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ABSTRACT. Complex Chern–Simons bundles are line bundles with connection, originating in the
study of quantization of moduli spaces of flat connections with complex gauge groups. In this
paper we introduce and study these bundles in the families setting.

The central object is a functorial direct image of characteristic classes of vector bundles with
connections, for which we develop a formalism. Our strategy elaborates on Deligne–Elkik’s
intersection bundles, and a refined Chern–Simons theory which parallels the use of Bott–Chern
classes in Arakelov geometry. In the context of moduli spaces, we are confronted with flat relative
connections on families of Riemann surfaces. To be able to rely on the functorial approach, we
prove canonical extension results to global connections, inspired by the deformation theory of
harmonic maps in non-abelian Hodge theory.

The relative complex Chern–Simons bundle LCS is then defined as a functorial direct image
of the second Chern class on the relative moduli space of flat vector bundles. We establish the
crystalline nature of LCS, and the existence of a holomorphic extension of natural metrics from
Arakelov geometry. The curvature of LCS can be expressed in terms of the Atiyah–Bott–Goldman
form, in agreement with the classical topological approach.

To highlight a few applications, we first mention a characterization of projective structures
of Riemann surfaces in terms of connections on intersection bundles. In particular, we settle a
conjecture of Bertola–Korotkin–Norton on the comparison between the Bergman and the Bers
projective structures. In classical terminology referring to work of Klein and Poincaré on the
uniformization of Riemann surfaces, this is the problem of determining the accessory parameters
of quasi-Fuchsian uniformizations. A conjecture of Cappell–Miller is also established, to the effect
that their holomorphic torsion satisfies a Riemann–Roch formula.
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1. INTRODUCTION

Chern–Simons bundles originate with the work of Witten [115, 116] and Ramadas–Singer–
Weitsman [102] in the quantization of moduli spaces of flat connections, and rely on secondary
invariants of vector bundles with connections on three-dimensional manifolds, developed by
Chern and Simons [33]. It was further systematically studied for compact gauge groups by Freed
in [52, 53]. The purpose of this article is to introduce the formalism of complex Chern–Simons
bundles, i.e. forGLr (C), SLr (C) orPSLr (C), in the setting of families of compact Riemann surfaces.
We adopt the perspective of a functorial intersection theory of Elkik [43], which was initiated
by Deligne in [38] in order for him to obtain a refined understanding of the Riemann–Roch
theorem in Arakelov geometry. Our approach is motivated by a set of problems where the family
point of view arises naturally. The first main application is the proof of a conjecture of Cappell–
Miller, to the effect that their analytic torsion for flat holomorphic vector bundles satisfies a
Riemann–Roch formula, that we state as an extension of Deligne’s Riemann–Roch isometry.
The second main application is the proof of a conjecture of Bertola–Korotkin–Norton on the
relationship between the Bergman and Bers projective structures of Riemann surfaces, which
was the missing piece in the list of comparison formulas between classical projective structures.
For this purpose, we develop a new tool of independent interest, called the Chern–Simons
transform. It converts families of projective structures into connections on Deligne pairings,
with the complex Chern–Simons bundle acting as the kernel of the transform. This theory has
further implications, such as a new proof of Wolpert’s result relating the first tautological class
to the Weil–Petersson form on the Teichmüller space, or a simple construction of the classical
Liouville action of Takhtajan–Zograf on the Schottky space.

To present a simplified form of our central construction, consider a family of compact Riemann
surfaces X → S of genus g ≥ 3, over a complex manifold S. In this setting, Simpson [106] intro-
duces a moduli space Mir

B(X /S,SLr ) → S, whose fiber over s ∈ S is given by the irreducible part of
the SLr (C)-character variety of Xs . This relative moduli space is a smooth complex analytic space
over S. If S is simply connected with a base point 0, there is a natural holomorphic retraction
p0 : Mir

B(X /S,SLr ) → Mir
B(X0,SLr ) providing an isomorphism Mir

B(X /S,SLr ) ' Mir
B(X0,SLr )×S. As a

complex variety Mir
B(X0,SLr ) depends on X0 only as a topological surface, and it carries a natural

holomorphic symplectic 2-form called the Atiyah–Bott–Goldman form. The latter depends on
the orientation of X0, and a change of the orientation has the effect of changing the sign of the
form.

The following theorem summarizes some of the key properties of our construction.

Theorem A. There is a canonical way to associate to X → S a holomorphic line bundle with
holomorphic connection1 LCS(X /S) on Mir

B(X /S,SLr ), such that:

Functoriality: the formation of LCS(X /S) commutes with base changes S′ → S.
Crystalline: if S is simply connected and 0 ∈ S is a base point, there is a unique isomorphism

LCS(X /S) ' p∗
0 LCS(X0)

which restricts to the identity over 0.
Curvature: for a single Riemann surface X0, the curvature of LCS(X0) is given by the Atiyah–

Bott–Goldman form.

1By holomorphic connection we mean a connection which preserves holomorphicity of sections.
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Complex metric: for a couple of complex conjugate Riemann surfaces (X0, X 0), there is a
canonical flat trivialization of

LCS(X0)⊗LCS(X 0).

Along the locus of unitary representations, the line bundles LCS(X0) and LCS(X 0) are
complex conjugate, and the trivialization is identified with a Hermitian metric.

Definition. We call LCS(X /S) the complex Chern–Simons bundle on Mir
B(X /S,SLr ).

In the absolute case, the curvature feature guarantees that LCS(X0) is isomorphic to the
complex Chern–Simons line bundle constructed by either the method of Witten or Ramadas–
Singer–Weitsman, extended to complex gauge groups and based on the Chern–Simons action.
The properties stated in Theorem A are counterparts to those obtained in these classical ap-
proaches. In particular, the crystalline nature of LCS(X /S) can be understood as the topological
invariance in the absolute case. However, we will see that the functorial intersection theory
reveals a non-trivial geometric content of LCS(X /S), unseen from a purely topological point of
view. This aspect of LCS(X /S), whose numerous consequences we summarize below, is one of
the novel contributions of this article.

The results above, whose proofs occupy the main body of the text, can be found in Section
8, to which we refer the reader for details. In the rest of the introduction, we elaborate on the
techniques that lead to Theorem A, followed by some applications.

1.1. Intersection bundles and connections.

Intersection bundles. The geometrical underpinnings of the construction of LCS(X /S) rely on
a functorial approach to characteristic classes, initiated by Deligne in [38], building upon [3,
Exposé XVIII, §1.3], and later further developed by Elkik [43]. See also Franke [50, 51] and Ducrot
[41]. This theory provides a natural way to represent some integrals of cohomology classes
of vector bundles in terms of line bundles. These are thus referred to as intersection bundles.
The central examples in our formalism will be refinements, for families of compact Riemann
surfaces X → S, of the cohomology classes

∫
X /S c1(E ′)c1(E ′′) and

∫
X /S c2(E ) into line bundles over

S denoted 〈det(E ′),det(E ′′)〉, and called Deligne pairing, and IC2(E). In particular, we have the
following equality of Chern classes:

c1(IC2(E)) =
∫

X /S
c2(E).

The construction of these bundles is done in such a way that standard manipulations with
characteristic classes, e.g. the Whitney sum formula, lift to functorial isomorphisms. Several
properties are however not easily obtained with the existing technology, for example functorial
isomorphisms corresponding to polynomial identities of Chern classes.

For the purpose of systematically furnishing functorial isomorphisms, in Section 2 we develop
a formalism of line functors, for general families of varieties X → S, which is of independent
interest. This is to be understood as a functorial way to associate line bundles G (E ) on S to vector
bundles E on X , capturing the main features of intersection bundles. We prove the following
splitting principle, which is a fundamental tool that was missing in the work of Deligne and Elkik.
We refer to Proposition 2.2 and Theorem 2.10 for a precise formulation.
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Theorem B. Suppose that G and G ′ are line functors. To construct a functorial isomorphism
G (E) →G ′(E) for a vector bundle E of rank r , it suffices to suppose that E = L1 ⊕ . . .⊕Lr is a sum
of line bundles.

In the text, we further elaborate on line functors equipped with a multiplicativity structure
with respect to short exact sequences, modeled on the Whitney sum formula and explained in
§2.4. For those, we can further reduce the conclusion of Theorem B to the case of line bundles,
where constructions are usually much better understood.

