at the point C = (Σ, I) inMg,n.
It is natural to ask whether the connections of Hitchin [43] and Tsuchiya-Ueno-Yamada [74]
coincide. That this is indeed the case was proven by Laszlo [49].

A generalization of the identification of HI with conformal blocks also holds for smooth
C with an n-tuple of marked points p. Consider the moduli space Mpar,rs

G = Mpar,rs
G (C,p,λ)

of regularly stable parabolicG bundles on a compact Riemann surface C with n-marked points
p and parabolic structures λ at p. Let Lλ,k be a parabolic “determinant of cohomology” line
bundle on Mpar,rs

G . Then there is a canonical (up to scalars) isomorphism between the finite
dimensional vector space of holomorphic sectionsH0(Mpar,rs

G ,Lλ,k) and the fiber of the space
of conformal blocks V†λ(g, k)

∣∣
(C,p)

(see [58] and [50]). This identification between conformal
blocks and nonabelian theta functions is a mathematical analog of the Chern-Simons/WZNW
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correspondence of Witten [77]. Since the vector bundle of conformal blocks is endowed with
a flat projective connection, it is very natural to ask the following question:

Question. Is there a natural flat projective connection on the family of spacesH0(Mpar,rs
G ,Lλ,k)

as the pointed Riemann surface structure of C moves in a holomorphic family?

For parabolic vector bundles, a construction of the projectively flat connection was given
by Scheinost-Schottenloher in [64] for those special cases of weights λ such that the canonical
class of the corresponding parabolic moduli space, which depends only on the rank, number of
points, and the flag types of λ, admits a square root. This condition often appears in the context
of geometric quantization under the term metaplectic correction (see also [4]) and it produces
a projective connection on the push-forward of the line bundle obtained by modifying Lλ,k
by the square root. The proof in the above reference makes use of a correspondence between
parabolic bundles on a curve with rational weights, and holomorphic bundles on an associated
elliptically fibered complex surface. However, for moduli spaces of parabolic bundles, the
condition on the existence of a square root of the canonical bundle is not always satisfied.

In [26], Bjerre proved the existence of a (unique) flat projective connection for the moduli
space of parabolic vector bundles via a gauge theoretic description of the moduli space. An
important step in the proof was to remove the condition on the existence of a square root by
passing to a different moduli space with altered weights.1) 2) The results of Bjerre, Scheinost-
Schottenloher, and Zakaria stated above work only for curves of genus g ≥ 2 and exclude the
important case of genus zero curves with marked points. The connection on conformal blocks
for genus zero curves is known as the Knizhnik-Zamolodchikov connection, and it has been
extensively studied from different perspectives.

The motivation of the present paper is to give an affirmative answer to the above question
for general G and curves of all genus using algebro-geometric methods applied directly to the
moduli spaces in question. To state the result precisely, first note that the curve C and parabolic
weights λ determine an orbifold curve C (cf. Appendix C and Lemma C.1). Our main result
is the following:

Main Theorem. Let C → S be a versal family of n-pointed smooth projective curves,
and letG be a simple, simply connected complex algebraic group. Assume that the genus g(C )
of the orbifold curve determined by the weights λ satisfies g(C ) ≥ 2, and if G = SL2 or Sp4,
g(C ) ≥ 3. Let π : Mpar,rs

G → S be the relative moduli space of regularly stable parabolic G
bundles on C for some fixed parabolic weights λ. Let Lφ be the determinant of cohomology
line bundle on Mpar,rs

G determined by a choice of representation φ : G → SLr. Then for any
a ∈ Q, for which L⊗aφ defines a line bundle on Mpar,rs

G , the coherent sheaf π∗(L⊗aφ ) has a
natural flat projective connection.

Observe that we can allow the genus ofC to be zero or one in the above theorem, provided
some inequalities are satisfied (cf. Example B.2 below). It is reasonable to expect that the TUY
connection for conformal blocks and the parabolic Hitchin connection constructed in the Main
Theorem coincide under the identification mentioned above. We postpone this question for a
future work.

1) After the present paper was posted to the arXiv we received a preliminary version of the work of
Andersen-Bjerre attributed here [3].

2) Subsequent to the submission of this paper, in May 2023 a draft of the thesis of Zakaria Ouaras [56]
appeared in which the author proves the existence of a unique flat projective connection in the case of moduli
spaces of parabolic vector bundles with arbitrary fixed determinant and genus g ≥ 2.
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Key difference in the parabolic case. Before proceeding further, we describe the key
difference in the parabolic set-up. The moduli space of principal G-bundles satisfies a “mono-
tone” condition: the first Chern class of the moduli space is a multiple of the Chern class of the
prequantum line bundle. This property is an important technical point in Hitchin’s construction
of the connection (cf. [43, eqs. (2.8) and (3.9)]), and it leads to a solution to the van Geemen-de
Jong condition in Theorem 2.2 (i) below.

The main new feature in the case of parabolic bundles is the higher rank of the Picard
group of the moduli space, and because of this monotonicity no longer holds.

Main Ideas. The key ideas and methods used this paper to address the lack of mono-
tonicity mentioned above are the following:

• The fiducial symbol coming from the usual construction of Hitchin connection can be
naturally modified to a new condition that now satisfies the van Geemen-de Jong condi-
tion (see (50)).

• This modification is facilitated by another crucial ingredient, which is a categorical equiv-
alence of “π-bundles” on a ramified cover Ĉ → C with parabolic bundles on C ([66],
[19], [8] and [67]).

• We prove and use an equivariant analog of a result of Beilinson-Schechtman [16] con-
necting classes of Atiyah algebras obtained as equivariant push-forwards of a differential
graded Lie algebra with those associated to the determinant of cohomology of the uni-
versal bundle.

• Finally we use the fact that the line bundles on moduli space of parabolic bundles adapted
to the parabolic weights correspond exactly to the restriction of the determinants of co-
homology to the locus of orbifold bundles (cf. [24], [28]).

We now discuss some applications of the main theorem mentioned above. Let H be a
simple algebraic group with nontrivial fundamental group, and let H̃ be its simply connected
cover. Let π : Mpar,rs,0

H → S be the neutral component of the relative moduli space of regularly
stable parabolic H bundles on C → S for some fixed parabolic weights λ, which we assume
lift to weights for H̃ . As before, let Lλ,k be the parabolic determinant of cohomology. It is
natural to ask whether the coherent sheaf π∗Lλ,k carries a projectively flat connection. A direct
corollary of the main theorem is the following:

Corollary 1.1. For any simple group H , the coherent sheaf π∗Lλ,k is locally free and
carries a flat projective connection whose symbol is the same that for that for the simply con-
nected cover H̃ .

Observe that moduli spaces of parabolic bundles are not necessarily Fano, and hence we
cannot use a Grauert-Riemenschneider type vanishing theorem as in the nonparabolic case to
conclude local freeness via vanishing of higher cohomologies. Furthermore, since H is not
simply connected, we cannot reconstruct these space via affine Lie algebraic methods.

We now briefly recall the earlier constructions of the Hitchin/WZW/TUY connections
in the nonparabolic setting. Hitchin’s construction of a projective connection in the closed
(nonparabolic) case draws parallels with Welters’ work on theta functions for abelian va-
rieties [76]. The starting point is the description of first order deformations of the triple
(MI ,L⊗k, s), where s ∈ H0(MI ,L⊗k), in terms of the first hypercohomology group of
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the complex At(L⊗k) → L⊗k constructed using s. Here, At(L) denotes the Atiyah alge-
bra of L. Though Hitchin’s methods were differential geometric in nature, in [35] van Geemen
and de Jong reinterpreted the construction in an algebraic manner closer to that of [76]. Us-
ing this framework, along with the fundamental results of Beilinson-Schechtman [16] and
Bloch-Esnault [27], Baier-Bolognesi-Martens-Pauly [59] reproduced Hitchin’s connection for
G = SLr. Moreover, their proof works over fields of positive characteristic, with a few extra
assumptions.

The Hitchin connection for G = GLr bundles had previously been found by Belkale
[15]. Other algebro-geometric constructions of the Hitchin connection are given in [33], [63],
[60], and by Ginzburg in [36]. Ref. [70] uses the results of [16] to extend Hitchin’s connection
for logarithmic connections and the moduli space of semistable torsion-free sheaves on nodal
curves. The approach in the present paper is strongly motivated by [59] and [36].

Further generalizations. In fact, it is possible to work in the general setting of Γ-
Aut(G)-bundles. A moduli space of such pairs with a fixed local type has been constructed by
Balaji-Seshadri [9] (in the case of Γ-G-bundles in characteristic zero) and by Heinloth [40] (in
the more general settings of Bruhat-Tits torsors in the sense of Pappas-Rapoport [57], and over
fields of arbitrary characteristic). We note that it has been not verified whether the stability
conditions of [9] and [40] coincide. Nevertheless, the results in Section 3 generalize verbatim
to moduli spaces of Γ-Aut(G)-bundles. However, in order to produce a Hitchin connection (as
described in Section 5), the following additional information would be required:

• the base of the Hitchin map for the moduli of parahoric Higgs bundles for (Γ,Aut(G))
is affine, and the fibers of the Hitchin map are connected;

• the complement of the cotangent bundle of the moduli space of Γ-Aut(G)-bundles in the
parahoric Higgs bundles moduli space has codimension at least 2.

There are some results in the direction of the first point by B. Wang [75], who extends the
result of Donagi-Pantev [29] to the set-up of parahoric Γ-G-Higgs bundles. In full generality,
however, the two items above are not presently available in the literature, and we therefore
restrict ourselves here to the setting of parabolic bundles.

Outlook. The paper [59] cited above argues that it is of independent interest to con-
sider the Hitchin connection over field of positive characteristics from the view point of the
Grothendieck-Katz p-curvature conjecture and the modular representations of the mapping
class group. The constructions in this paper follow those of [59] and are likely to work (af-
ter suitable modifications of the techniques used here) over fields of characteristic p > 0,
unless p ∈ {2, 3, h∨(g), k, k + h∨}. But even given these constraints on p it is not clear
whether π∗Lλ,k is locally free. For this, it would be enough to show that H1(Mpar,ss

G ,Lλ,k)
vanishes. However, in the parabolic case the moduli spaces Mpar,ss

G are not Fano in general,
even in characteristic zero. Moreover, there is no suitable Grauert-Riemenschneider vanishing
theorem.

A uniform approach to this vanishing result would follow if one can show that Mpar,ss
G

are Frobenius-split. There is some work in this direction for G = SL2 by Mehta-Ramadas
[52] and by Sun-Zhou [71], who show that semistable parabolic bundles of rank r and fixed
determinant are globally F -regular type. A general result on Frobenius splitting for moduli of
parabolic bundles is presently missing in the literature.
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Organization. This paper is organized as follows: In Section 1, we review the con-
struction of the projectively flat connection in the general set-up following Hitchin [43] and
van Geemen-de Jong [35]. In Section 3, we review the generalizations of Hitchin’s symbol and
Kodaira-Spencer maps in the parabolic bundle context. The important result here is Theorem
3.3, which relates the fiducial Hitchin symbol to the relative extension classes of the Atiyah
algebras of the G-bundle and the determinant of cohomology.

Finally, in Section 5 we prove that the modified Hitchin symbol satisfies the constraint
equations of van Geemen-de Jong. This leads to the proof of the Main Theorem. The last three
sections contains some definitions and technical results on parabolic bundles, invariant push-
forwards, and vanishing theorems, that are used at various points in the paper. In particular,
the determinant of cohomology line bundles Lφ associated to a linear representation φ of G
are defined there. Parabolic determinant of cohomology line bundles are defined in A.12 and
A.16. We also explain the admissible values of k, how to realize the parabolic determinant
of cohomology bundles via the moduli space of Γ-G-bundles, and the invariant push-forward
functor construction.

For the rest of the paper we emphasize that the ground field of varieties and schemes is
always C, and we shall freely go back and forth between Zariski and analytic topologies.

2. Flat projection connection following Hitchin–van Geemen–de Jong

Let π : M → S be a smooth surjective proper map of smooth varieties with connected
fibers and L → M a line bundle. In this section we briefly recall a general approach for
constructing connections on the coherent sheaf π∗L. This is due to Hitchin [43] in the Kähler
setting (generalizing Welters [76]) and to van Geemen–de Jong [35] in the algebro-geometric
setting.

2.1. Heat operators. From [35, Sec. 2.3] we recall the notion of a heat operator and
associated connections. For i ≥ 1, letD≤i(L) (resp.D≤iM/S(L)) denote the sheaf of differential
operators (resp. relative differential operators) of order at most i on the line bundle L.

Consider the subsheafWM/S(L) = D≤1(L) + D≤2
M/S(L) of the sheaf of second order

differential operators on L. It fits into the following short exact sequence:

(1) 0→ D≤1
M/S(L)→WM/S(L)→ π∗TS ⊕ Sym2 TM/S → 0 .

Note that OS ⊂ D≤1
M/S(L) ⊂ WM/S(L).

Definition 2.1. A heat operator D on L is a map D : π∗TS → WM/S(L) whose com-
position with the natural projection mapWM/S(L)→ π∗TS , given by (1), is the identity map of
π∗TS . A projective heat operator D on L is an OS-linear map D : TS → (π∗WM/S(L))/OS
such that any local lifting gives a heat operator.

Given a heat operator D, we can construct a connection ∇(D) : π∗L → π∗L ⊗ Ω1
S on

the coherent sheaf π∗L as follows: Let θ ∈ TS(U), where U ⊂ S an open subset. Then by
definition, D(π−1θ) is a second order differential operator on L(π−1(U)). Let s be a section
of π∗L(U) and f ∈ OS(U). Then D(π−1θ)((f ◦ π)s) = f · D(π−1θ)(s) + θ(f) · s, in
other words, D(π−1θ) satisfies the Leibniz rule. Indeed, this follows from the requirement in
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Definition 2.1 that the heat operator is the standard first order operator on the base. Hence, we
get a connection∇(D).

2.2. Existence of a heat operator. The Kodaira-Spencer map is given by:

KSM/S : TS −→ R1π∗TM/S .

On the other hand, we have the coboundary map

µL : π∗ Sym2 TM/S −→ R1π∗TM/S ,

occurring in the long exact sequence obtained from the push forward π∗ of the fundamental
short exact sequence of differential operators

0 −→ TM/S
∼= D≤1

M/S(L)/OM −→ D≤2
M/S(L)/OM

s2−→ Sym2 TM/S −→ 0 ,

where s2 is the symbol map. Given ρ : TS → π∗(Sym2 TM/S), van Geemen and de Jong
[35] analyze necessary conditions so that this map ρ arises as a symbol of a projective heat
operator. More precisely, one seeks a map D : TS →

(
π∗
(
D≤1(L) + D≤2

M/S(L)
))/
OS , such

the following diagram commutes:

TS
(
π∗
(
D≤1(L) +D≤2

M/S(L)
))
/OS

(
π∗D≤2(L)

) /
OS

π∗(Sym2 TM/S) .

D

ρ

s2

The following theorem is one of the main results in [35] (see [35, Sec. 2.3.7]). It gives an
algebro-geometric perspective on Hitchin’s construction of the flat projective connections for a
family of Kähler polarizations in [43, Thm. 1.20].