In Section 3, Theorem B and its variants are systematically applied in the study of intersection
bundles in relative dimension one. To highlight an application, we provide a self-contained proof,
by reduction to the case of line bundles, of Deligne’s version of the Riemann–Roch theorem for
families of compact Riemann surfaces X → S, reviewed below in §1.2.

We expect that the theory of line functors sets the foundations of future applications to
analogous problems in higher dimensions. In this generality, the only available approach to
intersection bundles is that of Elkik. This motivates us to rely on this framework, which also
requires some further developments of her IC2, including a hitherto unknown comparison
with Deligne’s construction. In the setting of Riemann surfaces, this allows us to provide a
construction of IC2(E), whenever E is of rank 2, in terms of generators and relations, mirroring
the more standard setting of Deligne pairings 〈L, M〉. It also permits us to explicitly describe the
complex metric in Theorem A, in the SL2 case, illustrating how our constructions conceptualize
and improve heavy explicit computations by Fay in his studies of non-abelian theta functions
[48, 49].

Intersection connections. The work [57] of the last two authors in the case of Deligne pairings, mo-
tivated the interest in equipping intersection bundles, such as IC2(E ), with natural connections,
whenever E admits one. When E carries a hermitian metric, IC2(E) is equipped with a natural
intersection metric, and it is natural to require that a construction of the above extends that of
the associated Chern connections. The hermitian theory is intimately tied to the construction
of Bott–Chern secondary classes as developed by Gillet–Soulé in arithmetic intersection theory
[63, 64]. This is recalled and complemented in Section 4. Using a variant of Chern–Simons
transgression classes, suggested by Gillet–Soulé in relation to Arakelov geometry and differen-
tial characters [62], we find such a theory for connections on IC2. This is summarized in the
following proposition, whose proof and properties occupy Section 5.

Proposition. Let (E ,∇) be a holomorphic vector bundle with a C ∞ connection, compatible with
the holomorphic structure. Then, there is a canonically associated intersection connection ∇IC2 ,
also compatible with the holomorphic structure on IC2(E). Furthermore, in terms of the Chern–
Weil representatives, we have

c1(IC2(E),∇IC2 ) =
∫

X /S
c2(E ,∇).

For the purpose of constructing complex Chern–Simons bundles, we recall in Section 6 the
moduli spaces of flat connections considered by Simpson [105, 106]. There, we are naturally faced
with relative connections, rather than global ones. An application of the previous formalism
thus requires an extension result of relative connections. While such extensions always exist, we
stress that the associated intersection connection generally depends on this choice. However, in
the flat relative setting we have the following theorem, which is a higher rank generalization of
one of the main results of [57]. It is the object of study of Section 7.
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Theorem C. Let E be a holomorphic vector bundle over X and ∇ : E → E⊗A 1
X /S a C ∞ flat, relative

connection, compatible with the holomorphic structure. Then:

(1) Given an extension ∇̃ of ∇ to a global compatible connection, ∇̃IC2 only depends on ∇, and
is therefore denoted by ∇IC2 . We also refer to it as the intersection connection associated to
∇.

(2) If ∇ is holomorphic, then ∇IC2 is holomorphic as well.
(3) If ∇ is fiberwise irreducible, then the curvature of ∇IC2 is locally described in terms of the

Atiyah–Bott–Goldman form.

While the independence of the extension of the relative connection in the flat setting is
straightforward, the other results require the non-trivial engineering of special extensions, that
we call canonical extensions. This construction, of independent interest, draws inspiration from
the theory of deformations of harmonic maps in non-abelian Hodge theory, as studied by Spinaci
[108], and makes the description of the curvature of ∇IC2 rather transparent. The existence and
uniqueness of canonical extensions generalize another key statement of [57]. Since an accurate
presentation would be too technical for this introduction, we refer to §7.2–§7.3 below for a
thorough discussion.

Complex Chern–Simons. We are now in position to explain the construction of the relative
complex Chern–Simons bundle. Recall that, locally on Mir

B(X /S,SLr ), there exists a universal
holomorphic vector bundle with holomorphic, flat, relative connection (F un,∇un), which is
unique up to tensoring by line bundles coming from Mir

B(X /S,SLr ).

Proposition/Definition. The complex Chern–Simons bundle LCS(X /S) is a line bundle with a
holomorphic connection on Mir

B(X /S,SLr ), locally defined as the dual of IC2(F un), together with
the dual of the intersection connection associated to ∇un.

We notice that it is part of the statement that the locally defined IC2 bundles with connections
globalize. This follows from our extensions of the theory of intersection bundles and intersections
connections, previously reviewed. The above definition is dealt with in Section 8, where we also
establish Theorem A and other fundamental facts of complex Chern–Simons line bundles, based
on developments such as Theorem C.

Remark. Actually, as an application of Kempf’s descent lemma, when S is algebraic one can
prove that the holomorphic line bundle underlying LCS(X /S) extends to all of MB(X /S,SLr ). In
a sense, we show that the connection extends too, cf. Corollary 7.12.

We notice that some of the statements in this work are differential geometric counterparts
to algebraic results by Faltings in [46, Section IV], in his approach to the Hitchin connection
[75]. The complex analytic method allows us to ultimately treat problems that are not of a
purely algebraic nature, such as the conjectures of Cappell–Miller and Bertola–Korotkin–Norton,
presented below. Let us also mention the differential geometric re-development of Faltings’ work
sketched by Ramadas [101], of which our formalism provides rigorous foundations. More recently,
other authors have investigated variants of Faltings’ observations. See for instance Biswas–
Hurtubise [24] and Biswas–Hurtubise–Roubtsov [25]. In comparison with other constructions
in the literature, intersection connections yield objects with a better behaviour, such as the
functorial and the crystalline properties. On a different note, we also refer to Takhtajan [111],
who studies the symplectic geometry of the moduli spaces of stable vector bundles with flat
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connections, by analogy with projective structures on Riemann surfaces. We hope to explore the
interplay between our theory and these other developments in the future.

1.2. Applications.

Projective structures and Chern–Simons transforms. A projective structure on a compact Rie-
mann surface of genus g ≥ 2 is a system of holomorphic charts with changes of coordinates in-
duced by complex Möbius transformations. Prototypes are provided by the classical uniformiza-
tion by Fuchsian or Schottky groups. Projective structures give rise to PSL2(C)-representations
of the fundamental group, called holonomy representations. For a family of compact Riemann
surfaces, one can likewise consider families of projective structures. There is a universal space of
relative projective structures denoted by π : P (X /S) → S, which has the structure of a holomor-
phic affine bundle with respect to the action of the bundle of relative holomorphic quadratic
differentials. The holonomy representations of the projective structures on the fibers induce a
holomorphic map

hol : P (X /S) −→ Mir
B(X /S,PSL2),

called the relative holonomy map. The PSL2 version of the complex Chern–Simons line bundle
can be pulled back to P (X /S), which is denoted by KCS(X /S). This is a holomorphic line bundle
endowed with a holomorphic connection.

Theorem D. There is a canonical functorial isomorphism of holomorphic line bundles

KCS(X /S) 'π∗〈ωX /S ,ωX /S〉.
The proof is not a simple computation of characteristic classes, but rather is based upon the

functoriality properties of the intersection bundles and the classical interpretation of projective
structures in terms of theta characteristics. Notice that, even over a simply connected base,
the theorem reveals a non-trivial geometric content of the complex Chern–Simons line bundle,
unattainable by the classical topological approach. For details on the proof, we refer to Theorem
9.4.

An immediate consequence of Theorem D is that, given a smooth family of projective struc-
tures on X → S, namely a C ∞ section σ : S →P (X /S), by pulling back the built-in connection
on KCS(X /S) we obtain an induced connection on the Deligne pairing 〈ωX /S ,ωX /S〉, which is
holomorphic if σ is. This connection is called the Chern–Simons transform of σ, and we think
of KCS(X /S) as being the kernel of the transform. An essential property of the Chern–Simons
transform is that it is compatible with the holomorphic structure of the Deligne pairing, and it is
linear with respect to the affine structure of P (X /S), cf. Proposition 9.8.

The first application of Chern–Simons transforms is a new, conceptual proof of the following
observation due to S.-Y. Zhao [118], in turn implicitly related to Ivanov [79]:

Corollary. Let X → S be a non-isotrivial family of compact Riemann surfaces of genus g ≥ 2, over
a compact Riemann surface. Then X → S admits no holomorphic relative projective structures.2

Indeed, if such a family existed, then its Chern–Simons transform would be a holomorphic
connection on 〈ωX /S ,ωX /S〉, necessarily flat since S is one-dimensional. Therefore, the corre-
sponding Chern class would vanish. Since this class is given by the self-intersection number
(ω2

X /S), it contradicts Arakelov’s positivity theorem [8]. The corollary seems to contradict the
statement in [27, Remark 3.15].

2S.-Y. Zhao informed us that this result is somewhat of a folklore theorem.
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We next place ourselves in the setting of the Teichmüller space T = T (X0), where X0 is a
compact Riemann surface of genus g ≥ 2. Let C →T be the universal Teichmüller curve of Bers.

Theorem E. The Chern–Simons transform establishes a canonical bijective correspondence be-
tween smooth families of projective structures parametrized by T , and connections on 〈ωC /T ,ωC /T 〉,
which are compatible with the holomorphic structure. Furthermore:

(1) Holomorphic families exactly correspond to holomorphic connections.
(2) The Chern–Simons transform of the Fuchsian uniformization σF : T →P (C /T ) is the

Chern intersection connection on the Deligne pairing, denoted ∇ch, associated to the
hyperbolic metric.

For a proof, we refer to Theorem 9.9 and Theorem 9.11. That the correspondence is bijective
rests on symplectic aspects of P (C /T ), going back to Kawai [81], together with Theorem A
and the linearity of the Chern–Simons transform. The case of σF utilizes Hitchin’s theory of
uniformizing Higgs bundles, and indicates the potential of the methods of non-abelian Hodge
theory in the study of intersection connections. A variant of Theorem E has been independently
announced, employing a somewhat ad hoc construction, by Biswas–Favale–Pirola–Torelli [23].
While the bulk of their proof focuses on the holomorphicity property of (1), this is automatically
satisfied in our setting, since the built-in connection of KCS(C /T ) is already holomorphic. As
an asset, our theory brings out the origin of this correspondence.

An immediate outcome of (2) of Theorem E is the following celebrated result of Wolpert [117]
(see Corollary 9.12):

Corollary (Wolpert). In terms of the Weil–Petersson Kähler form on T , the curvature of ∇ch is
1
π2ωWP.

The key point is Goldman’s interpretation of the Weil–Petersson form in terms of the Atiyah–
Bott–Goldman form for PSL2(R) [66]. Actually, in light of Theorem E, Goldman and Wolpert’s
results are equivalent. We clarify that the aforementioned work of Biswas–Favale–Pirola–Torelli
does not entail Wolpert’s curvature formula, but rather builds on an equivalent formulation
in terms of the Hodge bundle endowed with the Quillen metric. Thus, the implications of our
methods are broader in scope.

A further application of Theorem E shows that the intersection metric on 〈ωC /T ,ωC /T 〉
associated to the hyperbolic metric, has a holomorphic extension to the quasi-Fuchsian space
Q =T ×T , parametrizing couples (X ,Y ) of compact Riemann surfaces deforming (X0, X 0). The
Teichmüller space is diagonally embedded in Q, as a totally real submanifold. Let us denote by
X + →Q and X − →Q the universal curves, arising from Bers’ simultaneous uniformizations by
quasi-Fuchsian groups. The next statement is a rough form of Theorem 9.19, to which we refer for
the precise meaning. It plays a key role in the proof of the conjecture of Bertola–Korotkin–Norton.

Theorem F. The intersection metric on 〈ωC /T ,ωC /T 〉 associated to the hyperbolic metric, uniquely
extends to a holomorphic trivialization of 〈ωX +/Q ,ωX +/Q〉⊗〈ωX −/Q ,ωX −/Q〉.

We conclude the discussion on projective structures by a reference to the constructions of nat-
ural Weil–Petersson potentials on the Schottky and quasi-Fuchsian spaces, by Takhtajan–Zograf
[120] and Takhtajan–Teo [112], respectively. These potentials are known as classical Liouville
actions. Our methods allow for a conceptual, simpler approach, cf. §9.5–§9.6. For instance, let
τQF denote the trivialization in Theorem F, and endow the Deligne pairings 〈ωX ±/Q ,ωX ±/Q〉
with the intersection metrics associated to the hyperbolic metric. Then, the Liouville action
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on the quasi-Fuchsian space is identified with log‖τQF‖, up to normalization. We also mention
related work of Guillarmou–Moroianu [70]. These authors construct Chern–Simons line bundles
on Teichmüller spaces of convex cocompact hyperbolic 3-manifolds, derived from a regularized
Chern–Simons action, and in turn connected to the Liouville action. In §9.7 we show that their
results can also be subsumed in our formalism. From this perspective, the existence of the trivi-
alization τQF reflects that, by Bers’ simultaneous uniformization, couples of Riemann surfaces
(X ,Y ) as above appear as the conformal boundaries of quasi-Fuchsian hyperbolic 3-manifolds.
This picture is consistent with the axioms advocated by topological quantum field theories [9].

Riemann–Roch theorems and the Cappell–Miller torsion. We return to the setting of a family of
compact Riemann surfaces X → S of genus g ≥ 3. Let E be a holomorphic vector bundle on X .
The determinant of the cohomology of E is a holomorphic line bundle λ(E) on S, whose fiber at
s ∈ S is given by

λ(E)s = det H 0(Xs ,E)⊗det H 1(Xs ,E)∨.

Going back to Quillen [87], whenever TX /S and E are equipped with hermitian metrics, there
is a natural hermitian metric on λ(E), called the Quillen metric. It is formed by a combination
of the L2 metric, provided by Hodge theory, and the regularized determinant of the Dolbeault
Laplacian ∆0,1

∂E
acting on A0,1(Xs ,E). The latter is defined as

(1.1) det′∆0,1

∂E
= exp(−ζ′

∂E
(0)),

where ζ
∂E

(u) = ∑
λ−u

k is the zeta function on the non-zero eigenvalues of ∆0,1

∂E
, analytically

continued to a neighborhood of u = 0.
As a consequence of the work of Deligne [38], heavily relying on the combined works of Bismut–

Freed [17, 18], Bismut–Gillet–Soulé [19, 20, 21], Bismut–Lebeau [22] and Gillet–Soulé [65], the
Grothendieck–Riemann–Roch formula for E lifts to an isometry, up to an explicit topological
constant, of hermitian line bundles

(1.2) λ(E)12 ∼−→〈ωX /S ,ωX /S〉rkE ⊗〈detE ,ω−1
X /S ⊗detE〉6 ⊗ IC2(E)−12.

Here λ(E) is considered with the Quillen metric, and the intersection bundles with their in-
tersection metrics. We usually refer to (1.2) as the Deligne–Riemann–Roch isomorphism, or
self-explanatory variants of this terminology.

In [32], Cappell–Miller introduced a natural extension of the Quillen metric to flat connections
on holomorphic vector bundles, nowadays called the holomorphic Cappell–Miller torsion. For a
vector bundle endowed with a flat metric, the Quillen metric and the Cappell–Miller torsion of
the associated Chern connection can be identified. In general, in the introduction of op. cit., they
conjectured that it satisfies similar properties as the Quillen metric. A compact formulation of
this expectation is that the Cappell–Miller torsion should fit into a Riemann–Roch isomorphism.
In the case of flat line bundles, this was accomplished, under the form of an extension of Deligne’s
isometry, by the last two authors in [56].3 In Section 10, we address the case of general rank (cf.
Theorem 10.3 and Theorem 10.5):

Theorem G. The Cappell-Miller torsion of flat irreducible vector bundles on compact Riemann
surfaces satisfies a Riemann–Roch formula, extending Deligne’s isometry in the flat unitary case.

3As a matter of fact, in op. cit. a preliminary form of the present article was announced under the title Complexified
Chern–Simons and Deligne’s intersection bundles.
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The functorial setting is particularly adapted to the problem at hand, since the Cappell–Miller
torsion is a section of a combination of determinant bundles, rather than a numerical invariant.
The key point of the proof is that, for a flat vector bundle on a fixed compact Riemann surface,
the Cappell–Miller torsion depends holomorphically on the holonomy representation of the
flat connection. In turn, this is proven by means of Kato’s perturbation theory for closed linear
operators [80], applied to a suitable holomorphic family of non-self-adjoint Laplacians. This
is then combined with the complex metrics in Theorem A, and the fact that (1.2) induces an
isometry in the case of flat unitary vector bundles.