Theorem 2.2 (EXISTENCE CRITERIA). Given a symbol map ρ : TS → π∗ Sym2 TM/S ,
with M , L and S as above, there exists a unique projective heat operator D who symbol is ρ if
the following three conditions are satisfied:

(i) (Hitchin, van Geemen-de Jong equation): KSM/S + µL ◦ ρ = 0 in TS;

(ii) (Welters condition) the cup product: ∪ [L] : π∗TM/S → R1π∗OM is an isomorphism;

(iii) π∗OM = OS .

In particular, if the coherent sheaf π∗L is locally free, then P(π∗L) is equipped with a connec-
tion.

In [59], the authors translate Hitchin’s proof of flatness of projective connections into
the abstract formalism of [35]. In the set-up of Theorem 2.2, they prove the following (see
[59, Thm. 4.8.2]):

Theorem 2.3 (FLATNESS CRITERIA). If the following three conditions are satisfied,
then the projective connection that is a consequence of Theorem 2.2 is flat.

(i) For any local sections θ1 and θ2 of TS , the symmetric vector fields ρ(θi) considered as
functions on T ∨M/S Poisson commute (for the standard symplectic structure).

(ii) The map µL is injective.

(iii) π∗TM/S = 0.
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3. Towards a parabolic Hitchin Symbol

In this section we discuss the parabolic analog of the Hitchin symbol. This will turn out
to be the symbol of a natural second order differential operator. The original case of (non-
parabolic) vector bundles is due to Hitchin. We follow and generalize the discussion in [59].
We begin by recalling the notion of a parabolic Atiyah algebra.

3.1. Parabolic bundles and their Atiyah algebras. Let q : C → S be a family of
smooth projective curves with n marked points given by disjoint sections p1, · · · , pn : S → C
of q, and let D = p1 + · · · + pn be the corresponding relative divisor in C. Let π̂ : Ĉ → S be
a family of Γ-Galois covers of the fibers of C, ramified along D̂. In particular, this comes with
a natural projection map p : Ĉ → C such that p(D̂) = D. In order to analyze parabolic Atiyah
algebras for families of parabolic bundles on C, we shall use the notion of Γ-linearized bundles
on the Galois cover Ĉ. The reader is referred to Appendix B for more details.

Let P̂ be a family of Γ-G-bundles on Ĉ, and let P be the family of parabolic G-bundles
obtained by applying the invariant push-forward functor. The relative parabolic Atiyah algebra
is given by:

parAtC/S(P) := pΓ
∗ (AtĈ/S(P̂)) ,

and the strongly parabolic Atiyah algebra is given by:

sparAtC/S(P) := pΓ
∗ (AtĈ/S(P̂)(−D̂)) .

Similarly, we define the sheaf of parabolic endomorphisms Par(P) by pΓ
∗ (ad(P̂)), and the

strongly parabolic endomorphisms SPar(P) by pΓ
∗ (ad(P̂)(−D̂)).

Just as in the case of parabolic vector bundles, these sheaves fit into the following funda-
mental exact sequences

0 −→ Par(P) −→ parAtC/S(P) −→ TC/S(−D) −→ 0 ;

0 −→ SPar(P) −→ sparAtC/S(P) −→ TC/S(−D) −→ 0 .
(2)

Also, as in the case of parabolic vector bundles we get the following quasi-Lie algebra:

(3) 0 −→ ΩC/S −→ (parAtC/S(P)(D))∨ −→ (SPar(P)(D))∨ −→ 0 .

The Cartan-Killing form κg on g = Lie(G) gives an identification

(4) ν−1
g : (SPar(P)(D))∨ ∼−−→ Par(P) .

A more explicit description of these bundles in Lie theoretic terms goes as follows: Let ni
be the nilradical of the Lie algebra of the parabolic subgroup Pi. Consider the adjoint bundle
ad(P) of the parabolic bundle P . The sheaf of strongly parabolic (respectively, parabolic)
endomorphisms is the subsheaf ad(P) such that the residue at pi lies in the Lie algebra ni
(respectively, in Lie algebra of Pi) for each 1 ≤ i ≤ n.
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3.2. Some canonical maps. Now assume the family C → S to be versal with respect to
the divisor D. Universal bundles on relative moduli spaces of bundles exist locally in the étale
topology, and moreover both the associated Atiyah algebra and the adjoint bundle glue together
to extend globally. For convenience of exposition we can therefore assume the existence of a
universal bundle P on the family of curves XparG /Mpar,rs

G with parabolic structure supported
on a relative divisor D base changed to Mpar,rs

G . We have the following useful diagram:

(5)
XparG := C ×S Mpar,rs

G Mpar,rs
G

C S.

πc

pi

πn

πw πe

πs

pi

The above map πc : XparG → S is defined by πc := πs ◦ πw = πe ◦ πn. Recall the duality in
(4). There is a canonical inclusion map

(6) SPar(P) ↪→ Par(P)

whose quotient is supported on D. Composing the evaluation map

π∗nπn∗
(
SPar(P)⊗ π∗wΩC/S(D)

)
−→ SPar(P)⊗ π∗wΩC/S(D)

followed by (6) (tensored with π∗wΩC/S), we obtain the following:

π∗nπn∗
(
SPar(P)⊗ π∗wΩC/S(D)

)
−→ Par(P)⊗ π∗wΩC/S(D) .

Taking duals and applying Serre duality, and then using the identification via ν−1
g in eq. (4),

we get that

(Par(P))∨ ⊗ π∗wTC/S(−D) −→ π∗n

(
πn∗
(
SPar(P)⊗ π∗wΩC/S(D)

)∨)
∼=π∗nR1πn∗

((
SPar(P)(D)

)∨) ∼= π∗n
(
R1πn∗ Par(P)

)
.

This, in turn, gives a map π∗wTC/S(−D)→ Par(P)⊗π∗n
(
(R1πn∗ Par(P))

)
. Applying R1πn∗

and the push-pull formula, we obtain a morphism

R1π∗sTC/S(−D) −→ R1πn∗ (Par(P))⊗
(
R1πn∗ (Par(P))

)
.

Further applying πe∗ and identifying πe∗TMpar/S , we get a map

(7) ρsym : R1πs∗TC/S(−D) −→ πe∗

(
T ⊗2
Mpar,rs
G /S

)
.

We briefly recall the notion of a strongly parabolic Higgs bundle on the family C → S.
Let P be a parabolic G bundle on a curve C with weights α, and consider the sheaf of strongly
parabolic endomorphisms SPar(P). A strongly parabolic Higgs pair (P, θ) consists of a
parabolic bundle P and a section θ of SPar(P) ⊗ ΩC/S(D). We refer the reader to [21, Sec.
3–4] for the notion of semistability and the construction of the moduli spaceHpar,ssα,G (or simply
denoted byHpar,ssG ) (see also [11, Sec. 5], [34, Sec. 5]).
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The Hitchin map assigns to a parabolic Higgs pair (P, θ) the evaluation on θ of a basis
of invariant polynomials on g. Since G is simple, the lowest degree is quadratic; it produces a
map:

Hit : Hpar,ssG −→ πs∗Ω
⊗2
C/S(D) ,

where Ω⊗2
C/S(D) is the space of holomorphic relative quadratic differentials with simple poles

along the divisor D. Now consider the multiplication map

R1πn∗TXparG /Mpar,rs
G

(−D)⊗ πn∗
(
SPar(P)⊗ ΩXparG /Mpar,rs(D)

)
−→ R1πn∗ Par(P) .

This gives the following map:

R1πn∗TXparG /Mpar,rs
G

(−D) −→
(
πn∗
(
SPar(P)⊗ ΩXparG /Mpar,rs

G
(D)

))∨ ⊗R1πn∗ Par(P) ,

which, by relative Serre duality (4), and after applying πe∗ (see (5)) together with symmetriza-
tion, gives a map

(8) ρHit : R1πs∗TC/S(−D) −→ πe∗ Sym2 TMpar,rs
G /S .

Observe that the cotangent bundle T ∨
Mpar,rs
G /S

embeds intoHpar,ssG . We rewrite the Hitchin map
via the following commutative diagram as in the nonparabolic case:

(9)

T ∨
Mpar,rs
G /S

T ∨
Mpar,rs
G /S

⊗ T ∨
Mpar,rs
G /S

πn∗Ω
⊗2
XparG /Mpar,rs

G
(D) .

∆

Hit Tr

Here, ∆ is the diagonal map, and the operator Tr is the pairing given by symmetric form
on SPar(P) defined by the Killing form κg; recall that T ∨

Mpar,rs
G /S

is given by sections of
SPar(P) ⊗ ΩXparG /Mpar,rs

G
(D). Composing with πe∗ and applying relative Serre duality we

get that the dual of the vertical map Tr in (9) is ρHit in (8). The two maps ρHit and ρsym
(constructed in (7)) are hence identified.

Proposition 3.1. The map ρHit in (8) coincides with ρsym given in (7).

Proposition 3.1 was proven in the (nonparabolic) vector bundle case in [59, Lemma
4.3.2].

3.3. Deformation of Mpar,rs
G via pointed curves. Recall that we have an isomor-

phism between the moduli space of parabolic bundles with fixed parabolic weights λ on a
curve C and the moduli space of Γ-G-bundles on a Galois cover Ĉ → C of type τ . Here, the
cover Ĉ and type are related to the parabolic weights. We refer the reader to Appendix B for
more details. We will need the following lemma, the proof of which is straightforward.

Lemma 3.2. There is a natural isomorphism π∗wTC/S(−D)
∼−→ TXparG /Mpar,rs

G
(−D),

where πw is the map in (5). Furthermore:
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(i) R1πc∗
(
TXparG /Mpar,rs

G
(−D)

) ∼= R1πs∗
(
TC/S(−D)

)
;

(ii) R1πn∗
(
TXparG /Mpar,rs

G
(−D)

) ∼= π∗eR
1πc∗

(
TXparG /Mpar,rs

G
(−D)

)
,

where the maps are as in (5).

Consider the relative parabolic Atiyah algebra:

parAtXparG /Mpar,rs
G

(P) := pΓ
∗
(
At

Ĉ×SMpar,rs
G /Mpar,rs

G
(P̂)
)
,

and the fundamental exact sequence (cf. (2)) known as the relative Atiyah sequence:

(10) 0 −→ Par(P) −→ parAtXparG /Mpar,rs
G

(P) −→ TXparG /Mpar,rs
G

(−D) −→ 0 .

Now since πn∗TXparG /Mpar,rs
G

(−D) = 0 and R2πn∗ Par(P) = 0, applying R1πn∗ to the above
we get the short exact sequence

(11)
0→ R1πn∗ Par(P) −→ R1πn∗

(
parAtXparG /Mpar,rs

G
(P)
)
−→ R1πn∗TXparG /Mpar,rs

G
(−D)→ 0 .

The relative extension class of the exact sequence in (11) is an element

α(P,λ) ∈ R1πe∗((R
1πn∗TXparG /Mpar,rs

G
(−D))∨ ⊗R1πn∗ Par(P))

∼= R1πe∗(π
∗
e(R

1πs∗TC/S(−D))∨ ⊗R1πn∗ Par(P))

∼= R1πe∗(π
∗
e(R

1πc∗TXparG /Mpar,rs
G

(−D))∨ ⊗R1πn∗ Par(P)) .

(12)

The last two isomorphisms are constructed using Lemma 3.2. The exact sequence of tangent
sheaves induced by the map πe : Mpar,rs

G → S is:

(13) 0 −→ TMpar,rs
G /S −→ TMpar,rs

G
−→ π∗eTS −→ 0 .

Since by assumption the family of pointed curves is versal, the Kodaira-Spencer map gives an
isomorphism KSC/S : TS ∼= R1πs∗TC/S(−D), which, pulling back via πe and using Lemma
3.2, gives

(14) π∗eTS ∼= π∗eR
1πs∗

(
TC/S(−D)

) ∼= R1πn∗(TXparG /Mpar,rs
G

(−D)) .

The identification in (14) and the equivariant version of [70, eq. (3.10)] together produce the
following commutative diagram, which relates (11) and (13):

R1πn∗ Par(P) R1πn∗
parAtXparG /Mpar,rs

G
(P) R1πn∗

(
TXparG /Mpar,rs

G
(−D)

)

TMpar,rs
G /S TMpar,rs

G
π∗eTS

∼= ∼=

The Kodaira-Spencer class for the family πe : Mpar,rs
G → S gives a map

KSMpar,rs
G /S : TS −→ R1πe∗TMpar,rs

G /S
∼= R1πe∗

(
R1πn∗ Par(P)

)
.
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The cup product by α := α(P,λ) produces maps

R1πc∗
(
TXparG /Mpar,rs

G
(−D)

)

R1πc∗
(
TXparG /Mpar,rs

G
(−D)

)
⊗R1πe∗(π

∗
e(R

1πc∗TXparG /Mpar,rs
G

(−D))∨ ⊗R1πn∗ Par(P))

(
R1πc∗

(
TXparG /Mpar,rs

G
(−D)

)
⊗
(
(R1πc∗TXparG /Mpar,rs

G
(−D)

))∨
⊗R1πe∗(R

1πn∗ Par(P))

R2πc∗ Par(P) ∼= R1πe∗
(
R1πn∗ Par(P)

)
.

∪α

∼=

The isomorphism in the last step uses the identification R1πn∗ Par(P) ∼= TXparG /Mpar,rs
G

, along
with the facts that Mpar,rs

G has no global tangent vector fields relative to S (cf. Lemma 5.6)
and πn∗ Par(P) is zero. This forces the Grothendieck spectral sequence to collapse.

We may summarize the discussion and identifications above with the following commu-
tative diagram:

(15)

TS R1πs∗(TC/S(−D)) R1πc∗
(
TXparG /Mpar,rs

G
(−D)

)

R1πe∗TMpar,rs
G /S

∼= R1πe∗
(
R1πn∗ Par(P)

)
.

∼=

KSC/S

KS
M
par,rs
G

/S
Φ

∼=

∪α

Here Φ is the map induced by the cup product with the class α(P,λ) (see eq. (12)) preceded
by the isomorphism of R1πs∗

(
TC/S(−D)

)
with R1πc∗

(
TXparG /Mpar,rs

G
(−D)

)
given in Lemma

3.2.

3.4. A fundamental commutative diagram. Consider R1πn∗ of the sequence (2) ap-
plied to sparAtXparG /Mpar,rs

G
(P), where πn is the map in (5):

(16)
0 R1πn∗(π

∗
wΩC/S) R1πn∗((

sparAtXparG /Mpar,rs
G

(P)(D))∨)

R1πn∗((SPar(P)(D))∨) −→ 0 .

Let β := β(P,λ) be the relative extension class with respect to πe (see (5)) of the extension
(16). Then we have a diagram:

(17)

R1πs∗TC/S(−D) R1πe∗TMpar,rs
G /S

πe∗
(
Sym2 TMpar,rs

G /S

)
.

−Φ

ρsym
∪β



Biswas, Mukhopadhyay and Wentworth, Hitchin connection for parabolic G-bundles 13

We have the following key result which relates all three maps. In the (nonparabolic) vector
bundle case, this was proven in [59, Prop. 4.7.1].