We stress that Theorem G furnishes an interpretation of the complex metrics in Theorem A in
terms of the Cappell–Miller torsion. This is a new property of complex Chern–Simons bundles,
inaccessible to the classical topological approach. It is analogous to the realization of the SU(2)
version of the Chern–Simons bundle by Ramadas–Singer–Weitsman as a determinant bundle
with a Quillen metric on the space of unitary connections on a compact Riemann surface. Their
observation is based on a curvature computation, which does not apply to the Cappell–Miller
torsion. In our setting, the Deligne–Riemann–Roch approach provides an appropriate alternative
to their curvature argument.

A conjecture of Bertola–Korotkin–Norton. In [15], Bertola–Korotkin–Norton studied a symplectic
equivalence relation between families of projective structures parametrized by the Teichmüller
space. They were lead to conjecture the relationship between the Bergman and Bers quasi-
Fuchsian projective structures. The formulation they propose is a quasi-Fuchsian analogue of
a result of Takhtajan–Zograf [121]. We here confirm their conjecture as an application of our
results.

Let X0 be a compact Riemann surface of genus g ≥ 2, endowed with a marking of the funda-
mental group, T =T (X0) its Teichmüller space and C →T the universal curve. We consider
two families of projective structures. The first one is given by the Bergman projective connection
on the fibers of C → T , which depends on the marking of X0, and is related to the Bergman
and Schiffer kernels.4 The second one is defined by the Bers’ quasi-Fuchsian uniformization of
the fibers of C →T . We denote the corresponding sections T →P (C /T ) by σB and σBers. The
determinant of the hyperbolic Laplacian, defined as in (1.1), determines a C ∞ function det′∆hyp

on T . After Kim [82], there is a holomorphic extension thereof, denoted by d̃et ∆hyp, from the
totally real embedding of T to the whole quasi-Fuchsian space Q =T ×T , and we henceforth
restrict it to the Bers slice T 'T × {X 0} ⊂Q. Finally, for Riemann surfaces X ∈T , denote by Ω
their period matrices, and by Ω0 the period matrix of X0. The following theorem confirms the
conjecture of Bertola–Korotkin–Norton [15, Conjecture 1.1] (cf. Theorem 10.19):

Theorem H. On the Bers slice, the projective structures of Bergman and Bers are related by

σB−σBers = 6π∂ log

(
d̃et ∆hyp

det(Ω−Ω0)

)
.

The proof is based on the following considerations, which underscore the importance of
the Deligne isometry. One can use the theory of Chern–Simons transforms to reinterpret the
Bergman and Bers sections as connections on a Deligne pairing. The Bers connection has an

4The terminology seems to have been coined by Hawley–Schiffer [71] in connection with the Bergman kernel on
planar domains. The Bergman kernel in op. cit. is called the Schiffer kernel by some authors, e.g. Fay [47]. See also
Bergman–Schiffer [10] and references therein.
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extension to the quasi-Fuchsian space, and can be related to Kim’s complex valued determinant
thanks to Theorem F and Deligne’s isometry. The Bergman connection, on the other hand, can
be written in terms of the Fuchsian connection by the work of Takhtajan–Zograf [121], and can
be understood via Theorem E and Deligne’s isometry again. We highlight that a byproduct of the
method is a new, conceptual and self-contained proof of Kim’s extension theorem.

We notice that the proof of Theorem H relies on a closed and explicit expression of the
difference between the Bergman and Fuchsian structures. The difference between the Bergman
and Schottky structures was similarly computed by Zograf and McIntyre–Takhtajan in [93].
Combined with Theorem H, the difference of all four of the above mentioned projective structures
can be computed. By Theorem E, the Chern–Simons transform of the Fuchsian section itself is
calculated to be an intersection connection of the hyperbolic metric, and we derive the following
corollary:

Corollary. The Chern–Simons transforms of the Fuchsian, Schottky, Bergman and Bers projective
structures can all be described by closed explicit expressions.

Remark. The original conjecture of Bertola–Korotkin–Norton was formulated in terms of a quasi-
Fuchsian analogue of Selberg’s zeta function. The necessary properties of this function were
claimed, without proof, in Bowen’s posthumous article [28, Remark b, p. 272]. To the best of our
knowledge, the validity has not been confirmed to date. However, Kim shows in [82, Section 3]
that in a neighborhood of the point (X0, X 0), d̃et ∆hyp can be computed as the determinant of a
non-self-adjoint Laplacian, which reveals an equally interesting property of σB−σBers.

Future applications. There are other applications that we did not include in this paper for reasons
of length, and that we plan to develop in future work. We briefly mention the theme of three of
them.

• Our treatment of families of projective structures can be generalized to the case of opers;
families of opers give rise to connections on Deligne pairings.

• The relative complex Chern–Simons bundles and the results on the Cappell–Miller tor-
sion, lead to a new understanding of Hitchin’s hyperholomorphic line bundle with mero-
morphic connection, on the moduli space of Deligne’s λ-connections. This is a higher
rank extension of [57, §5.4].

• An Arakelov theoretic formalism for vector bundles with flat connections on arithmetic
surfaces, generalizing [56] to higher rank.

1.3. Notation and conventions. Depending on the context, we will interchangeably discuss
either smooth projective curves or their analytifications compact Riemann surfaces. They are
always assumed to be connected.

In this article, “functorial” will mean that a formulation commutes with base change. For
example, on a family of curves X → S, the association E 7→ IC2(E) is functorial. This concretely
means that for any map g : S′ → S, there is a natural isomorphism g∗IC2(E)

∼→ IC2(g∗E), where
we abuse notation and also denote by g the induced map X ×S S′ → X . Likewise, there are
isomorphisms of functors associated to isomorphisms of S-families X → X ′.

When performing GIT quotients, we will write GLr /C for the general linear group scheme over
C, while the notation GLr (C) will be reserved to its set of complex points, namely the usual group
of invertible matrices with complex coefficients. Similar conventions apply to other algebraic
groups.

11



We will adopt a sheaf theoretic point of view on connections. If E is a C ∞ complex vector
bundle on a manifold X , identified with its sheaf of C ∞ sections, then a connection on E is a
C-linear morphism of sheaves ∇ : E → E ⊗C ∞

X
A 1

X , satisfying the Leibniz rule with respect to the

C ∞
X -module structure of E . Here, we write A 1

X for the sheaf of complex differential 1-forms on
X . If X is moreover a complex manifold and E a holomorphic vector bundle, then we say that
∇ is compatible with the holomorphic structure of E , or more simply compatible, if its (0,1)
projection coincides with the Dolbeault operator of E . Identifying E with its sheaf of germs of
holomorphic sections, a compatible connection can equivalently be seen as aC-linear morphism
of sheaves ∇ : E → E⊗OX A 1,0

X , satisfying the Leibniz rule with respect to the OX -module structure
of E . These notions have relative counterparts for submersions of complex manifolds f : X → S.
In this article we will exclusively deal with compatible connections. After the previous discussion,
we will use notation such as ∇ : E → E ⊗A 1,0

X /S , to mean a compatible, relative connection.
Notice this is now f −1OS-linear. Compatible connections are called holomorphic when they
preserve holomorphicity of sections. For a holomorphic relative connection we rather write
∇ : E → E ⊗Ω1

X /S , where Ω1
X /S is the sheaf of relative holomorphic differentials. Holomorphic

relative connections can more generally be defined for smooth morphisms of complex analytic
spaces.

If L is a complex line bundle on a manifold X , it will be useful to interpret a C ∞ hermitian
metric on L as an isomorphism h : L⊗L

∼→CX , where L is the complex conjugate line bundle and
CX is the trivial line bundle on X . Then h defines a trivialization of L⊗L, given by h−1(1). We will
sometimes confuse both points of view, i.e. the metric and the trivialization, if there is no danger
of misunderstanding. This interpretation of hermitian metrics will be systematically used in §8.3
and in Section 10.

2. LINE FUNCTORS AND TWO SPLITTING PRINCIPLES

Suppose that we are given a flat family of algebraic varieties X → S. In this section we will
consider line functors, which are functors G taking vector bundles E on X and associating
line bundles on S, depending on E and X → S in a functorial way. Our main examples, which
appear in Section 3, are the functorial lifts of direct images of characteristic classes introduced
by Deligne [38] and Elkik [43]. With this in mind, in this section we provide fundamental
tools akin to the splitting principles in classical intersection theory. Particular care is taken
regarding multiplicative properties of line functors. These functorial splitting principles were
not developed previously, and constitute a complement to the work of Deligne and Elkik of
independent interest. While this section is utilized in the rest of the text, it can be safely omitted
in a first reading.

In the context of Chow categories and the functorial intersection theory developed by Franke
in [50, 51], splitting principles were established under additional hypotheses. Unfortunately, the
approach is Chow homological and, to produce line bundles, additional regularity assumptions
on our varieties must be imposed. These are not known to be satisfied in the main applications.

To fix a setting and simplify language, we consider the category of algebraic varieties over
a field. However, the results are valid in the category of noetherian schemes or even complex
analytic spaces, the verification being left to the reader.

2.1. Line functors. Suppose that we are given a class of families of algebraic varieties P , always
meaning a class of flat families f : X → S, assumed to be surjective over S. These are hence
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always faithfully flat. This class is supposed to be closed under base changes along morphisms
of varieties S′ → S, and closed under isomorphisms of families. The main relevant cases in
this article will all be flat projective families of curves, or the class generated, via pullbacks and
isomorphisms, by a single flat family of projective curves over a variety S.

For any family f in the class P , we will consider functors of the type

(2.1) G f : (Vect/X , iso)k → (Line bundles/S , iso),

from the category of k-tuples of vector bundles on X , with k-tuples of isomorphisms as mor-
phisms, to that of the category of line bundles on S, also with isomorphisms as morphisms. This
means that for any k-tuple of vector bundles E = (E1, . . . ,Ek ) on X , there is an association

E 7→G f (E) line bundle on S,

and for isomorphisms ϕ : E → E ′ there are isomorphisms [ϕ] : G (E) → G (E ′) of line bundles,
compatible with compositions of isomorphisms. In the following definition and beyond, it is
understood that standard manipulations with vector bundles, such as pullback, are extended
componentwise to k-tuples.

Definition 2.1. (1) A line functor of k-variables G consists in giving, for any family f in the
class P , a functor G f as in (2.1), fulfilling:

(a) Whenever there is an isomorphism i : X ′ → X of S-varieties in P , there is a natural
equivalence of functors G f ◦i ◦ i∗ and G f , compatible with compositions of isomor-
phisms.

(b) The formation of G commutes with base changes g : S′ → S in P , i.e. there are natural
isomorphisms of functors

g∗G f →G f ′ ◦ g ′∗

where f ′ : X ×S S′ → S′ and g ′ : X ×S S′ → X are the natural maps. It should be com-
patible with compositions S′′ → S′ → S in the obvious way. Since the formation of
Cartesian products is only unique up to unique isomorphism, this employs (a).

(2) A natural transformation of two line functors G and G ′ consists in natural transformations
of functors G f →G ′

f , for f in P , commuting with the above base changes.

The class P will often be clear from the context, and will be omitted. When the family f
is clear too, we simplify G f as G . Finally, line functors of 1-variable will simply be called line
functors. Most of the time we will focus on the latter, but the generality of k-variables will be
needed in some intermediate results.

2.2. Transgression bundles and a first splitting principle. The first splitting principle of this
section will employ a construction sometimes referred to as transgression sequences, originally
introduced by Bismut–Gillet–Soulé in the context of Bott–Chern secondary classes, cf. [63, §1.2.3].
For this, suppose we are given an exact sequence

(2.2) ε : 0 → E ′ → E → E ′′ → 0

on a variety X . On X ×P1 we will construct an exact sequence

(2.3) ε̃ : 0 → p∗E ′(1) → Ẽ → p∗E ′′ → 0.
13



Here, p denotes the natural projection p : X ×P1 → X and Ẽ = (
p∗E ′(1)⊕p∗E

)
/p∗E ′, where

the map p∗E ′ → p∗E ′(1)⊕p∗E is determined by combining the inclusion E ′ → E in (2.2) with
p∗E ′ → p∗E ′(1) given by f 7→ f ⊗σ. Here, we choose σ to be the standard section of O (1)
vanishing only at ∞. The map p∗E ′(1) → Ẽ is the natural one on the second coordinate. In
practice, we will only need the following properties, which follow from the construction:

(1) ε̃|X×{t } is isomorphic to ε in (2.2), for t 6=∞;
(2) ε̃|X×{∞} is isomorphic to the standard split exact sequence:

(2.4) ε′ : 0 → E ′ → E ′⊕E ′′ → E ′′ → 0;

(3) ε̃ is functorial.

In the constructions below, it will be necessary to fix the above isomorphisms, compatibly with
base changes X ′ → X and isomorphisms of exact sequences. This is always possible, and we
choose any of them.

The following proposition, asserting the existence of a splitting isomorphism for line functors,
is a useful application of transgression sequences, and provides a geometric interpretation of
more classical versions of the splitting principle.

Proposition 2.2. Let G be a line functor. Then, for any exact sequence of vector bundles ε as in
(2.2) there is a unique isomorphism

ψε : G (E) →G (E ′⊕E ′′)

which

(1) is functorial with respect to pullback and isomorphisms of exact sequences,
(2) is the identity whenever ε is the standard split exact sequence ε′ in (2.4).

Proof. We begin by showing uniqueness. Suppose there are two different such isomorphisms,
ψ,ψ′. The transgression exact sequence (2.3) induces isomorphisms

ψε̃,ψ′
ε̃ : G (Ẽ) →G (p∗E ′(1)⊕p∗E ′′)

for the family X ×P1 → S ×P1. We claim this is determined by the split case. The difference
betweenψε̃ andψ′

ε̃
is given by an element g ∈ H 0(O×

S×P1 ). Since the restriction map H 0(O×
S×P1 ) →

H 0(O×
S ) along S × {∞} → S ×P1 is an isomorphism, g is determined by the restriction to the fiber

at ∞. The restriction to ∞ of g is the image in H 0(O×
S ) of the difference between ψε′ and ψ′

ε′ .
But since the isomorphism commutes with base change, this corresponds to the difference of
isomorphisms in the split case ε′, which are both the identity themselves, so g itself is the identity.
Since the fiber at 0 of ψε̃ =ψ′

ε̃
is identified with both ψε and ψ′

ε, we see that they coincide.
To prove existence, we first notice that the bundle G (Ẽ) is a line bundle on S ×P1. By the

classification of line bundles on projective bundles, described in Lemma 2.5 below, it is hence
non-canonically isomorphic to a line bundle of the form p∗L⊗O (k), where we also denote by p
the natural projection S×P1 → S. The restrictions of G (Ẽ ) to 0 and ∞ are canonically isomorphic
to G (E) and G (E ′⊕E ′′), as well as non-canonically isomorphic to L. Choose an arbitrary such
isomorphism in the case of the transgression exact sequence, G (Ẽ) →G (p∗E ′(1)⊕p∗E ′′). It is
unique up to multiplication by an element of H 0(O×

S×P1 ) = H 0(O×
S ). We modify it with the unique

invertible function on S ×P1 so that the restriction to ∞ is the identity, and define ψε via the
restriction of this isomorphism to 0.
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We still need to prove functoriality, both with respect to pullbacks and with respect to isomor-
phisms of exact sequences. Suppose first that we have an isomorphism of two exact sequences

ε : 0 // E ′ //

ϕ′
��

E //

ϕ

��

E ′′

ϕ′′
��

// 0

δ : 0 // F ′ // F // F ′′ // 0.
They induce corresponding isomorphisms on the transgression exact sequences, which we
denote by ϕ̃′,ϕ̃ and ϕ̃′′. We have two isomorphisms G (Ẽ) → G (p∗E ′(1)⊕ p∗E ′′), namely one
given by ψε̃, and another via the following isomorphisms

G (Ẽ)
[ϕ̃]−→G (F̃ )

ψδ̃−→G (p∗F ′(1)⊕p∗F ′′)
[ϕ̃′⊕ϕ̃′′]←− G (p∗E ′(1)⊕p∗E ′′).

Since the latter is identified with the identity when restricting to ∞, it must coincide with ψε̃. It
follows that their restrictions to 0 are the same, which amounts to functoriality with respect to
isomorphisms of exact sequences.