Theorem 3.3. The diagram (17) commutes. In other words,

Φ + ∪β(P,λ) ◦ ρsym = 0

as a morphism R1πs∗TC/S → R1πe∗TMpar,rs
G /S .

Proof. Pull back the short exact sequence in (16) to XparG via the map πn in (5). Tensor-
ing the resulting sequence with Par(P) we obtain the following exact sequence

Par(P)⊗ π∗n
(
R1πn∗π

∗
wΩC/S

)
Par(P)⊗ π∗n

(
R1πn∗

(
(sparAtXparG /Mpar,rs

G
(P)(D))∨

))

Par(P)⊗ π∗n
(
R1πn∗

(
(SPar(P)(D))∨

))
.

Using κg, we can rewrite this as

Par(P)⊗ π∗n
(
R1πn∗π

∗
wΩC/S

)
Par(P)⊗ π∗n

(
R1πn∗

(
(sparAtXparG /Mpar,rs

G
(P)(D))∨

))

Par(P)⊗ π∗n
(
R1πn∗ (Par(P))

)
.

The assumptions ensure that R1πn∗π
∗
wΩC/S = OMpar,rs

G
. Dualize (10) to get

0 −→ π∗wΩC/S(D) −→
(parAtXparG /Mpar,rs

G
(P)
)∨ −→ Par(P)∨ −→ 0 .

Tensoring by Par(P) ⊗ π∗wTC/S(−D) and taking the duals (outside bracket) we get the short
exact sequence

0 −→ Par(P) Par(P)⊗
(
(parAtXparG /Mpar,rs

G
(P))⊗ π∗wΩC/S(D)

)∨
Par(P)⊗

(
Par(P)⊗ π∗wΩC/S(D)

)∨ −→ 0 .

Now observe that the dual of the evaluation gives maps(
parAtXparG /Mpar,rs

G
(P)⊗ π∗wΩC/S(D)

)∨ −→ (
π∗nπn∗

(
parAtXparG /Mpar,rs

G
(P)⊗ π∗wΩC/S(D)

))∨
= π∗n

(
πn∗
(
parAtXparG /Mpar,rs

G
(P)⊗ π∗wΩC/S(D)

))∨
∼= π∗n

(
R1πn∗

(
(parAtXparG /Mpar,rs

G
(P)(D))∨

))
−→ π∗n

(
R1πn∗

(
(sparAtXparG /Mpar,rs

G
(P)(D))∨

))
.

In the above equation we have used the isomorphism

R1πn∗((
parAtXparG /Mpar,rs

G
(P)(D))∨) ∼= (πn∗(

parAtXparG /Mpar,rs
G

(P)(D)⊗ π∗wΩC/S))∨
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coming from relative Serre duality and the dual of the natural inclusion map

sparAtXparG /Mpar,rs
G

(P) ↪→ parAtXparG /Mpar,rs
G

(P) .

We now reverse engineer the construction of the Hitchin morphism ρsym:(
Par(P)⊗ π∗wΩC/S(D)

)∨ −→ π∗nπn∗
((

Par(P)(D)⊗ π∗wΩC/S
))∨

−→ π∗nπn∗
((

SPar(P)(D)⊗ π∗wΩC/S
))∨

∼= π∗n
(
R1πn∗

(
(SPar(P)(D))∨

))
(by relative Serre duality)

∼= π∗n
(
R1πn∗ (Par(P))

)
(by trace pairing).

Consider the natural inclusion map π∗wTC/S(−D) ↪→ Par(P)⊗ Par(P)∨⊗π∗wTC/S(−D), and
pull back the short exact sequence

Par(P) ↪→ Par(P)⊗ (parAtXparG /Mpar,rs
G

(P))∨⊗π∗wTC/S(−D) � (Par(P)⊗π∗wΩC/S(D))∨.

Finally, by [59, Lemma 4.5.1], we obtain an isomorphism of the extensions:
(18)

Par(P) parAtXparG /Mpar,rs
G

(P) π∗wTC/S(−D)

Par(P) Par(P)⊗ (parAtXparG /Mpar,rs
G

(P))∨⊗π∗wTC/S(−D) Par(P)⊗(Par(P)⊗ π∗wΩC/S(D))∨

Par(P) Par(P)⊗(parAtXparG /Mpar,rs
G

(P)⊗ π∗wΩC/S(D))∨ Par(P)⊗(Par(P)⊗ π∗wΩC/S(D))∨.

(−1)

Here, the minus sign (−1) indicates the negative of the projection map. Following the case of
vector bundles in [59], after composing we arrive at a commutative diagram

(19)

Par(P) parAtXparG /Mpar,rs
G

(P) π∗wTC/S(−D)

Par(P) Par(P)⊗
(
π∗nπn∗(

parAtXparG /Mpar,rs
G

(P)⊗ π∗wΩC/S(D))
)∨

Par(P)⊗
(
π∗nπn∗ Par(P)⊗ π∗wΩC/S(D)

)∨
Par(P) Par(P)⊗π∗n

(
R1πn∗

(
(sparAtXparG /Mpar,rs

G
(P)(D))∨

))

Par(P)⊗π∗n
(
R1πn∗(Par(P))

)
.

(−1)

Now we take R1πn∗ of the exact sequences in the first and third rows in (19) to obtain
(20)

R1πn∗ Par(P) R1πn∗(
parAtXparG /Mpar,rs

G
(P)) R1πn∗(π

∗
wTC/S(−D))

R1πn∗ Par(P) R1πn∗ Par(P)⊗R1πn∗(
sparAtXparG /Mpar,rs

G
(P)(D))∨ R1πn∗ Par(P)⊗R1πn∗(Par(P)).

(−1)
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The connecting homomorphism for (πe)∗ gives

R1πs∗TC/S(−D) R1πe∗TMpar,rs
G /S

πe∗
(
TMpar,rs

G /S ⊗ TMpar,rs
G /S

)
R1πe∗TMpar,rs

G /S .

−Φ

ρsym

The negative sign −Φ appears above due to the factor (−1) in (18); recall that Φ (see eq. (15))
is the connecting homomorphism for the direct image by πe of the exact sequence in (11). The
proof of the theorem will be complete if we can show that the underlying map is ∪β(P,λ).
But this follows from the fact that the bottom row of (20) is just the exact sequence

0 OMpar
G

∼= R1πn∗ΩXparG /Mpar,rs
G

R1πn∗(
sparAtXparG /Mpar,rs

G
(P)(D))∨

R1πn∗ Par(P) −→ 0

tensored with TXparG /Mpar,rs
G

, and β(P,λ) is the relative extension class of the above with re-
spect to πe.

4. Cupping with the parabolic determinant of cohomology

In this section, we state and prove a key result that compares the cupping map by the
class of the parabolic determinant of cohomology to that of the usual determinant of cohomol-
ogy. This will be crucial for later arguments. Let ~P = (P1, . . . , Pn) be an n-tuple of standard
parabolic subgroups, and consider the stack ParG(C, ~P ) of quasi parabolic bundles on a curve
as recalled in Definition A.2 and let Det(V) (or simply Det) denote the determinant of coho-
mology line bundle on a scheme T parametrizing a family V of vector bundles on a smooth
projective curve C. Recall (cf. Proposition A.5) that any line bundle on ParG(C, ~P ) is of the
form Det(E(V))⊗a

⊗
K , where E(V) is a vector bundle associated to a chosen representation

φ : G→ SL(V ), a ∈ Q and K ∈ Pic(G/P1× · · · ×G/Pn)⊗Q. We will refer to the rational
number a as the level (see Definition A.16).

Theorem 4.1. Let L be an element of Pic(Mpar,rs
G,β ) ⊗ Q of level a. Then as linear

maps πe∗ Sym2 TMpar,rs
G,β /S → R1πe∗TMpar,rs

G,β /S , we have: ∪ [L] = ∪ a[Det], where Det is
the determinant of cohomology (nonparabolic) line bundle.

Theorem 4.1 is proved in several steps. The strategy of the proof is to reduce to the
case of parabolic vector bundles with full flags and apply the technique of abelianization by
restricting to generic fibers of the Hitchin map.

4.1. Reduction to the SLr case. Since G is simple (hence semisimple), any short ex-
act sequence of finite dimensional G-modules splits. In particular, for a faithful irreducible
G-module V , the G-module End(V ) decomposes as g ⊕ W0. Fix a complement W0 of the
G-submodule g. Given an injective homomorphism G ↪→ SLr(C), we have an embedding
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Mpar,ss
G,β ↪→ Mpar,ss

SLr,α
which restricts to a map f : Mpar,rs

G,β → Mpar,s
SLr,α

. Using the splitting of
the G-module slr(C), the tangent bundle f∗Mpar,s

SLr,α
splits as f∗TMpar,s

SLr,α
/S = TMpar,rs

G,β /S ⊕W .
This gives splittings of tensor powers, duals etc. We have the following commutative diagram:

(21)

π∗ Sym2 TMpar,s
SLr,α

/S R1π∗TMpar,s
SLr,α

/S

πG∗ Sym2 TMpar,rs
G,β /S R1πG∗TMpar,rs

G,β /S ,

∪L

∪L

where π : Mpar,s
SLr,α

→ S and πG : Mpar,rs
G,τ → S are the projections (this was earlier

denoted by πe, but here we simply write π and πG); the vertical maps in (21) are given by
the above mentioned splittings. Here, L is an element of the rational Picard group of Mpar,s

SLr,α
,

and πG = f ◦ π. The homomorphism π∗ Sym2 TMpar,s
SLr,α

/S → πG∗ Sym2 TMpar,rs
G,β /S in (21) is

surjective. Thus we have proved the following proposition:

Proposition 4.2. Consider two elements L1 and L2 in Pic(Mpar,s
SLr,α

) ⊗ Q. If the maps
∪[L1] and ∪[L2] agree on π∗ Sym2 TMpar,s

SLr,α
/S , then they also agree on πG∗ Sym2 TMpar,rs

G,β /S .

4.2. Reduction to the SLr with full flags. In this step, we will show that in order to
prove Theorem 4.1 it is enough to assume that α corresponds to weights for full flags. This
step is only required when r > 2.

Changing weights without changing stability. Let D = {p1, · · · , pn} ⊂ C be the
parabolic divisor. Consider parabolic vector bundles of rank r. For any 1 ≤ i ≤ n, let

(22) αi,j = mi,j/`, 1 ≤ j ≤ r,

be the parabolic weights at pi, where mi,j and ` are nonnegative integers. Note that for any i,
the integers mi,j , 1 ≤ j ≤ r, need not be distinct and the weights are assigned to full flags.
We will reformulate a general notion of parabolic bundles for which the quasiparabolic flags
are not necessarily complete in the following way: We will set the quasiparabolic flag at each
pi to be complete flags, but two different terms in the filtration can have same parabolic weight.
This reformulation does not alter any of the stability and semistability conditions.

Fix a vector bundle E of rank r on X . Let E∗ be a parabolic structure on E of the above
type. Let E′∗ be another parabolic bundle satisfying the following conditions:

(i) The underlying holomorphic vector bundle for E′∗ is E itself,

(ii) the quasiparabolic flag for E′∗ coincides with that of E∗ at each pi (recall that the quasi-
parabolic flags are complete but two different subspaces of Epi can have same parabolic
weight), and

(iii) for any term Fi,j ⊂ Epi of the quasiparabolic flag at pi, if αi,j and α̃i,j are the weights
of Fi,j in E∗ and E′∗, respectively, then

(23)
∣∣αi,j − α̃i,j∣∣ ≤ 1

3`nr2
.



Biswas, Mukhopadhyay and Wentworth, Hitchin connection for parabolic G-bundles 17

Proposition 4.3. The parabolic vector bundleE′∗ is stable if the parabolic vector bundle
E∗ is stable. Moreover, the parabolic vector bundle E∗ is semistable if the parabolic vector
bundle E′∗ is semistable.

Proof. Assume that E∗ is parabolic stable. Take any subbundle 0 6= F ( E. Let F∗
denote the parabolic structure on it induced by E∗. Since E∗ is parabolic stable, we have

(24) par-deg(F∗)r < par-deg(E∗)r
′ ,

where r′ = rank(F ). From (22) it follows that par-deg(E∗)r
′ − par-deg(F∗)r is an integral

multiple of 1/`, and hence (24) implies that

(25) par-deg(E∗)r
′ − par-deg(F∗)r ≥

1

`
.

Let F ′∗ denote the parabolic vector bundle defined by F equipped with the parabolic structure
induced by E′∗. From (23) we have

par-deg(F ′∗)− par-deg(F∗) ≤
nr′

3`nr2
and par-deg(E∗)− par-deg(E′∗) ≤

nr

3`nr2
.

These imply that

(par-deg(F ′∗)− par-deg(F∗))r ≤
1

3`
and (par-deg(E∗)− par-deg(E′∗))r

′ ≤ 1

3`
.

Adding these

(par-deg(E∗)r
′ − par-deg(F∗)r)− (par-deg(E′∗)r

′ − par-deg(F ′∗)r) ≤
2

3`
,

and hence using (25),

par-deg(E′∗)r
′ − par-deg(F ′∗)r ≥

1

`
− 2

3`
=

1

3`
> 0.

Therefore, E′∗ is parabolic stable. Now assume that E′∗ is parabolic semistable. So we have

(26) par-deg(F ′∗)r ≤ par-deg(E′∗)r
′ ,

From (23) we have

par-deg(F∗)− par-deg(F ′∗) ≤
nr′

3`nr2
and par-deg(E′∗)− par-deg(E∗) ≤

nr

3`nr2
.

These imply that

(par-deg(F∗)− par-deg(F ′∗))r ≤
1

3`
and (par-deg(E′∗)− par-deg(E∗))r

′ ≤ 1

3`
.

Adding these

(par-deg(E′∗)r
′ − par-deg(F ′∗)r)− (par-deg(E∗)r

′ − par-deg(F∗)r) ≤
2

3`
,

So using (26),

par-deg(E∗)r
′ − par-deg(F∗)r ≥ −

2

3`
.

But this implies that par-deg(E∗)r
′−par-deg(F∗)r ≥ 0 because par-deg(E∗)r

′−par-deg(F∗)r
is an integral multiple of 1/`. Hence E∗ is parabolic semistable.
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Let α be a set of weights defining the parabolic structure. We choose a refinement of
α, denoted by α̃, such that for each point pi, the weight-tuple αi consists of distinct weights.
The weights α̃ are a choice of weights for full flags such that the corresponding weights for
the given partial flags is α. By (23), we can always find α̃ by choosing the missing weights
small enough such that the natural forgetful map preserves stability with respect to α̃ and α.
In particular by Proposition 4.3 , we get a natural regular map F : Mpar,ss

SLr,α̃
→ Mpar,ss

SLr,α
fitting

in the following commutative diagram:

(27)
Mpar,ss

SLr,α̃
Mpar,ss

SLr,α

S .