For the functoriality with respect to base changes, one notes that the transgression con-
structions commute with base change, from which it follows that so does ψε. Also, since the
transgression exact sequence is canonically split when the original exact sequence is the standard
split exact sequence ε′, one immediately sees that ψε′ is the identity.

�

Definition 2.3. With the notation as in Proposition 2.2, we say that ψε is a splitting isomorphism.

Remark 2.4. Let G be a line functor, and V ,W fixed vector bundles on X → S. Then, we can
define another line functor by E 7→ G (V ⊕E ⊕W ). Applying Proposition 2.2 to the latter, we
obtain splitting isomorphisms

ψε : G (V ⊕E ⊕W ) →G (V ⊕E ′⊕E ′′⊕W ).

We will sometimes use this modified version of splitting isomorphisms.

The following lemma was used in the proof of Proposition 2.2. We include it for lack of a proper
reference in this generality.

Lemma 2.5. Let X be a variety, and V a vector bundle of rank r on X . Consider the projectivization
p : P(V ) → X of V , with its tautological line bundle O (1). Then any line bundle on P(V ) is
isomorphic to p∗L⊗O (k), for some integer k.

Proof. Denote by K0(X ) the Grothendieck group of vector bundles of a variety X , defined as
the free abelian group on vector bundles modulo exact sequences. Taking determinants of a
vector bundle is multiplicative with respect to exact sequences, and determines a surjective
homomorphism

det: K0(X ) → Pic(X ).

This is well-known, but also described later in §3.3. By [2, Exposé VI, Théorème 1.1] we know that
K0(P(V )) is freely generated as a K0(X )-module by OP(V ),O (1), . . . ,O (r −1). The statement then
follows from an application of (3.6) below, showing that for a virtual vector bundle E of virtual
rank e, det(p∗E ⊗O (k)) = p∗(detE)⊗O (ke). �

Recall that a filtration of vector bundles is admissible if all quotients that can be formed are
locally free.
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Proposition 2.6. Let G be a line functor, and suppose that we are given an admissible filtration
E ′

2 ⊆ E ′
1 ⊆ E of vector bundles. Then, the natural diagram of splitting isomorphisms

G (E) //

��

G (E ′
1 ⊕E/E ′

1)

��

G (E ′
2 ⊕E/E ′

2) // G (E ′
2 ⊕E ′

1/E ′
2 ⊕E/E ′

1)

commutes.

Proof. Associated to the filtration there is a commutative diagram of vector bundles on X ×P1

0

��

0

��

0

��

0 // p∗E ′
2(1)

��

// Ẽ ′
1

//

��

p∗(E ′
1/E ′

2) //

��

0

0 // p∗E ′
2(1)

��

// Ẽ //

��

p∗(E/E ′
2) //

��

0

0 // 0

��

// p∗(E/E ′
1) //

��

p∗(E/E ′
1) //

��

0

0 0 0
with exact rows and columns. The top two rows are transgression exact sequences for the
sequences associated to the inclusions E ′

1 → E and E ′
2 → E .

The diagram of splitting isomorphisms

(2.5) G (Ẽ) //

��

G (p∗E ′
2(1)⊕p∗(E/E ′

2))

��

G (Ẽ ′
1 ⊕p∗(E/E ′

1)) // G (p∗E ′
2(1)⊕p∗(E ′

1/E ′
2)⊕p∗(E/E ′

1))

is identified with the diagram in the proposition at 0, and is identified with the triple split case at
∞. The maps in the latter case are all identities, which is proven as in Proposition 2.2. It follows
that the diagram (2.5) commutes, and hence so does also the diagram restricted to 0.

�

2.3. Flags and a second splitting principle. A (complete) flag of a vector bundle V on a variety
X is an increasing filtration F • of V , whose graded quotients are line bundles. The variety of flags
DV is a repeated tower of projective bundles over X , and admits a universal flag.

A general theme of this section concerns reducing constructions involving line functors to the
case of line bundles, via flag varieties as in the classical splitting principles. Since the flag varieties
live above X and our constructions are relative to S, the naive approaches cannot directly be
used. In the context of Chow categories [51, 1.13.2] similar properties are established, under
additional hypotheses. Since we are working with line bundles, automorphisms do not change
while passing to flag varieties, and part of the descent condition can be removed.
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Definition 2.7. Let G and G ′ be line functors of k-variables. Suppose given a k-tuple of vector bun-
dles E = (E1, . . . ,Ek ) on X → S. A flag isomorphism ϕ : G (E ) 99KG ′(E ) is the following collection of
data:

(1) For each g : S′ → S, with induced morphisms f ′ : X ×S S′ → S′, g ′ : X ×S S′ → X and k-tuple
of flags F • = (F •

1 , . . . ,F •
k ), where F •

i is a flag on g ′∗Ei , there is an isomorphism

(2.6) ϕ(F •) : G f ′(g ′∗E) →G ′
f ′(g ′∗E).

(2) If i : X → X ′ is an isomorphism of families in the class P , then under the natural equiva-
lence of functors G f ◦i ◦ i∗ →G f , ϕ(F •) is identified with ϕ(i∗F •).

(3) The formation of the isomorphism commutes with base change, i.e. if g : S′ → S is a
morphism, with induced morphism g ′ : X ×S S′ → X then, under the natural equivalence
of functors g∗G f →G f ′ ◦ g ′∗, g∗ϕ(F •) is identified with ϕ(g ′∗F •).

The identifications (2) and (3) in the definition are summarized with the notation

ϕ(F •) =ϕ(i∗F •)

and

(2.7) g∗ϕ(F •) =ϕ(g ′∗F •).

The first remark about these isomorphisms is that they do not, in fact, depend on the choice
of the flags:

Lemma 2.8. Let ϕ be a flag isomorphism. Suppose that F •,F ′• are k-tuples of flags on X → S.
Then ϕ(F •) =ϕ(F ′•). In particular, flag isomorphisms are independent of the choices of flags.

Proof. We will consider the variety of flags on E1, . . . ,Ek , D = DE1 ×X . . .×X DEk , and denote by
q : D → S the composition of the projection p : D → X and f : X → S. We have the diagram

D ×S X
i1
//

i2

//

fD
''

D ×X (X ×S X )
p ′
//

q1

��

q2

��

X ×S X

f1
��

f2
��

D
p

//

q
((

X

f
��

S

where f1 (resp. f2) denote the projection on the first (resp. second) factor. The arrow q1 (resp.
q2) is obtained through base change along p and f1 (resp. f2). The leftmost upper arrows are
the two natural isomorphisms. The diagram obtained by removing all the arrows with indices 1
(resp. 2) commutes.

To simplify the notation, set ϕS =ϕ(F •). Since f is faithfully flat, ϕS is uniquely determined by
f ∗ϕS , which is identified with ϕ( f ∗

1 F •) under the base change isomorphism f ∗G f → G f1 ◦ f ∗
1 .

We show that this is independent of the filtration.
The vector bundles p∗E1, . . . , p∗Ek admit universal flags F •

1 , . . . ,F •
k , and we denote the corre-

sponding tuple of flags by F •. By pullback, all of the f ∗
D p∗E1, . . . , f ∗

D p∗Ek admit complete flags
as well. There is thus a corresponding isomorphism

(2.8) ϕD =ϕ( f ∗
D F •) : G fD ( f ∗

D p∗E) →G ′
fD

( f ∗
D p∗E).
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The initial flags on E1, . . . ,Ek correspond to a section i : X → D of p : D → X . Denote by i ′ the
corresponding section of p ′. Then the restrictions of the flags f ∗

D F • along i ′i−1
1 equal f ∗

1 F • and
hence, in the notation of (2.7), one has

(2.9) i∗ϕD = f ∗ϕS .

Now, by functoriality there is a natural transformation of functors

(2.10) p∗G f1 ◦ f ∗
1 →Gq1 ◦p ′∗ f ∗

1 →G fD ◦ i∗1 p ′∗ f ∗
1 →G fD ◦ f ∗

D p∗

and likewise for G ′. Then, via (2.10) the isomorphism ϕD in (2.8) is identified with an isomor-
phism

(2.11) p∗G f1 ( f ∗
1 E) ' p∗G ′

f1
( f ∗

1 E).

We claim ϕD , identified as (2.11), is the pullback along p of an isomorphism

(2.12) ϕX : G f1 ( f ∗
1 E) →G ′

f1
( f ∗

1 E).

Since p is flat and G ,G ′ are line bundles, the natural morphism

p∗HomOX

(
G f1 ( f ∗

1 E),G ′
f1

( f ∗
1 E)

)
→HomOD

(
p∗G f1 ( f ∗

1 E), p∗G ′
f1

( f ∗
1 E)

)
is an isomorphism, cf. [109, Lemma 17.22.4]. The rightmost coherent sheaf is trivialized by ϕD

via (2.11). Taking direct images along p and using that p∗OD = OX , we find that ϕD identifies
uniquely with an isomorphism ϕX on X via p∗ as claimed, which we summarize as

(2.13) ϕD = p∗ϕX .

By (2.9) and (2.13) we infer that f ∗ϕS = i∗ϕD = i∗p∗ϕX =ϕX . Given yet another flag, giving rise
to an isomorphism ϕ′

S , we find that f ∗ϕS =ϕX = f ∗ϕ′
S and hence ϕS =ϕ′

S . �

Thanks to the lemma, the following definition is well-posed.

Definition 2.9. Let ϕ : G (E) 99K G ′(E) and ϕ′ : G (E ′) 99K G ′(E ′) be two flag isomorphisms. A
morphism of flag isomorphisms ϕ→ϕ′ is an isomorphism of k-tuples E ' E ′ such that, possibly
after a base change S′ → S, for any tuple of flags F • of E (resp. F ′• of E ′), the isomorphism ϕ(F •) is
identified with ϕ′(F ′•).

The second splitting principle takes the following form:

Theorem 2.10. Let G and G ′ be line functors of k-variables.

(1) A flag isomorphism ϕ : G (E) 99KG ′(E) uniquely determines an isomorphism of line bun-
dles

ϕ : G (E) →G ′(E),

coinciding with the flag isomorphism when E admits a flag, possibly after a base change
S′ → S.

(2) A morphism of flag isomorphisms ϕ→ϕ′ induces isomorphisms

G (E)
ϕ
//

��

G ′(E)

��

G (E ′)
ϕ′
// G ′(E ′).

In particular, ϕ : G (E) →G ′(E) is compatible with isomorphisms of vector bundles.
18

https://stacks.math.columbia.edu/tag/0C6I


Remark 2.11. After the theorem, it is justified to denote flag isomorphisms simply by ϕ : G (E ) →
G ′(E), instead of ϕ : G (E) 99KG ′(E).

Proof of Theorem 2.10. We start by noticing that the isomorphisms ϕD and ϕX exhibited in the
proof of Lemma 2.8 exist even if we do not start with a filtration on our vector bundles. We want
to verify that the isomorphism ϕX from (2.12), G f1 ( f ∗

1 E) →G ′
f1

( f ∗
1 E), which we identify with an

isomorphism f ∗G f (E) → f ∗G ′
f (E), also denoted by ϕX , is the pullback of an isomorphism ϕ on

S of the same objects.
Any morphism of descent datum along a fppf morphism is effective, and we must hence verify

that the diagram

f ∗
1 f ∗G f (E) //

f ∗
1 ϕX

��

( f × f )∗G f (E) // f ∗
2 f ∗G f (E)

f ∗
2 ϕX

��

f ∗
1 f ∗G ′

f (E) // ( f × f )∗G ′
f (E) // f ∗

2 f ∗G ′
f (E)

commutes, where the upper and lower horizontal morphisms are the canonical descent datum
for line bundles of the form f ∗L on X . Since p ′∗ is fully faithful, it is enough to verify the
analogous statement by pulling back the diagram along p ′. Set q̃ = qq1 = qq2 and denote by f̃D

the base change of f along q̃ , with projection p̃ = f̃D q1 onto D . To rewrite the descent condition,
we consider the diagram

(2.14) p ′∗ f ∗
1 f ∗G f (E)

��

// p ′∗( f × f )∗G f (E)

��

q1
∗p∗ f ∗G f (E) //

��

q1
∗q∗G f (E) //

��

q̃∗G f (E)

��

q1
∗p∗G f1 ( f ∗

1 E) // q1
∗G fD ( f ∗

D p∗E) // G f̃D
(p̃∗p∗E).

The upper square consists of natural transformations of pullbacks, and hence commutes. The
other squares commute due to functoriality of the line functors and the natural identifica-
tions, as in (2.10), of the various families. Taking into account the analogous diagram for
G ′

f (E), one finds that the isomorphism p ′∗ f ∗
1 ϕX : p ′∗ f ∗

1 f ∗G f (E) → p ′∗ f ∗
1 f ∗G ′

f (E) is identified

with the isomorphism q∗
1ϕD : q∗

1 G fD ( f ∗
D p∗E ) → q∗

1 G ′
fD

( f ∗
D p∗E ), under the natural isomorphism

p ′∗ f ∗
1 f ∗G f (E) → q∗

1 G fD ( f ∗
D p∗E) in (2.14). Also, performing the same construction for the sec-

ond projection, a diagram chase reduces the descent statement to the commutativity of the
diagram

q∗
1 G fD ( f ∗

D p∗E) //

q∗
1ϕD

��

G f̃D
(p̃∗p∗E) //

ϕ̃D

��

q∗
2 G fD ( f ∗

D p∗E)

q∗
2ϕD

��

q∗
1 G ′

fD
( f ∗

D p∗E) // G ′
f̃D

(p̃∗p∗E) // q∗
2 G ′

fD
( f ∗

D p∗E),

where ϕ̃D is the flag isomorphism associated to the flag p̃∗F •. But this diagram commutes as
q∗

1 f ∗
D F • = p̃∗F • and the fact that flag isomorphisms commute with base change.

To verify that the descended isomorphism coincides with the flag isomorphism in the presence
of a flag F •, it suffices to base change to D and apply Lemma 2.8.
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The last property concerning isomorphisms of flag isomorphisms is formal to verify, using the
unicity of Lemma 2.8, since all the spaces commute with base change in an obvious way.

�

Remark 2.12. The two splitting principles in Proposition 2.2 and Theorem 2.10 can be combined
to the effect that it can be assumed that the flags split the vector bundles, so they are of the form

E j = L( j )
1 ⊕ . . .⊕L( j )

r j
. The flags F •

j are then the flags L( j )
1 ⊆ L( j )

1 ⊕L( j )
2 ⊆ . . . ⊆ E j .

2.4. Applications to multiplicativity datum. In this subsection we will develop, for the pur-
poses of this article, line functors equipped with a multiplicativity datum. We develop a minimal
amount of formalism to be able to treat cases where the product is not the tensor product, with
the perspective of treating Whitney-type isomorphisms in Section 3.

Recall that a Picard category P is a monoidal groupoid, where all the objects are invertible.
The facts that we use can be found in [83, Appendix A], [91] and [38, Section 4]. More precisely,
all morphisms are isomorphisms, and there is a functor ⊗ : P ×P → P , such that for any object Y ,
both functors given by X 7→ Y ⊗X and X 7→ Y ⊗X are equivalences of categories. One assumes
that the product ⊗ admits an associativity isomorphism

(X ⊗Y )⊗Z ' X ⊗(Y ⊗Z )

satisfying the pentagonal axiom explained in [91, p. 33]. Any diagram involving only the asso-
ciativity isomorphisms commutes by the coherence theorem proven in [91], allowing one to
consider finite ordered products

⊗
i∈I

Xi .
The Picard category is moreover said to be commutative, if there is an isomorphism

cX ,Y : X ⊗Y → Y ⊗X , compatible with associativity, usually referred to as the hexagonal ax-
iom for symmetric monoidal categories, explained in [91, p. 38], and such that cX ,Y cY ,X = id. Any
diagrams involving only the associativity isomorphism and the commutativity isomorphisms
commute, by another coherence theorem also proven in [91]. In particular, it makes sense to
consider finite products, not necessarily ordered,

⊗
i∈I

Xi .

Denote by Y = X −1 a left inverse object to X . By applying commutativity isomorphism it can
be equipped with the structure of a right inverse. Depending on if one contracts on the right
or on the left, there are hence two ways to construct an isomorphism X ⊗Y ⊗X = X . The two
choices differ by an automorphism determined by cX ,X . While this is not always the identity in
our contexts, we will not have to deal with this particular issue.