F

π̃
π

Let Mα̃ := F−1(Mpar,s
SLr,α

). Again, by Proposition 4.3, Mα̃ ⊂ Mpar,s
SLr,α̃

. The map F is fibration
by product of flag varieties. By Lemma C.1, the codimension of the complement of Mα̃ in
Mpar,s

SLr,α̃
is at least three. Hence, we have the following isomorphisms (via Hartogs’ Theorem):

(28) R1π̃∗TMpar,s
SLr,α̃

/S
∼= R1π̃∗TM

α̃
/S , π̃∗ Sym2 TMpar,s

SLr,α̃
/S
∼= π̃∗ Sym2 TM

α̃
/S .

The differential of F , along with the isomorphisms (28), induces natural maps

R1π̃∗TMpar,s
SLr,α̃

/S
DF−−−→ R1π̃∗

(
DF ∗(TMpar,s

SLr,α
/S)
)
,

π̃∗ Sym2 TMpar,s
SLr,α̃

/S
Sym2DF−−−−−−−→ π̃∗ Sym2

(
DF ∗(TMpar,s

SLr,α
/S)
)
.

We have the following lemma:

Lemma 4.4. The Leray spectral sequence gives natural isomorphisms:

R1π̃∗
(
DF ∗(TMpar,s

SLr,α
/S)
) ∼= R1π∗

(
TMpar,s

SLr,α
/S

)
,

π̃∗ Sym2
(
DF ∗(TMpar,s

SLr,α
/S)
) ∼= π∗ Sym2

(
TMpar,s

SLr,α
/S

)
.

Proof. For the map F in (27), spaceMα̃ is a fiber bundle over the moduli spaceMpar,s
SLr,α

,
and moreover, the fibers are products of flag manifolds. Hence, we have

(29) F∗OM
α̃

= OMpar,s
SLr,α

and RkF∗OM
α̃

= 0

for all k ≥ 1. Given any vector bundle W on Mpar,s
SLr,α

, using (29) and the projection formula
we have

(30) F∗F
∗W = W and RkF∗F

∗W = 0

for all k ≥ 1. From (30) it follows that

(31) Rkπ̃∗F
∗W = Rkπ∗W .

Now take W = Sym2(TMpar,s
SLr,α

/S) in (31).
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As before, let L be an element of the rational Picard group Pic(Mpar,s
SLr,α

)⊗Q. Using the
isomorphisms in Lemma 4.4 we have the following diagram:

(32)

R1π∗

(
TMpar,s

SLr,α
/S

)

R1π̃∗TMpar,s
SLr,α̃

/S R1π̃∗TM
α̃
/S R1π̃∗

(
DF ∗

(
TMpar,s

SLr,α
/S

))

π̃∗ Sym2 TMpar,s
SLr,α̃

/S π̃∗ Sym2 TM
α̃
/S π̃∗ Sym2

(
DF ∗

(
TMpar,s

SLr,α
/S

))

π∗ Sym2
(
TMpar,s

SLr,α
/S

)
.

∪L

∼=

∪L

DF

∪L

∼=

∼= Sym2DF

∼=

∪L

We note that we have used the same notation L for a line bundle on both Mpar,s
SLr,α̃

and also on
Mpar,s

SLr,α
. The isomorphisms in Lemma 4.4, composed with the differential maps, give natural

maps

(33) R1π̃∗TMpar,s
α̃,SLr

/S −→ R1π∗
(
TMpar,s

α,SLr
/S

)
;

(34) π̃∗ Sym2 TMpar,s
SLr,α̃

/S −→ π∗ Sym2
(
TMpar,s

SLr,α
/S

)
.

With the above notation we have the following proposition:

Proposition 4.5. The maps in (33) and (34) are isomorphisms, and the diagram in (32)
is commutative.

Proof. Consider the differential DF : TMpar,s
SLr,α̃/S

−→ F ∗TMpar,s
SLr,α

/S , and its second
symmetric product

Sym2(DF ) : Sym2TMpar,s
SLr,α̃

/S −→ Sym2(F ∗TMpar,s
SLr,α

/S) = F ∗Sym2(TMpar,s
SLr,α

/S) .

Let β := (DF )∗ : F ∗T ∨
Mpar,s

SLr,α
/S
→ T ∨

Mpar,s
SLrα̃

/S
be the dual of the above homomorphism DF .

Note that Sym2(TMpar,s
SLr,α̃

/S) (respectively, Sym2(F ∗TMpar,s
SLr,α

/S) defines fiberwise quadratic func-

tions T ∨
Mpar,s

SLr,α̃
/S

(respectively, F ∗T ∨
Mpar,s

SLr,α
/S

. Take any z ∈ Mpar,s
SLr,α̃

. For anyw ∈ Sym2(TMpar,s
SLr,α̃

/S)z

and ν ∈ (F ∗T ∨
Mpar,s

SLr,α
/S

)z , we have: (Sym2(DF ))z(w)(ν) = w((DF )∗z(ν)). From this we

have the following commutative diagram of homomorphisms (recall (5)):

(35)

π̃∗Sym2(TMpar,s
SLr,α̃

/S) π̃∗F
∗TMpar,s

SLr,α
/S

R1πs∗TC/S(−D) R1πs∗TC/S(−D)

π̃∗Sym2(DF )

∼= ∼=

Id
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in which π̃∗Sym2(DF ) is an isomorphism, because all other homomorphisms in (35) are iso-
morphisms. This proves that the map in (34) is an isomorphism. The proof that the map in (33)
is an isomorphism is very similar to the proof of it for (34). Now it is evident that the diagram
in (32) is commutative.

Thus we have proved the following proposition:

Proposition 4.6. Consider two elements L1 and L2 in Pic(Mpar,s
SLr,α

) ⊗ Q. If the maps
∪[L1] and ∪[L2] agree on π̃∗ Sym2 TMpar,s

SLr,α̃/S
, then they also agree on π∗ Sym2 TMpar,rs

SLr,α
/S .

4.3. Reduction to abelian varieties. This step is essentially the same as in [43, Prop.
5.2] generalized to the parabolic set-up with the additional information about spectral data with
one node. For completeness, we include the details by following the exposition in [59].

Hitchin Map. Let πs : C → S be a family of n-pointed curves, and let D be the
divisor of marked points. Consider the vector bundle B :=

⊕r
i=2 πs∗K

i
C/S((i− 1)D), and let

πB : B → S be the natural projection map. Let πH : Hpar,ssα̃,SLr
→ S be the relative strongly

parabolic Higgs moduli space parametrizing pairs (P, θ), where P is a parabolic bundle and θ
is a strongly parabolic endomorphism of P twisted by K(D). We refer the reader to [21] for
notions of stability and semistability for strongly parabolic Higgs bundles. Recall the Hitchin
morphism Hit : Hpar,ssα̃,SLr

→ B from Section 3.2. We have the following commutative diagram

(36)
Hpar,ssα̃,SLr

B

S .

Hit

πH
πB

Let B0 denote the collection of points in B such that the corresponding spectral curve (as
described in [13, Sec. 3]) is smooth. The complement of B0 in B is a divisor, since we are
in the case of SLr-Higgs bundles with full flags. This follows from the fact ([37, Lemma 3.1]
and [13, Remark 3.5]) that KrDr−1 is very ample and has sections without multiple zeros in
either of the following cases: g ≥ 2; g = 1 and degree of D ≥ 3

r−1 ; g = 0 and degree of
D ≥ 2 + 3

r−1 . But this is implied by the assumption that the orbifold genus g(C ) ≥ 2 (see
Definition B.1 and also Appendix C). Then via abelianization, it is well-known that the fibers
of Hit−1(~b),~b ∈ B0, are families of abelian varieties A~b over S.

Consider the divisor D := B\B◦ ( B. As in [1, Prop. 4.1], for x ∈ D let Dx to be the
set of characteristic polynomials whose spectral curves are singular over x, and let DU to be
the set of characteristic polynomials whose spectral curves are smooth over each x ∈ D, but
singular over some y /∈ D. Then D = DU ∪

⋃
x∈D Dx.

Now ([1, p. 28]) Dx =
⊕r−1

i=2 H
0(KiDi−1) ⊕ H0(KrDr−1(−x)), and hence is irre-

ducible. By the assumption, KrDr−1 is very ample, which implies that dimDx < dimD.
Similarly, the remaining part of the proof of [1, Prop. 4.1] also goes through under this as-
sumption. We obtain thatDU is the surjective image of an affine bundle over C\D whose fiber
at y is given by

⊕r−2
i=1H

0(KiDi−1)⊕H0(Kr−1Dr−2(−y))⊕H0(KrDr−1(−2y)) .
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Hence, DU is also irreducible.
Thus DU is the unique irreducible component of highest dimension in D. Now by

Bertini’s theorem, a generic point of DU has an irreducible spectral curve with exactly one
node over a point y /∈ D.

Now we let B♥ denote the subspace of B consisting of all points such that the spectral
curve is irreducible and has at most one node outside the divisorD. By the previous discussion,
we get that the codimension of the complement of B♥ in B is at least two. The following lemma
determines the fibers of the Hitchin map over points of B♥.

Proposition 4.7. The fiber of the Hitchin map Hpar,ssα̃,SLr
→ B over any point~b ∈ B♥ is a

quasi-abelian variety.

Proof. Fix a n-pointed Riemann surface (X,D). Let B be the base of the strongly
parabolic Hitchin map. For any ~b ∈ B, let C~b ⊂ KX(D) be the corresponding spectral curve;
let p~b : C~b → X be the natural projection. By assumptions ~b is such that C~b is a nodal curve
with a single node z which is not contained in p−1

~b
(D). Moreover since the curveCb is integral,

we get that the pushforward of a torsion free sheaf to X is locally free.
Consider the compactified Jacobian Jδ(C~b) consisting of rank one-torsion free sheaves

L such that degree of p~b,∗L is zero. Since the node is not a marked point, we get a natural
filtration of sheaves with quotients supported on the divisor D.

(37) p~b,∗(L⊗OC~b(−(r−1)R)) ⊂ · · · ⊂ p~b,∗(L⊗OC~b(−(r−i)R)) ⊂ · · · ⊂ p~b,∗L,

where R is the ramification divisor. As in [13], pushing forward a section φ of p∗~b(KXD)

induces a map φ : p~b,∗L → p~b,∗L ⊗KX(D). Now since the node and the marked points are
disjoint, the section φ gives the required Higgs field as in the case of smooth spectral curves
[37]. This gives the spectral correspondence in the case of degree zero Higgs bundles. Consider
the closed variety of Jδ(C~b) defined as follows:

Prym(C~b, C) = {M ∈ J(C~b) | p~b,∗M = OX}.

Clearly the variety Prym(C~b, C) gives the Hitchin fiber at~b ∈ B♥\B0 (cf. [38, Thm. 6.1]). To
complete the proof we need to show that Prym(C~b, C) is semi-abelian.

Let n : Y → C~b be the normalization and f = p~b◦n the projection of Y toX . The points
of Y over z are a and b, respectively. Let P ⊂ Jδ(Y ) be the Prym for f . Let L → Y × P be
a Poincaré line bundle which is just the restriction of a Poincaré bundle on Y × Jδ(Y ). For
any point y of Y , the line bundle in P (resp. also on Jδ(Y )) obtained by restricting L to y×P
(resp. also on y × Jδ(Y )) will be denoted by Ly. Consider the line bundle A := L∗b ⊗ La
on P (resp. Jδ(Y )); it is independent of the choice of the Poincaré bundle L. Now consider
the projective bundle P(A ⊕ OP ) → P (also on Jδ(Y ) ) and identify the two sections of it
given by A and OA. The resulting varieties BP ⊂ BJδ are semi-abelian. By [18, Thm. 4],
BJδ is identified with Jδ(C~b). Moreover, by the choice of δ, we get BP ⊆ Prym(C~b, C). The
equality follows from the fact that the dimensions of both BP and Prym(C~b, C) are the same.
This completes the proof.
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Vector fields tangent to fibers of Hit. We get natural functions onHpar,ssα̃,SLr
obtained by

pulling back sections ofB∗ toHpar,ssα̃,SLr
via the Hitchin map Hit in (36). Since T ∨

Mpar,s
SLr,α̃

⊂ Hpar,sα̃,SLr
,

and the natural Liouville symplectic form on T ∨
Mpar,s

SLr,α̃
extends to Hpar,sα̃,SLr

, we get Hamiltonian

vector fields onHpar,sα̃,SLr
tangent to the fibers of the parabolic Hitchin map. As the codimension

of the complement of T ∨
Mpar,s

SLr,α̃
inHpar,ssα̃,SLr

is at least two, we conclude that any class L in the ra-

tional Picard group of Mpar,ss
SLr,α̃

extends to entireHpar,sα̃,SLr
. Now the cup product with the relative

Atiyah class of L gives a natural map

(38) πH∗THpar,s
α̃,SLr

/S −→ R1πH∗OHpar,s
α̃,SLr

.

Since the map πB in (36) is affine, it follows that R1πH∗OHpar,s
α̃,SLr

is isomorphic to the locally

free sheaf πB∗
(
R1 Hit∗OHpar,ss

α̃,SLr

)
. We also have the inclusion πHit∗THpar,s

α̃,SLr
/B ↪→ πHit∗THpar,s

α̃,SLr
/S .

Now consider the map obtained by restricting (38), which on pushing forward gives

(39) πB∗
(
πHit∗THpar,s

α̃,SLr
/B
)

πH∗THpar,s
α̃,SLr

/B πB∗
(
R1 Hit∗OHpar,ss

α̃,SLr

)
.

fL

We have the following proposition:

Proposition 4.8. The coherent sheaves πHit∗THpar,s
α̃,SLr

/B and R1 Hit∗OHpar,ss
α̃,SLr

are both

trivial and isomorphic of same rank, where the fibers are just the vector spaces H0(A~b, TA~b)
and H1(A~b, OA~b), respectively, for any for ~b ∈ B0; the isomorphism is given by cup product
by a Kähler class on A~b.

Proof. Cupping with the first Chern class of the pull back of the ample line bundle Lα̃
from Mpar,ss

SLr,α̃
induces a map between coherent sheaves πHit∗THpar,s

α̃,SLr
/B and R1 Hit∗OHpar,ss

α̃,SLr
.

Over B0, the fibers of the coherent sheaf R1 Hit∗OHpar,ss
α̃,SLr

have constant dimension which

equals dimA~b. Similarly over B0, because the fibers of the map πHit are abelian varieties
and the sheaf πHit∗THpar,s

α̃,SLr
/B is locally free and trivial. Moreover, there is an isomorphism

between πHit∗THpar,s
α̃,SLr

/B and R1 Hit∗OHpar,ss
α̃,SLr

induced by the natural isomorphism between

H0(A~b, TA~b) and H1(A~b, OA~b) given by a Kähler class.

Now for ~b ∈ B♥\B0, by Proposition 4.7, we know that the fibers are quasi-abelian
varieties A~b and in particular dimH1(A~b,OA~b) = dimA~b. Since the codimension of the

complement of B♥ in B is at least two and the Hitchin map is flat [11, Corollary 11], [10, The-
orem 1.17], it follows that R1 Hit∗OHpar,ss

α̃,SLr
is locally free on B. As in the case of Abelian

varieties, the cup product by a Kähler form induces an isomorphism of Ext0(A~b,OA~b) with

H1(A~b,OA~b). This shows that the coherent sheaf πHit∗THpar,s
α̃,SLr

/B is trivial over B♥ with fibers
given by functions on B. Moreover cupping with the first Chern class of Lα̃ induces an isomor-
phism of πHit∗THpar,s

α̃,SLr
/B with R1 Hit∗OHpar,ss

α̃,SLr
. Thus the proposition follows from Hartogs’

theorem and the fact that codimension of the complement of B♥ is at least two.

The following result is a direct consequence of Proposition 4.8.
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Corollary 4.9. Let L1 and L2 be two rational line bundles on Mpar,ss
α̃,SLr

, and let ~b be a
generic point of the Hitchin base. Then fL1 = fL2 (see (39)) if and only if the two homomor-
phisms H0(A~b, TA~b) → H1(A~b, OA~b) induced by cupping with the first Chern class of the
restrictions of L1 and L2 are the same.

Now the composition of fL with the natural Hamiltonian vector fields produces a homo-
morphism

(40) hL : πB∗OB ⊗ B∗ −→ R1πH∗OHpar,s
α̃,SLr

.

Observe that this map hL is equivariant with respect to the natural C∗ action on πB∗OB ⊗ B∗
and the natural action of C∗ on R1πH∗OHpar,s

α̃,SLr
is of weight −1. Since H0(A~b, TA~b) is given

by vector fields coming from B∗, we have the following lemma:

Lemma 4.10. The two homomorphisms hL1 and hL2 (see (40)) coincide if and only if
fL1 = fL2 (see (39)).

Finally, we would like to relate the map ∪[L] : π∗ Sym2
(
TMpar,s

SLr,α̃
/S

)
→ R1π∗

(
TMpar,s

SLr,α̃
/S

)
with

the map hL in (40). Observe that π∗ Sym2
(
TMpar,s

SLr,α̃
/S

)
injects into πH∗OHpar,s

α̃,SLr
as the degree

two part. Since the Hitchin map is proper (Lemma 5.7), and its fibers are connected, functions
on the Higgs moduli spaces are all pull-backs of functions on the Hitchin base. As described
earlier, these functions give Hamiltonian vector fields and hence we have a map

(41) π∗ Sym2 TMpar,s
SLr,α̃

/S πH∗OHpar,s
α̃,SLr

πH∗THpar,s
α̃,SLr

.

Cupping with any section γ of R1πH∗ΩHpar,s
α̃,SLr

produces a map
(42)

π∗ Sym2 TMpar,s
α̃,SLr

/S πH∗OHpar,s
α̃,SLr

πH∗THpar,s
α̃,SLr

/S R1πH∗OHpar,s
α̃,SLr

.
∪γ

Consider the inclusion of R1π∗TMpar,s
α̃,SLr

/S into R1πH∗OHpar,s
α̃,SLr

. On the other hand, we have the
following exact sequence

0 −→ TMpar,s
α̃,SLr

/S −→ OHpar,s
α̃,SLr

/I2
Mpar,s

SLr,α̃
−→ OMpar,s

SLr,α̃
−→ 0 ,

where IMpar,s
SLr,α̃

is the ideal sheaf of Mpar,s
SLr,α̃

in the moduli of parabolic Higgs bundles. Since

there are no global tangent vector field on Mpar,s
SLr,α̃

, it follows from the long exact sequence of
cohomology that R1π∗

(
TMpar,s

SLr,α̃
/S

) ∼= R1π∗
(
OHpar,s

α̃,SLr
/I2

Mpar,s
SLr,α̃

)
. Now the restriction induces

another map

(43) R1πH∗OHpar,s
α̃,SLr

R1π∗
(
OHpar,s

α̃,SLr
/I2
M
par,s
SLr,α̃

)
which restricts to the identity map on R1π∗

(
TMpar,s

SLr,α̃
/S

)
. Hence, combining eqns. (42) and
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(43), we have the following diagram
(44)

π∗ Sym2 TMpar,s
SLr,α̃

/S R1π∗

(
TMpar,s

SLr,α̃
/S

)

πH∗OHpar,s
α̃,SLr

πH∗THpar,s
α̃,SLr

/S πH∗THpar,s
α̃,SLr

/S R1πH∗OHpar,s
α̃,SLr

∪γ

∪γ

The same proof as in Hitchin [43, p. 379] (see also [59, Prop. C.2.4]) shows that the above
diagram commutes up to a scalar, and, by construction, the horizontal map at the bottom is the
map hγ (cf. (40)). Thus we proved the following.

Proposition 4.11. Consider two elements L1 and L2 in Pic(Mpar,s
SLr,α̃

) ⊗ Q and let A~b
be as in Corollary 4.9. If the maps between H0(A~b, TA~b)→ H1(A~b,OA~b) induced by cupping
with the first Chern classes of restrictions of L1 and L2 are the same, then they also agree on
π̃∗ Sym2 TMpar,s

SLr,α
/S .

4.4. Abelianization and determinant of cohomology. It is enough to consider the
case of parabolic Higgs bundles of degree zero and rank r with full flag and arbitrary parabolic
weights α̃. Consider a generic point~b of the Hitchin base for the parabolic Higgs moduli space
Hpar,ssα̃ with full flag and weights α̃, and let p̃ : C̃~b → C be the spectral cover ofC determined
by the chosen point~b of the Hitchin base. The map p̃ is of degree r and is fully ramified at the
points p = (p1, · · · , pn). Let q = (q1, · · · , qn) be the inverse image p̃−1(p) of the points
p. It is known [33, 51] that the generic fiber A~b of the Hitchin map at~b is exactly the Jacobian
J(C̃~b). Let L be a line bundle on C̃ giving a point of A~b and consider the push-forward p̃∗L on
C. Consider the divisor D = p1 + · · ·+ pn. There is a natural inclusion of sheaves

(45) p̃∗(L⊗OC̃~b(−(r − 1)R)) ⊂ · · · ⊂ p̃∗(L⊗OC̃~b(−(r − i)R)) ⊂ · · · ⊂ p̃∗L

with quotients supported on D giving a quasiparabolic structure on π∗L at the points p. Here
R is the ramification divisor (p̃∗D)red. Hence, this gives a rational map from A~b to the Mpar

α̃ .
The fiber of the pull-back of the the parabolic determinant of cohomology ParDet(α) to the
abelian variety at the point L ∈ A~b is a rational linear combinations of elements of the form

(i) H0(C̃~b, L)∨ ⊗H1(C̃~b, L)⊗ det(p̃∗L)
χ(π∗L)

r
pi ,

(ii) det Grj F (p̃∗L)pi ⊗ det−1(p̃∗L)pi for all 1 ≤ i ≤ n.

However, observe that the second expression for each pi is independent of L and is equal to the
line O

C̃~b
(−qi)|qi = K

C̃~b |qi
. Indeed, this follows from the facts that

• det Grj F (p̃∗L)pi = Lqi ⊗OC̃~b(−jqi)|qi ⊗OC̃~b(−(j − 1)qi)
−1
|qi

• det(p̃∗L)pi = Lqi

together with the natural flag structure given by (45).
The calculations above show that the pull-back of ParDet(α) to the abelian variety only

depends on the factors of type (1). The map ∪[L] : H0(A~b, TA~b)→ H1(A~b,OA~b) thus depends
only on the level for all L ∈ Pic(Mpar

α̃ )⊗Q. Thus we have proved the following proposition:
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Proposition 4.12. Let L ∈ Pic(Mpar,s
SLr,α̃

)⊗Q, then the natural map induced by the first
Chern class of the restriction of L between H0(A~b, TA~b)→ H1(A~b,OA~b) depends only on the
level of L.

4.5. Proof of Theorem 4.1. For the convenience of the reader let us recall the statement
of Theorem 4.1 from the beginning of the section.

Theorem 4.13. Let L be an element of Pic(Mpar,rs
G,β ) ⊗ Q of level a. Then as linear

maps πe∗ Sym2 TMpar,rs
G,β /S → R1πe∗TMpar,rs

G,β /S , we have: ∪ [L] = ∪ a[Det], where Det is
the determinant of cohomology (nonparabolic) line bundle.

Proof. The proof follows from Propositions 4.2, 4.6, 4.11, and 4.12 and fact that any
line bundle on MG,β is obtained as pulled back of a rational multiple of a line bundle on the
moduli space of parabolic bundles for G = SLr.

5. The parabolic Hitchin connection

In this section we will use Theorem 2.2 and the results from [23] on Ginzburg dglas and
the class of the parabolic determinant of cohomology L to construct a flat projective connection
on the vector bundle πe∗Lk, where πe : Mpar,rs

G → S is the projection.

5.1. Definition of the symbol. We first seek a candidate for the symbol map

ρpar : TS → πe∗ Sym2 TMpar,rs
G /S .

As in the nonparabolic case, set ρ̃ := ρsym ◦ KSC/S . Let k ≥ 1 be a positive integer, and
let Lφ be a line bundle on Mpar,rs

G constructed via its identification with Γ-G-bundles of fixed
local type, a representation φ : G → SLr, and the restriction of determinant of cohomology
from M̂SLr . We first recall the main result [23, Cor. 4.13 and Prop. 4.12] that relates the class
β(P,λ) with the Atiyah class of [Lφ] of the line bundle Lφ.

Theorem 5.1. Let mφ be the Dynkin index of the map φ : G→ SLr. Then

(46) β(P,λ) =
1

mφ
[Lφ] .

Now we further expand µL⊗kφ
◦ 1
mφk

ρ̃ and get the following:

µL⊗kφ
◦ 1

mφk
ρ̃ =

1

mφ
.
(
(∪ (k[Lφ]− 1

2
[ΩMpar,rs

G /S ])) ◦ 1

k
ρsym ◦KSC/S

)
=

1

mφ

(
∪ [Lφ] ◦ ρsym ◦KSC/S − ∪

1

2k
[ΩMpar,rs

G /S ] ◦ ρsym ◦KSC/S
)

= ∪β(Lφ) ◦ ρsym ◦KSC/S − ∪
1

2mφk
[ΩMpar,rs

G /S ] ◦ ρsym ◦KSC/S

= −Φ ◦KSC/S − ∪
1

2mφk
[ΩMpar,rs

G /S ] ◦ ρsym ◦KSC/S
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= −KSMpar,rs
G/S

− ∪ 1

2mφk
[ΩMpar,rs

G /S ] ◦ ρsym ◦KSC/S .

In the above, we have used the fundamental equalities

β(Lφ) =
1

mφ
[Lφ] and β(Lφ) ◦ ρsym + Φ = 0.

Thus we get the following equation:

(47) KSMpar
G /S + µL⊗kφ

◦ 1

mφk
ρ̃+ ∪ 1

2mφk
[ΩMpar,rs

G /S ] ◦ ρsym ◦KSC/S = 0 .

We now have a key result.

Proposition 5.2. The map µL⊗kφ
: πe∗ Sym2 TMpar,rs

G /S → R1πe∗TMpar,rs
G /S is an iso-

morphism.

Proof. Let Y par,rs
G := φ−1(M̂ rs

G ) ⊂ Mpar,rs
G , where φ : Mpar,ss

G → M̂ ss
G is the natural

forgetful map. By Lemma C.3, the codimension of the complement of Y par,rs
G in Mpar,rs

G is
at least three, so it enough to show that µLφ is an isomorphism over Y par,rs

G . Now by Theo-
rem 4.1, it follows that it suffices to show that ∪[Lφ] is an isomorphism. Observe that in the
nonparabolic case, the canonical class is a multiple of the ample generator of the Picard group
of MG. Hence, for the nonparabolic case µLφ is a nonzero multiple of ∪[Lφ]. By construc-
tion, the map ∪L⊗kφ : πe∗ Sym2 TY par,rsG /S → R1πe∗TY par,rsG /S is first obtained by restricting

the map ∪L⊗kφ : πe∗ Sym2 T
M̂rs
G /S

→ R1πe∗TM̂rs
G /S

to TY par,rsG /S and then taking invariants.
Consequently, we will be done if we can show that the following map is an isomorphism:
∪L⊗kφ : πe∗ Sym2 T

M̂rs
G /S

→ R1πe∗TM̂rs
G /S

. This is proved in [43] and also in [59] in the
algebro-geometric set-up for G = SLr, where L is the determinant of cohomology line bundle.
For an arbitrary G, we can choose a faithful irreducible representation φ : G → SLr and get a
map f : M̂G → M̂SLr which restricts to a map f : M̂ rs

G → M̂ s
SLr

. Since any short exact se-
quence of G-modules splits, this induces a splitting of the tangent bundle of the moduli spaces:
f∗T

M̂s
SLr

/S
= T

M̂rs
G /S
⊕W , along with the diagram

(48)

π∗ Sym2 T
M̂s

SLr
/S

R1π∗TM̂s
SLr

/S

πG∗ Sym2 T
M̂rs
G /S

R1πG∗TM̂rs
G /S

,

∪L

Sym2Df

∪L

where π : M̂ s
SLr
→ S and πG : M̂ rs

G → S are the natural projections. Thus, we are again
reduced to the case of G = SLr.

Since the map µL⊗kφ
is an isomorphism, from (47) we get that

(49)

KSMpar,rs
G /S + µL⊗kφ

◦
( 1

mφk
ρsym + µ−1

L⊗kφ
◦ (∪ 1

2mφk
[ΩMpar,rs

G /S ]) ◦ ρsym
)
◦KSC/S = 0.
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Motivated by (49), we define the parabolic Hitchin symbol ρpar to be:

(50) ρpar :=
( 1

mφk
+ µ−1

L⊗kφ
◦ (∪ 1

2mφk
[ΩMpar,rs

G /S ])
)
◦ ρsym ◦KSC/S .

Remark 5.3. By Theorem 4.1, we see that µLφ is a nonzero multiple of ∪[Lφ] and
hence µ−1

L⊗kφ
◦ (∪ 1

2mφk
[ΩMpar,rs

G /S ] is a nonzero multiple of identity. This is essentially akin to

the nonparabolic situation. In the case of the moduli space of rank r vector bundles with trivial
determinant, it turns out that the class of the canonical bundle is [ΩMs

SLr
/S ] = −2r[L], where

L is the ample generator of the Picard group. Hence, µ−1
L⊗k = − 2r

r+k (∪ [ΩMs
SLr

/S ])−1, and ρpar
in this case is just 1

r+kρsym ◦KSC/S as in [43]. Our results also recover and generalize those
of [64].

By construction, we get the following:

Lemma 5.4. The parabolic Hitchin symbol ρpar defined in (50) satisfies the condition
in Theorem 2.2 (i).

5.2. Welters’ condition. In this subsection, we show that for M = Mpar,rs
G , the condi-

tion in Theorem 2.2 (ii) is satisfied. In fact, we will prove a stronger statement in the set-up of
parabolic G-bundles.

Lemma 5.5. Let Mpar,rs
G be the moduli space of regularly stable parabolic G-bundles

on a curve C. Then H1(Mpar,rs
G ,OMpar,rs

G
) = 0.

Proof. It suffices to show that the Picard group of the moduli space Mpar,rs
G is discrete,

since the spaceH1(Mpar,rs
G ,OMpar,rs

G
) can be considered as the Lie algebra of the Picard group

of Mpar,rs
G . Hence, it is enough to show that the Picard group of the corresponding moduli

stack ParrsG (C, ~P ) is discrete. By [50], it is known that the Picard group of the moduli stack
ParG(C, ~P ) of quasiparabolic G-bundles is discrete. Thus, we will be done if we can show
that the codimension of the complement of the regularly stable locus has codimension at least
two, as the inclusion will then induce an isomorphism on the Picard groups (cf. [22, Lemma
7.3]). But this is the content of Lemma C.1 below.

Lemma 5.6. With the notation of Lemma 5.5, H0(Mpar,rs
G , TMpar,rs

G
) = 0.

Proof. The proof follows the steps given in [43]. Firstly, T ∨
Mpar,rs
G

embeds into the

moduli space of strongly parabolic G-Higgs bundles Hpar,ssG . Now given a global vector field
on Mpar,rs

G , pairing it with the cotangent bundles produces a function on T ∨
Mpar,rs
G

, which via
Hartogs’ theorem extends to a function of degree one (with respect to the standard C∗-action)
on the Higgs moduli space Hpar,ssG . Since the Hitchin fibration is proper (Lemma 5.7) with
connected fibers ([42, Sec. 5], [33, Cor. III.3] and [29, Claim 3.5] for nonparabolic Higgs
bundles; [33, Cor. V.5] for strongly parabolic with full flags; [69, Sec. 4.5], [75, Thm. 1.2] for
all strongly parabolic cases) it descends to a function on the Hitchin base. This is impossible
since the degree of homogeneity is one. Thus we are done.
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The following result is well known ([11, Thm. 13], and also [78] for G = GLr), but for
completeness we include a brief proof of it.

Lemma 5.7. The Hitchin map Hit : Hpar,ssG → B is proper.

Proof. In [21] strongly parabolic Higgs bundles on a curve C are constructed as Γ-
G-Higgs bundles on a Γ-cover Ĉ of C. Let HssG (Ĉ) denote the moduli of semistable Higgs
bundles on Ĉ, with Hitchin base B̂, and Hitchin map Hit

Ĉ
. Note that in the strongly parabolic

setting, we have an inclusion ı : B ↪→ B̂. Then we have a commutative diagram:

Hpar,ssG HssG (Ĉ)

B B̂

F

Hit Hit
Ĉ

ı

Here, F is the forgetful map sending a Γ-G-bundle on Ĉ to the underlying G-bundle. Since F
and the Hitchin map Hit

Ĉ
are proper, and the map ı is a closed embedding, we conclude that

Hit is also proper.

Finally, we are in a position to prove the main theorem.

Proof of the Main Theorem. For the conditions in Theorem 2.2: (i) is the statement of
Lemma 5.4, (ii) follows from Lemma 5.5 and Lemma 5.6, and (iii) is the connectedness of the
moduli space. For the conditions in Theorem 2.3: (i) follows as in [43], using integrability
results in [51], [11] and [75] (ii) follows from Proposition 5.2, and (iii) is the statement in
Lemma 5.6. This completes the proof.

We now apply the main theorem to extend the result to case of the simple groups which
are not necessarily simply connected.

Proof of Corollary 1.1. Take s ∈ S and let Cs be the corresponding smooth n-pointed
curve. Consider the moduli space Mpar,rs,0

G (Cs) = π−1(s) for a connected, simple group
H . Let G be the simply connected cover of H and Mpar,rs

G (Cs) the corresponding moduli
space. Consider the map between moduli spaces Mpar,rs

G (Cs) and Mpar,rs,0
H (Cs) induced by

the quotient map G̃ → G. This map is étale on the base with Galois group Γ which is a
subgroup of the center Z(G) of G. Any element γ ∈ Γ, acts on Mpar,rs

G (Cs) by twisting.
This action of γ evidently commutes with the Hitchin map. Hence, if we consider the same
symbol as in the simply connected case, the same arguments in [14, Cor. 5.2 and Lemma 4.1]
tell us that the projective connection constructed for simply connected group commutes with
the action on Γ. Thus we see that π∗Lλ,k is a twisted D-module, and so it is locally free.

A. ParabolicG-bundles

Let G be a simple, simply connected complex algebraic group and (C, ~p) an n-pointed
smooth projective curve of genus g. Let h be a Cartan subalgebra of the Lie algebra g of the
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group G. We further let ∆+ denote the set of simple positive roots αi, and let θ denote the
highest root of g. Define the fundamental alcove

Φ0 := {h ∈ h| αi(h) ≥ 0, and θ(h) ≤ 1 ∀ αi} .

For h ∈ Φ0, we denote by P (h) the standard parabolic subalgebra of g, and p(h) will denote
the corresponding Lie subalgebra of g. The following result is standard and can be found in
[41, Thm. 7.9]:

Lemma A.1. Let K be a maximal compact subgroup of G. The exponential map

h→ exp(2π
√
−1h)

induces a natural bijection between Φ0 and the set of K orbits for the adjoint action of K on
itself.

For any one parameter subgroup ϕ : Gm → G, the Kempf’s parabolic subgroup is
defined as: P (ϕ) := {g ∈ G | limt→0 ϕ(t)gϕ(t)−1 exists in G}. Every τ ∈ Φ0 determines a
1-parameter subgroup of G and hence by above a parabolic subgroup P (τ). It directly follows
that the Lie algebra of P (τ) is the Kempf’s parabolic subalgebra

p(τ) := {X ∈ g | lim
t→∞

Ad(exp tτ) ·X exists in g} .

We now recall the definition of the moduli stack of quasi-parabolic bundles. We refer the
reader to [47, Ch. 5.1]

Definition A.2. The quasi parabolic moduli stack ParG(C, ~P ) is the stack parametriz-
ing pairs (E , ~σ), where E is a principal G-bundle on a smooth curve C × T , with T being any
scheme, and σi are sections over T of E|pi×T /Pi while ~P = (P1, . . . , Pn) are an n-tuple of
standard parabolic subgroups of G.

We now recall the definition of a parabolic G-bundle on a smooth pointed curve (C, ~p).

Definition A.3. A parabolic structures on a principal G-bundle E → C is given by the
following data:

• A choice of parabolic weights τ = (τ1, . . . , τn) ∈ Φn
0 , where τi is the parabolic weight

attached to the point pi ∈ C.

• a section σi of the homogeneous spaceEpi/P (τi), where P (τi) is the standard parabolic
associated to τi ∈ Φ0.

A family of parabolic G-bundles parametrized by a scheme T is defined analogously. of
a section σi for every 1 ≤ i ≤ n. Similarly extend the definitions of parabolic structures when
G is connected and reductive.
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A.1. Uniformization of quasiparabolic bundles. Most of the results in this section
can be easily modified for semi-simple groups, however for simplicity we restrict ourselves to
the case when G is simple and simply connected.

For any simple, simply algebraic group G, let LG be the corresponding loop group and
L+
G ⊂ LG the subgroup of positive loops. The affine Grassmannian QG is defined to be

LG /L+
G. Let q be a point on a the curve C.

Consider the functor SG,C\q from the category of k-algebras Alg to the category Sets
that assigns to an k-algebra R, isomorphism classes of pairs (ER, σR), where ER is a principal
G bundle over X × SpecR and σ is a section of ER over (C\q)× SpecR (cf. [50, Sec. 3.5]).
The following statement, which uses a crucial uniformization result of Drinfeld-Simpson [31],
gives a geometric realization of the affine Grassmannian QG.

Proposition A.4. The affine Grassmannian QG represents the functor SG,C\q. More-
over, there is a universal principal G-bundle U → C × QG and section σQG , such for any
[ER, σR] ∈ SG,C\q and any morphism f : SpecR→ QG,

[(id×f)∗U, (id× f)∗σQG ] = [ER, σR] .

Let LC,~p(G) be the punctured loop ind-group Mor(C\~p,G) that parametrizes morphisms
C\~p→ G from the punctured curve. The following result of Laszlo-Sorger [50] expresses the
moduli stack of principal G-bundles as a quotient stack.

Proposition A.5. The stacks ParG(C, ~P ) and LC,q(G)\ (QG ×
∏n
i=1G/Pi) are iso-

morphic, where q is a point on C\~p and LC,q(G) acts on G/Pi by evaluation at the point pi.
Moreover, Pic(ParG(C, ~P )) ∼= Z×

∏n
i=1 Pic(G/Pi) if G is simply connected.

We now describe another uniformization of the moduli stack ParG(C, ~P ) that connects
directly to the moduli stack of Γ-equivariant bundles of fixed topological type that will be
discussed in Appendix B. For an n-tuple of points ~p = (p1, . . . , pn), we choose formal
parameters ti at pi, i.e., ÔC,pi = C((ti)). Consider the natural evaluation map at ti = 0,
ev0 : G[[ti]] −→ G, from the Iwahori subgroup G[[ti]]. For any standard parabolic subgroup
Pi ⊂ G, we denote by Pj := ev−1

0 Pi the standard parahoric subgroup of the loop group. Now
consider the reduced ind-scheme LC,~p(G) as discussed above. Then any element of LC,~p(G)
acts onG((ti))/Pj via Laurent expansion at the point pi in the local parameter ti. As in Propo-
sition 2.8 of [48], we have a family of principal G-bundles Upar on C ×

∏n
i=1G((ti))/G[[ti]]

such that the following three hold:

(i) The bundle Upar is LC,~p(G) equivariant.

(ii) There is a section σpar of Upar over (C\~p) ×
∏n
i=1G((ti))/G[[ti]] which extends to a

section on a formal disc around the punctures pi.

(iii) The section σpar satisfies the condition γ ·σ(q, [g1], . . . , [gn]) = σ(q, [g1], . . . , [gn])γ(q),
where [gi] is the class of an element gi ∈ G((ti)), γ ∈ LC,~p(G) and q ∈ C\~p. Moreover,
the pair (Un, σ) is unique up to an unique isomorphism satisfying the above properties.

Now pulling back Upar via the natural LC,~p(G)-equivariant projection

n∏
i=1

G((ti))/Pi →
n∏
i=1

G((ti))/G[[ti]] ,
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we obtain a natural LC,~p(G)-equivariant principal G-bundle on C ×
∏n
i=1G((ti))/Pi. Hence,

using this G-bundle Upar and the section σpar, we obtain the following well known result
([47, pp. 181-182], and also [9, Prop. 3.3], [50, Thm. 1.3]):

Proposition A.6. The stack ParG(C, ~P ) is isomorphic to LC,~p(G)\
∏n
i=1G((ti))/Pi.

A.2. Parabolic bundles and associated constructions. Let P ⊂ G be a standard
parabolic subgroup with Levi subgroup LP containing a maximal torusH . Consider the set SP
of simple roots of the Levi subalgebra LP of the parabolic P . If P = P (h) for some h ∈ Φ0,
then SP := {αi ∈ ∆+ | αi(h) = 0}. The group of characters X(P ) of the parabolic subgroup
P can be identified with the subset of the dual Cartan subalgebra

h∨Z,P := {λ ∈ h∨ | λ(α∨i ) ∈ Z, ∀αi, and λ(α∨i ) = 0, ∀αi ∈ SP }.

In terms of the fundamental weights ω1, . . . , ω` of the Lie algebra g, we get that

h∨Z,P :=
⊕
αi 6=SP

Zωi.

Let τ = (τ1, . . . , τn) ∈ Φn
0 be a choice of parabolic weight.

We further assume that each τi ∈ Φ0 is rational , i.e., we can write τ = τ i/di for some
positive integers di and exp(2π

√
−1τ i) = 1, so di · τ is in the coroot lattice (i.e. in the lattice

spanned by the set of coroots Φ∨ ⊂ h). The integers di are not unique.
If G = SLr and consider the standard representation of SLr, then a choice of a rational

τ ∈ Φ0 via the normalized Killing form κ is the same as the choice of an integer k ≤ r, a
sequence of integers r := (r1, . . . , rk) such that

∑k
i=1 ri = r and a nondecreasing sequence

0 ≤ α1 < · · · < αk < 1. Hence a rational parabolic structure on a vector bundle V on a curve
C associated to a parabolic SLr-bundle at the points p1, . . . , pn is equivalent to the following:

(i) A choice of a flag of the fiber V|pi associated to the ki-tuple ri for each 1 ≤ i ≤ n

F•,pi :=
(
0 ⊆ Fki+1(V|pi) ⊆ Fki(V|pi) ⊆ · · · ⊆ F1(V|pi) = V|pi

)
such that dim Grj F•,pi = rj,pi .

(ii) For each pi, a sequence of rational numbers αpi

(51) 0 ≤ α1,i < · · · < αki,i < 1.

We refer the reader to Mehta-Seshadri [53] (for parabolic vector bundles), Ramanathan [62],
Biswas ([20] and [19]), Balaji-Seshadri [9] and Balaji-Biswas-Nagaraj [8] for the notions of
stability and semistability which is essential in defining the corresponding moduli spaces.

The following theorem is due to Mehta-Seshadri [53] for parabolic vector bundles of
rank r and weight data α and we will denote the moduli space by Mpar,ss

α,r (C). It was proven
for arbitrary semi-simple groups by Bhosle-Ramanathan [17]. Following the work of Seshadri
([66] and [67]), Balaji-Biswas-Nagaraj [8], Balaji-Seshadri [9], we will discuss an alternative
realization in the following section.
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Theorem A.7. Let (C, ~p) be a n-pointed smooth projective curve of genus g, and let
τ = (τ1, . . . , τn) be a choice of rational parabolic weights in the fundamental alcove Φ0.
We further assume that θ(τj) < 1, where θ is the highest root of g. Then, the parabolic
semistable G-bundles with a choice of rational parabolic weights τ admit a coarse moduli
space Mpar,ss

G,τ (C) which is a normal irreducible projective variety with rational singularities.
Moreover, if ι : G → G′ is an embedding of connected simple, simply connected groups, then
the corresponding map between the moduli spaceMpar,ss

G,τ →Mpar,ss
G′,τ ′ is finite. Here τ ′ = ι(τ ).

For notational convenience, when the context is clear we will often suppress the subscript
τ and use Mpar,ss

G instead.

Definition A.8. A parabolic G-bundle P with weights τ is said to be regularly stable if
it is stable and the automorphism group of P is the center Z(G) of G.

A.3. Line bundles on parabolic moduli spaces. In this section, we first recall the
determinant of cohomology line bundle associated to a family of vector bundles E on a curve
C parametrized by a connected Noetherian scheme T . Let πT : T ×X → T be the projection
to the Noetherian scheme, and consider RπT,∗E as an object of the bounded derived category
DbCoh(T ). We can represent RπT,∗E by a complex E0 → E1 → 0 of vector bundles on T .
We define the determinant line bundle up to a unique isomorphism to be the following:

Det ET :=

top∧
E1 ⊗

top∧
E∨0 .

We often drop T in the notation of Det ET when the context is clear. For any closed point
t ∈ T , the fiber of Det ET over t is

∧top (H1(C, Et)
)
⊗
∧top (H0(C, Et)

)∨
. The determinant

bundle has the following important properties:

(i) For any morphism f : T ′ → T , we have Det(f × id)∗E)T ′ = f∗Det ET .

(ii) For any line bundle L → T , we have Det(E)T ⊗ L−χ(E0) = Det ( E ⊗ π∗TL)T , where
χ(E0) is the Euler characteristic of the vector bundle E|t×C for any point t ∈ T .

(iii) For any short exact sequence of bundles 0 → E1 → E → E2 → 0 on T × C, we have
Det E1,T ⊗Det E2,T = Det ET .

Let S U C(r, ξ) be the moduli space of semistable vector bundles of rank r on a curve C with
determinant ξ of degree m. It was proved by [30] that the Picard group of S U C(r, ξ) is Z ·Θ,
where Θ is the ample generator. The following result of Drezet-Narasimhan [30] connects the
determinant of cohomology with this Θ-line bundle.

Proposition A.9. Let ψE : T → S U C(r, ξ) be the morphism corresponding to a
family E of semistable bundles of rank r and determinant ξ parametrized by a scheme T . Then
the pullback of Θ via ψE is isomorphic to (Det ET )

r
(r,m) ⊗

(
det E|T×p

) χ
(r,m) , where p is any

point on the curveC,m is the degree of the line bundle ξ, (r,m) is the greatest common divisor
and χ = χ(F|t×C) = m+ r(1− g).

Motivated by the above proposition, we define the following:
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Definition A.10. For any family E of vector bundles of rank r and determinant ξ of
degree m, parametrized by a connected Noetherian scheme T , we define the theta-bundle

(52) Θ(E) := (Det ET )
r

(r,m) ⊗
(
det E|T×p

) χ
(r,m) ,

where χ as in Proposition A.9 is the Euler characteristic.

Note that for any line bundle L over T , we have an isomorphism Θ(E) ∼= Θ(E ⊗ π∗TL).
Similarly for any simple, simply connected algebraic group G and any family E of principal
G-bundles on C parametrized by a scheme T , we can associate a natural line bundle on T as
follows: Let (ϕ, V ) be a representation of the group G. Then the associated vector bundle

E(V ) := E ×ϕ V

is a family of vector bundles on C parametrized by T . Observe that since G is simple, and
hence G does not have any nontrivial character, it follows that E(V ) has trivial determinant
over T × C. We define a line bundle on T

(53) Det(E , ϕ)T := Det(E(V ))T .

It follows from (52) that Θ(E(V )) = Det(E , ϕ)T .

The parabolic determinant of cohomology in the SLr case. We follow the notation
and conventions as in [24]. Let E be a family of quasiparabolic SLr bundles on a pointed curve
(C, ~p) parametrized by a scheme T considered as a parabolic vector bundle via the standard
representation. Let α := (αp1 , . . . ,αpn) be a n-tuple of sequence of rational numbers as
in (51) associated to each marked point pi, 1 ≤ i ≤ n. Consider the following element in
Pic(T )⊗Q,

(54) Det ET +
n∑
i=1

ki∑
j=1

αj,i det Grj
(
F•,pi(E|T×pi)

)
,

where the rational number 0 ≤ α1,i < α2,i < · · · < αki,i < 1 defineαpi . Writeαj,i = bj,i/qj,i,
where bj,i and qj,i are relatively prime integers.

Definition A.11. Let N be the least common multiple of all {qj,i}i,j , 1 ≤ i ≤ n and
1 ≤ j ≤ ki. We refer to N as the level of the weight α.

Consider the integers aj,i := N · αj,i. Then for each 1 ≤ i ≤ n and 1 ≤ j ≤ ki,

0 ≤ a1,i < a2,i < · · · < aki,i ≤ N − 1.

Definition A.12. Let E be a family of degree zero parabolic vector bundles on T × C
with parabolic data {(ri,αi)}ni=1. The parabolic determinant bundle on T is defined to be

Detpar ET (α) := (Det ET )⊗N
⊗(
⊗ni=1

(
⊗kij=1 det Grj F•,pi(E|T×pi)

aj,i
))
.

This is just eq. (54) multiplied by N . When the context is clear, we will simply denote
Detpar ET (α) by Detpar ET . The line bundle Detpar(ET ) may not descend to the moduli space,
so we consider the following modification.
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Definition A.13. The parabolic Θpar-line bundle on T is defined to be the following
twist of parabolic determinant of cohomology

Θpar(E ,α) := (Detpar ET )⊗
(
det E|T×p0

)N.χpar
r

(just as in the nonparabolic case), where χpar = χ −
∑

i,j αj,irj,i is the parabolic Euler
characteristic (see [24, p. 60]), χ is as in Proposition A.9 and p0 is any point on the curve
C\~p.

We remark that the definition of Θpar(E ,α) differs from the definition of parabolic de-
terminant [24, Def. 4.8] by a multiplicative factor of r. The following proposition can be found
in Biswas-Raghavendra [24], Pauly [58], and in Narasimhan-Ramadas [55] for G = SL2.

Proposition A.14. Let ψE : T →Mpar,ss
α,r (C) be a map from a scheme T to the Mehta-

Seshadri moduli space Mpar,ss
α,r (C) of parabolic bundles corresponding to a family E equipped

with parabolic data α. Then there exists an ample line bundle Θpar(α) on Mpar,ss
α,r (C) such

that ψ∗EΘpar(α) is isomorphic to the line bundle Detpar ET ⊗
(
det E|T×p0

)N.χpar
r .

As discussed, the choice of the standard representation gives a map of the moduli stacks
ξ : Mpar,ss

SLr,α
(C) → Mpar,ss

α (C), the map ψE factors through Mpar,ss
SLr,α

and we will use the
notation Θpar(α) to also denote the pull back ξ∗Θpar(α).

The case of general groups. We first recall the notion of Dynkin index of an embed-
ding. Let φ : s1 → s2 be a map of two simple Lie algebras, and let κs1 (respectively, κs2) be
the normalized Killing form of s1 (respectively, s2).

Definition A.15. The Dynkin index mφ of a map of simple Lie algebras φ is the ratio of
their normalized Killing forms, in other words, κs2( , )|s1 = mφκs1( , ).

Let G be a simple, simply connected group, and let E be a principal G bundles on T ×C.
Let (φ, V ) be a representation ofG, and consider the associated vector bundle E(V ) := E×GV
on T × C. Since G does not have any nontrivial character (it is simple), it follows that
det E(V ) ∼= OT×C . This implies Θ(E(V )) = Det(E(V ))T . Let (E , ~σ) be a family of quasi-
parabolic G-bundles of type ~P = (P1, . . . , Pn) on a n-pointed curve (C, ~p) parametrized by a
scheme T .

Definition A.16. For any positive integer d (usually it will be determined by the weights
µ), a finite dimensional representation (φ, V ) of the group G and a character µj of the
parabolic Pj , define a line bundle on T by the following formula:

(55) Detpar(E(V ), d,µ) := (Det(E(V ))T )⊗d
⊗(
⊗nj=1σ

∗
j

(
E ×Pj Cµ−1

j

))
(see [50]), where µ = (µ1, . . . , µn) and Cµ−1

j
is the one dimensional representation of the

parabolic subgroup Pj corresponding to the character µ−1
j of it. This line bundle will be

called the quasiparabolic determinant bundle. We will refer to the integer d as the level of the
quasiparabolic determinant bundle.
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Now let τ = (τ1, . . . , τn) be an n-tuple of rational parabolic weights such that θ(τi) < 1
for all 1 ≤ i ≤ n, where θ is the highest root of g. Consider a representation of G of V such
that

(i) the representation (φ, V ) is faithful;

(ii) the topological local type φ(τ ) of the associated bundle is rational;

(iii) θsl(V )(φ(τi)) < 1 for all 1 ≤ i ≤ n, where θsl(V ) is the highest root of sl(V ).

We now recall the definition of the parabolic theta bundle for any simple group G. Using
the Killing form κg we will identify νg : h

∼=−→ h∨ and realize τ in the weight lattice of P of
G. Let (φ, V ) be a faithful representation of G satisfying the above conditions, and let d be
any positive integer such that

(56) exp(2π
√
−1νsl(V )(d · φ(τi))) = 1

for all 1 ≤ i ≤ n. This d is not unique but usually one choose a minimal such d and denote it
by N .

Definition A.17. The parabolic theta bundle Θpar,G(V, τ ) → Mpar,ss
G,τ is defined to be

the pull-back of Θpar,SL(V )(φ(τ )) → Mpar,ss
SL(V ),φ(τ ) via the map φ : Mpar,ss

G,τ → Mpar,ss
SL(V ),φ(τ )

induced by the representation (φ, V ) of G, i.e., Θpar,G(V, τ ) := φ
∗
Θpar,SL(V )(φ(τ )).

The following well known result analogous to the SLr case (cf. [47, Lemma 8.5.5]) relates
the parabolic determinant of cohomology for arbitrary simple, simply connected groups G to
the parabolic theta bundle.

Proposition A.18. Let E be a family of parabolic G-bundles parametrized by a scheme
T with parabolic data τ ∈ Φn

0 satisfying the condition θ(τi) < 1 for all 1 ≤ i ≤ n, and let
ψE : T →Mpar,ss

G,τ be as before the map induced by E .
Further, let (φ, V ) be a representation of G satisfying the above conditions. Then the

pull-back ψ∗E (Θpar,G(V, τ )) equals Detpar(E(V ), N · mφ · νg(τ )), where mφ is the Dynkin
index of the map φ : g → sl(V ), Detpar(E(V ), N ·mφ · νg(τ )) is as in Equation (55) and N
is the minimal positive integer satisfying (56) in Definition A.17.

B. Γ-equivariantG-bundles

In this section, we recall the correspondence between parabolic bundles on a curve C
and equivariant bundles on a ramified Galois cover Ĉ → C with Galois group Γ. Throughout
this section G will be a simple, simply connected (or more generally simple but not simply
connected) algebraic group. We start with the well-known genus computation of an orbifold
curve. Let ~p = (p1, . . . , pn) be points in C, and choose positive integers ~d = (d1, . . . , dn),
respectively.

Definition B.1. The orbifold genus associated to (C, ~p, ~d) is

g(C ) := g(C) +
1

2

n∑
i=1

(1− 1

di
) ,
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where g(C) be the genus of the curve C.

If C is a quotient of Ĉ by Γ with ramification locus p1, . . . , pn of degrees (d1, . . . , dn),
then by the Riemann-Hurwitz formula the genus of Ĉ is given by the formula:
2 − 2g(Ĉ) = |Γ|

(
2 − 2g(C) +

∑n
i=1( 1

di
− 1)

)
. The genus of the quotient stack C := [Ĉ/Γ]

is related to g(Ĉ) by the formula g(Ĉ) − 1 = |Γ|(g(C ) − 1), and so we see that this is the
orbifold genus defined above.

Conversely, given ~p and ~d, then provided g(C ) ≥ 1 we can find a branched cover Ĉ → C
as above. For example, if g(C ) > 1 (we shall only be interested in this case), then C can be
realized as a quotient of the upper half plane H by a Fuchsian group Π (cf. [73, Sec. 3.2]). The
action of Π is not free: it contains elliptic elements of order di in the points over pi. Applying
the Selberg lemma to Π ⊂ Aut(H) (cf. [65]), we obtain a normal subgroup Π0 of finite index
that acts freely on H. Let Ĉ = H/Π0. Since the action of Π0 is free, we get that Ĉ is a smooth
projective curve. If we set Γ = Π/Π0, then the natural map Ĉ → C is a ramified Galois cover
with Galois group Γ.

Example B.2. Assume that g(C) = 0, d1 = · · · = dn = d and d divides n. Then
the super-elliptic curve Ĉ given by the equation yd =

∏n
i=1(x − pi) is a ramified Galois

covering of C = P1. The Galois group is Z/dZ with ramifications of order d exactly at the
points p1, . . . , pn, and étale on the complement. Then we have g(C ) = n(d − 1)/2d. Hence,
g(C ) ≥ 1 if n ≥ 2d/(d− 1).

Definition B.3. Let p : Ĉ → C be a ramified Galois cover with Galois group Γ. A
Γ-G-bundle Ê on Ĉ is a principal G bundle on Ĉ together with a lift of the action of Γ on Ĉ
to an action of Γ on the total space of Ê as bundles automorphism (meaning the actions of Γ
and G on Ê commute).

Let R denote the set of branch points of C. For each point p ∈ R, we choose a point
p̂ ∈ Ĉ in the preimage of p, and let Γp̂ ⊂ Γ denote the stabilizer of the point p̂.

Definition B.4 (Balaji-Seshadri [9]). The type of a homomorphism ρ : Γ → G is the
set of isomorphism classes of the local representations ρi : Γp̂i → G, or equivalent, it is the
set of conjugacy classes in G given by the images of ρi(γi), where γi is a generator of the
cyclic group Γp̂i = 〈γi〉. The type of a homomorphism is denoted by τ = (τ1, . . . , τn), where
n = |R|.

Let p̂i be any branch point of Ĉ, and let t̂i be a special formal parameter at the point
p̂i, such that γ · t̂i := (exp(2π

√
−1/di)t̂i, where γ is a generator of the stabilizer Γp̂i and

di = |Γp̂i |. Any (Γ, G)-bundle Ê is trivial as a G-bundle on a formal disk Dp̂i := Spec[[t̂i]],
and in particular Ê|Dp̂i is a (Γp̂i , G) bundle. So any (Γp̂i , G)-bundle on Dp̂i is determined by a
homomorphism ρi : Γp̂i → G such that γ · (u, g) = (γ · u, ρi(γ)g), where u ∈ Dp̂i . Moreover
such an homomorphism is unique up to conjugation. We refer the reader to [72, Lemma 2.5]
and [47, Thm. 6.1.9].

Let τ = (τ1, . . . , τn) be the unique element of the Weyl alcove Φ0 such that ρi(γi) is
conjugate to exp(2π

√
−1τi) as described by Lemma A.1. We define the local type of a Γ-G-

bundle Ê to be the n-tuple τ = (τ1, . . . , τn) and consider the following stack:
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Definition B.5. Let Ĉ be a ramified Galois cover of C. Choose points p̂i for each point
pi in R, and let τ be an n-tuple of elements in Φ0. We define the moduli stack BunτΓ,G(Ĉ) to

be the groupoid parametrizing Γ-G-bundles on Ĉ of local type τ .

B.1. Uniformization of Γ-G-bundles of fixed local type. We will now discuss a uni-
formization theorem forBunτΓ,G(Ĉ) under the further assumption that θ(τi) < 1 for 1 ≤ i ≤ n.
We will show that the stackBunτΓ,G(Ĉ) is isomorphic toParG(C, ~P ), where ~P = (P1, . . . , Pn)
are standard parabolic subgroups of G determined by τ = (τ1, . . . , τn).

As in the case of parabolic bundle we consider the functor S τ
G : Alg → Sets that assigns

to a finitely generated k-algebra R the isomorphism classes of pairs (ÊR, σ̂R), where

• ÊR is a (Γ, G) bundle over Ĉ × SpecR of local type τi at the points p̂i, and

• σ̂R is a Γ-equivariant section of ÊR over p−1(C\~p)× SpecR.

By [9, Prop. 3.1.1] and [47, Thm. 6.1.12], the functor S τ
G is represented by the ind-scheme∏n

i=1G((ti))/Pi, where ti = (t̂i)
di are local parameters at the points pi and Pi are parabolic

subgroups of the loop groupG((ti)). The following theorem is due to Balaji-Seshadri [9, Prop.
3.1.1] and it can also be found in Kumar [47, Thm. 6.1.15].

Theorem B.6. Let n ≥ 1 and τ as above Then there is an isomorphism of the stacks
BunτΓ,G(Ĉ) and the quotient stack LC,~p(G)\ (

∏n
i=1G((ti))/Pi).

Remark B.7. We emphasize that Balaji-Seshadri [9] work without the assumption that
θ(τi) < 1. In this general set-up the groups Pj ⊂ G((ti)) that appear in [9, Prop. 3.1.1] are not
necessarily contained in G[[ti]].

B.2. Invariant direct image functor. Let p : W → T be a finite flat surjective mor-
phism of Noetherian integral schemes (as in [9, Sec. 4]) such that the corresponding extension
of function fields is Galois with Galois group Γ. It follows that Γ acts onW and T = W/Γ. Let
G be a smooth affine group scheme on W . Following Balaji-Seshadri [9], Pappas-Rapoport
[57], and Edixhoven [32], we define:

Definition B.8. The invariant direct image of G , namely pΓ
∗ (G ) := (p∗(G ))Γ, where

p∗G is the group functor Weil restriction of scalars-ResW/T (G ) and (p∗(G ))Γ is the smooth
closed fixed point subgroup scheme of the Γ-scheme p∗(G ). In particular for any T -scheme S,
we get that pΓ

∗ (G )(S) := (G (S ×T W ))Γ.

In our present set-up we consider Ĉ → C to be a ramified Galois covering with Galois
group Γ, and letR be the ramification locus. LetG be a connected, simple algebraic group and
ρ : Γ→ G and we fixed the local type τ = (τ1, . . . , τn) such that θ(τi) < 1 for all 1 ≤ i ≤ n.
Consider the invariant push forward H := pΓ

∗ (Ĉ × G) of the constant group scheme Ĉ × G
to get a Bruhat-Tits type group scheme on C with the following property:

(i) The geometric fibers of H are connected.

(ii) On the punctured curve C\R, the group scheme H is split.

(iii) For pi ∈ R, the group scheme H (ÔC,pi) is the subgroup Pi := ev−1
pi (Pi) ⊂ G[[ti]],

where Pi is a standard parabolic subgroup in G given by τi.
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Pappas-Rapoport [57] considered the moduli stack BunH (C) of H -torsors on a curve C,
where H is a parahoric Bruhat-Tits group scheme. A uniformization theorem for such tor-
sors was proved by Heinloth [39]. Using [9, Thm. 4.1.6] and the discussion above, we can
reformulate the correspondence in Theorem B.6 by the following:

Proposition B.9. The stacks BunτΓ,G(Ĉ) and ParG(C, ~P ) are isomorphic under the

invariant push-forward functor. In particular if Ê is a family of Γ-G-bundles of type τ on the
curve Ĉ parametrized by a schemes T , the pΓ

∗ (Ê) is a family of quasiparabolic G-bundles with
parabolic structures at the ramification points determined by τ .

Moreover, by Proposition A.6 and Theorem B.6, both the stacksBunτΓ,G(Ĉ) andParG(C, ~P )

are isomorphic to LC,~p(G)\ (
∏n
i=1G((ti))/Pi), where ~P = (P1, . . . , Pn) and Pi = P (τi) are

Kempf parabolic subgroups determined by τi.

Let CT −→ T be a family of smooth projective curves parametrized by T and p1, . . . , pn
are disjoint sections. Recall that given integers d1, . . . , dn and a n-points curve (C0, p1, . . . , pn),
we can find a Galois cover (Ĉ, p̂1, . . . , p̂n) with Galois group Γ and isotropy of order di at
p̂i. Fixing such a Γ, we can find a family of curves ĈT −→ T along with a finite map
p : ĈT −→ CT such that

• Γ acts on ĈT preserving p inducing a Galois covering π : ĈT → CT .

• Section p̂1, . . . , p̂n such that isotropy at p̂i is of order di for all i.

• The cover just depends on the choice of Γ and the integers d1, . . . , dn.

We refer the reader to [25, Sec. 4d] for the construction of such families. These covers are
called pointed admissible covers, and a moduli stack for these objects has been constructed in
[44].

Now given a Γ-Galois covering ĈT → CT , the parabolic orbifold correspondence as
described in Proposition B.9 works verbatim for families of parabolic and orbifold bundles
parametrized by T .

B.3. Determinant of cohomology for Ĉ and invariant pushforward. Let Ê be a
family of Γ-G-bundles on Ĉ of local type τ parametrized by a scheme T . By Proposition
B.9, we get a family E of quasiparabolic G-bundles on C with parabolic structures at the
points ~p = (p1, . . . , pn) in the ramification locus. Observe that we have an n-tuple integers
~d = (d1, . . . , dn) which encodes the order of ramification at the points (p1, . . . , pn). More-
over exp(2π

√
−1diτi) = 1 for all ≤ i ≤ n. Now ignoring the Γ-action, we get a family of

principal G-bundles on Ĉ and hence by (53), we get a line bundle on T subject to the choice
of a representation (φ, V ) of G. On the other hand, we also get a line bundle on T by starting
with a family of quasiparabolic bundles E obtained from the invariant push forward of Ê and
then applying the construction in (55). The following proposition, which is minor variation of
[24, Prop. 4.5], compares these two line bundles on T .

Proposition B.10. Let φ : G → SL(V ) be a representation of G. Choose a local-type
τ such that θsl(V )(φ(τi)) < 1 for all 1 ≤ i ≤ n, where θsl(V ) is the highest root. Then for any
family Ê of Γ-G-bundles on Ĉ parametrized by a scheme T of local type τ , we have:

Det(Ê(V )) ∼= Det((idT ×p)∗(E(V )))⊗
(
⊗ni=1

(
⊗kij=1 det Grj F•,pi(E|T×pi)

⊗Nαj,i
))
,
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where

(i) the filtration F•,pi and the weightsα = (αp1 , . . . ,αpn) are determined by the associated
topological type φ(τ ),

(ii) N > 0 is the smallest integer such that Nαj,i are integers, and

(iii) Ĉ → C is a Galois Γ-cover such that the isotropy of order N at all points pi.

Proof. We will be done by [24, Prop. 4.5] once we can show that pΓ
∗ (Ê)×φ (V ) equals

pΓ
∗
(
Ê ×φ V

)
as a family parabolic vector bundles on C parametrized by T . This follows from

the definition directly.

Now following [24], we will construct a curve Ĉ from the data τ and compare the de-
terminant of cohomology line bundle on BunτΓ,G(Ĉ) with the parabolic determinant of coho-
mology on C via the functor pΓ

∗ . Mimicking the set-up of [24, Def. 4.10], given τ in the Weyl
alcove Φ0 choose an integer N such that exp(2π

√
−1Nνsl(V )(φ(τi))) = 1 for all 1 ≤ i ≤ n.

By the Selberg lemma, [65], we can find a ramified cover p : Ĉ → C with ramification exactly
over the points pi with cyclic isotropy group of order N at all the fixed points. Let Γ be the
Galois group. With these assumptions, [24, Prop. 4.11] generalizes to the following:

Proposition B.11. Let E = pΓ
∗ Ê be as in Proposition B.10. Then the line bundles

Det(Ê(V )) and (Detpar(E(V ), N ·mφ · τ ))⊗
|Γ|
N on T are canonically isomorphic.

C. The properness condition and codimension estimates

In this section, we will show that the moduli space Mpar,rs
G of regularly stable parabolic

G-bundles on a curve admits no nonconstant functions. This will imply Theorem 2.2 (iii).
Throughout this section we assume that G is simple and simply connected (or more generally
semisimple, but we do not need it for applications). We have the following key codimension
estimate, which essentially follows from the same argument as in Faltings [33] and Laszlo [49].
Fix n ≥ 1, and let τ = (τ1, . . . , τn) be a n-tuple of weights in the Weyl alcove for a group
G, and let d be the minimum positive integer such that exp(2π

√
−1d · νg(τi)) = 1 for all

1 ≤ i ≤ n. Choose a curve Ĉ that is a Galois cover over C ramified exactly over the points
p1, . . . , pn with the same ramification order d and étale on the complement.

Lemma C.1. LetParG(C, ~P ) (respectively,ParrsG (C, ~P )) be the moduli stack parametriz-
ing parabolicG-bundles (respectively, regularly stable parabolicG-bundles) given by a choice
of weights τ on a n-pointed curve C of genus g(C). Further assume that ParrsG (C, ~P ) is
nonempty. Then the codimension of the complementParG(C, ~P )\ParrsG (C, ~P ) ⊂ ParG(C, ~P )
is at least two provided g(C ) ≥ 3, and g(C ) ≥ 2 ifG does not have an SL2 factor. Moreover,
if G = SLr for r > 2, the codimension of the complement is at least 3.

Proof. Let τ be the choice of the weights determining the stability conditions and the
parabolic subgroups ~P = (P1, . . . , Pn). Consider an n-tuple of Borel subgroups ~B and the
the moduli stack of quasi parabolic bundles with full flags ParG(C, ~B). There is a natural
forgetful map ParG(C, ~B) → ParG(C, ~P ) whose fibers are product of flag varieties. Now
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consider the substack ParssG (C, ~B)) (respectively, ParsG(C, ~B))) parametrizing semistable
(respectively, stable) parabolic bundles with respect to the same weight data τ . This pre-
serves stability (hence also regular stability) and hence the forgetful map restricts to a map
ParssG (C, ~B)) → ParssG (C, ~P )) that preserve both the stable and the regularly stable loci.
Consequently, without loss of generality assume that we are in the case of full flags.

It is enough to show the following:

(i) The codimension of the complement of ParssG (C, ~B) (respectively, ParsG(C, ~B))) in
ParG(C, ~B) is at least two: We will freely use the parabolic orbifold correspondence.
Let E be a parabolicG bundle admitting a reduction to parabolic bundle EQ with structure
group Q, where Q is a parabolic subgroup of G with its Levi subgroup LQ. Consider
the sheaf nparQ (ad E) given by the cokernel of map SPar(ELQ) ↪→ SPar(E), where ELQ
is the induced parabolic bundle with structure group LQ. If E is in the complement
of the ParssG (C, ~B) (respectively, ParssG (C, ~B)), then deg nparQ (ad E) is strictly positive
(respectively, nonnegative). Let BLQ be the Borel of LQ; then the complement has di-
mension

dimParG(C, ~B)−
(
dimParLQ(C, ~BLQ) + h1(C, nparQ (ad E))

)
= (g(C)− 1)(dimG− dimQ) + n(dimG/B − dimLQ/BLQ)

+ deg(nparQ (ad E))− h0(C, nparQ (ad E))

≥ (g(C) + n− 1) dim nQ − 1 ,

since we may assume h0(C, nparQ (ad E) ≤ 1. Now notice that g(C ) ≥ 2 implies that
g(C) + n− 1 ≥ 2, and g(C ) ≥ 3 implies that g(C) + n− 1 ≥ 3. Further observe that if
G = SLr, then dim nQ > 1 if r > 2.

(ii) The codimension of the complement of ParrsG (C, ~B) in ParsG(C, ~B) is at least two: Here
we can assume G 6= SLr. If P is a stable orbifold bundle on C which has a noncentral
automorphism, then by [49, Lemma 11.1] P has an L-structure where L is a reductive
subgroup of G with Borel BL. Then the required codimension is at least

dimParG(C, ~B)− dimParL(C, ~BL)

= (g(C)− 1)(dimG− dimL) +

n∑
i=1

(dimG/B − dimL/BL)

= (g(C)− 1)(dimG− dimL) + n(dimG/B − dimL/BL) .

Now dimG/B − dimL/BL ≥ 1 and dimG − dimL ≥ 2, so if g(C) ≥ 1, then the
codimension is at least 2g(C)− 2 + n ≥ 3, by the assumption that g(C ) ≥ 2. Thus, we
are left to consider the case where g(C) = 0.
Since g(C ) ≥ 2, we have n ≥ 5. Suppose first thatL is not a torus. Then n dimL/BL−dimL
is an increasing function ofL. This implies that n(dimG/B−dimL/BL)−(dimG−dimL)
is decreasing function of L. Hence, the codimension is at least

min
L=LQ

(n(dimG/B − dimL/BL)− (dimG− dimL)) ,

where L ranges over the Levi subgroups LQ of proper maximal parabolics Q in G. Thus
we get that the codimension of the complement is at least

min
L=LQ

(n(dimG/B − dimL/BL)− (dimG− dimL)) = min
Q

((n− 2) dim nQ) ≥ 3 .
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Now suppose L is a torus. In this case, the codimension is simply

n(dimG/B)− (dimG− dimL) ≥ n(dimG/B)− dimG ≥ (n− 3) dim nB ≥ 2 .

This completes the proof of the Lemma.

LetMpar,ss
G (respectively, ParssG (C, ~P )) be the moduli space (respectively, moduli stack)

of semistable parabolic G-bundles on C with parabolic structures at n-marked points. It is
well-known that Mpar,ss

G (respectively, the regularly stable part Mpar,rs
G ) is a GIT quotient (re-

spectively, good quotient) of a smooth scheme Rpar,ssG (respectively, Rpar,rsG ) by a reductive
group (cf. [8,9]). Moreover, Mpar,ss

G is a seminormal projective variety with rational singulari-
ties. Now Lemma C.1 implies that codim(Rpar,ssG \Rpar,rsG ) ≥ 2, providedRpar,rsG is nonempty.
Hence, by Hartogs’ theorem we get the following:

Corollary C.2. The natural inclusion map Mpar,rs
G → Mpar,ss

G induces isomorphisms
between H0(Mpar,rs

G ,OMpar,rs
G

) and H0(Mpar,ss
G ,OMpar,ss

G
).

Recall Y par,rs
G from the proof of Proposition 5.2. Then we have the following lemma, the

proof of which is analogous to that in [49, Prop. 11.6].

Lemma C.3. The codimension of the complement of Y par,rs
G in Mpar,rs

G,τ is at least 3 if
g(C ) ≥ 3 for arbitrary g, or g(C ) ≥ 2 when g has no factor of type A1 or C2.

Proof. Suppose E be a regularly stable Γ-G-bundle which is not stable as a G-bundle.
Then we can realize it as the image of a rational map from the moduli space of Γ-L-bundles on
Ĉ, where L is a Levi subgroup of a parabolic subgroup Q of G. If E is stable we can realize
it as the image of rational map ML(Ĉ), where L is a reductive subgroup ([49, Prop. 11.6]) of
G. Thus, the complement of Y par,rs

G in Mpar,rs
G,τ is dominated by union of the moduli spaces

of Γ-L-bundles on the curve Ĉ. of type τ , where L is a reductive subgroup. Now as in the
proof of Lemma C.1, without loss of generality assume that τ corresponds to a tuple of Borel
subgroups. Then the required codimension is at least

(g(C)− 1)(dimG− dimL) + n(dimG/B − L/BL)− dimZ(L) .

Now dimG− dimL is at least 4 unless g has a factor of type A1 or C2. Thus, we are done by
the assumptions on g(C ) and the calculations as in the proof of Lemma C.1.
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