Definition 2.13. For a class of objects P as in §2.1, a family of line categories with products, L ,
consists in the following data :

(1) For any family X → S in the class, there is a Picard category (L (X /S),⊗), whose objects and
morphisms are those of the products of two Picard categories C (X /S)×(Line bundles/S , iso).

(2) We say it is commutative if all the Picard categories involved are commutative.
(3) The formation is functorial with respect to isomorphisms X → X ′ and base changes S′ → S,

in a sense directly analogous to that of Definition 2.1, replacing the natural transforma-
tions with functors. These are supposed to be (symmetric) monoidal, i.e. preserve the
(commutative) Picard category structure.

(4) The category C (X /S) is referred to as the product category. We assume that the product
structure in C (X /S) is the projection of that of ⊗.
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(5) We denote by OS˜ the unit object of L (X /S), determined uniquely up to unique isomor-

phism. We assume the line bundle part of OS˜ is isomorphic to OS .

In this article, we only consider two types of families of line categories with products, namely:
i) graded line bundles with the usual tensor product of line bundles and the Koszul rule of
signs applied to the commutativity, and ii) Deligne’s category in §3.3 below, where the product
captures the Whitney isomorphism for the line functor IC2 for families of curves. It allows us to
treat products which are multiplicative in nature in a multiplicative fashion.

Definition 2.14. Let G be a line functor.

(1) We will say that G is multiplicative (on exact sequences) if it is equipped with a multiplica-
tivity, or multiplicative, datum, meaning that it fulfils:

(a) (Product data) There is a functor G˜ , with values in a family of line categories with

products L , extending that of G .
(b) (Multiplicativity) For any exact sequence ε as in (2.2), there is an isomorphism

(2.15) [ε] : G˜ (E) → G˜ (E ′)⊗G˜ (E ′′),

compatible with isomorphisms of exact sequences and base changes.
(c) (Zeros) There is a (fixed) isomorphism with a unit a object OS˜ of P (X → S),

υ : G˜ (0) →OS˜ ,

compatible with base changes.
(d) (Normalization) In the case E ′′ is of rank 0, so that ψ : E ′ → E is an isomorphism, we

require the composition

(2.16) G˜ (E)
[ε]−→ G˜ (E ′)⊗G˜ (0)

id⊗υ−→ G˜ (E ′)

to be [ψ]−1. We require the analogous composition to be [ψ] for the case when E ′ is of
rank 0.

(e) (Associativity) Given an admissible filtration E ′
2 ⊆ E ′

1 ⊆ E, the following diagram of
natural isomorphisms commutes:

(2.17) G˜ (E) //

��

G˜ (E ′
1)⊗G˜ (E/E ′

1)

��

G˜ (E ′
2)⊗G˜ (E/E ′

2) // G˜ (E ′
2)⊗G˜ (E ′

1/E ′
2)⊗G˜ (E/E ′

1).

(2) A multiplicativity datum as above is said to be commutative if the diagram

(2.18) G˜ (E ′⊕E ′′)
[c]

//

��

G˜ (E ′′⊕E ′)

��

G˜ (E ′)⊗G˜ (E ′′) c
// G˜ (E ′′)⊗G˜ (E ′)
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commutes. Here c denotes the commutativity isomorphism interchanging the two factors
of line bundles or vector bundles.

(3) We say that G is equipped with a product structure if G extends to a functor G˜ as in (1a),

and if the projection of the functor G˜ onto the product category C satisfies the analogues

of (1b)–(1e) above.
(4) A morphism of multiplicative line functors G and G ′ is a natural transformation of functors

G˜ → G˜ ′, which is compatible with the multiplicativity [ε] of the multiplicativity datum. A

morphism of product data is defined analogously, but for the projection of G˜ and G˜ ′ onto

C .

To emphasize the dependency on the extension, we will sometimes refer to G˜ as a multiplica-

tive line functor.

Remark 2.15. (1) A multiplicativity datum for G is a product structure together with isomor-
phisms of line bundles

[ε] : G (E) →G (E ′)⊗G (E ′′)
satisfying of (1)(a)–(1)(e), where ⊗ refers to the product in L projected to the line bundle
part.

(2) Given product data, which we want to equip with a multiplicativity datum, the normal-
ization property can be rephrased as a definition for the multiplicativity datum when
either E ′ or E ′′ are the trivial vector bundles.

(3) The isomorphism υ : G˜ (0) → OS˜ is likewise equivalent with the multiplicativity datum

(2.15) and the natural isomorphism OS˜ →OS˜ ⊗OS˜ when all the vector bundles are of rank

0.
(4) The property of being commutative is not a consequence of the properties (1)(a)–(1)(e).
(5) For a fixed family, the above definition is, in the language of [38, §4.3], a determinant

functor, from the exact category of vector bundles to the Picard category L (X /S).

For the following statement, recall the splitting isomorphisms of Proposition 2.2.

Proposition 2.16. Suppose that there is a multiplicativity datum for a line functor G . Then, for
any exact sequence ε as in (2.2), the isomorphism [ε] factors via an isomorphism ψε, which is the
splitting isomorphism when projecting to the line bundle category, and the split multiplicativity
datum [ε′]:

G˜ (E)
ψε
//

[ε]
%%

G˜ (E ′⊕E ′′)

[ε′]
��

G˜ (E ′)⊗G˜ (E ′′).

Conversely, suppose

(1) G is equipped with product data;
(2) G is equipped with a multiplicativity datum for split exact sequences [ε′];
(3) we are given a functorial isomorphism υ : G˜ (0) →OS˜ .

Then, there is a uniquely defined multiplicativity datum in the general case.
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Proof. The composition [ε′]−1[ε] commutes with base change and reduces to the identity for
split diagrams, and the projection onto the line bundle category must hence be the splitting
isomorphism by Proposition 2.2. When the product data is non-trivial, this is taken to be the
definition of ψε. The second point follows from definition, taking into account Remark 2.15, and
the corresponding properties of the splitting isomorphisms, in particular the unicity. �

In preparation for the formulation of the main theorem of this subsection, we anticipate
that for an exact sequence ε as in (2.2), we can reduce the construction of a multiplicativity
isomorphism [ε] to the case when there are given flags F ′• and F ′′• on E ′ and E ′′, with line bundle
quotients. These filtrations canonically induce a flag F • of E with the same graded quotients. We
can then repeatedly apply the isomorphism of (2.15) to the line bundles (F ′)i /(F ′)i+1 in E ′/(F ′)i+1

and similarly to F • and F ′′•. One obtains an isomorphism

ϕ(F ′•,F ′′•) : G˜ (E) →⊗
i
G˜ (Gri

F E)

=⊗
j
G˜ (Gr j

F ′ E ′)⊗⊗
k

G˜ (Grk
F ′′ E ′′) → G˜ (E ′)⊗G˜ (E ′′).

(2.19)

By an application of (2.17), one sees that (2.19) coincides with [ε] for a line functor equipped
with a multiplicativity datum. Conversely, we have the following proposition :

Proposition 2.17. Let G be a line functor. Suppose that:

(1) G has a product structure ;
(2) we are given a multiplicativity datum for exact sequences ε as in (2.2), whenever E ′ is a

line bundle.

Then, the isomorphism (2.19) automatically satisfies the associativity in (2.17). Moreover, this
diagram is compatible with the splitting diagram of Proposition 2.6, via the isomorphism in
Proposition 2.16.

The conclusion is equally valid if we instead suppose that E ′′ is a line bundle.

Proof. We show the case when we assume a multiplicativity datum in the case of E ′ being a line
bundle. By assumption we only need to show that the line bundle part satisfies the properties
in Definition 2.14 (1)(a)–(1)(e). By construction, (2.19) is a flag isomorphism and in particular
the involved isomorphisms are independent of the flags, by Proposition 2.8. In the argument to
follow, this allows us to choose our filtrations in a compatible way.

Let D = DE ′
2
×X DE ′

1/E ′
2
×X DE/E ′

1
be the variety of flags of E ′

2,E ′
1/E ′

2,E/E ′
1 and consider the

morphism q : DE ′
2
×X DE ′

1/E ′
2
×X DE/E ′

1
→ X → S. By faithfullness of q∗, it is enough to verify

that the diagram (2.17) commutes after base changing to D. We can thus suppose E admits
the universal filtration F •, which is compatible with filtrations on E ′

2,E ′
1,E ′

1/E ′
2,E/E ′

1,E/E ′
2 and

whose graded quotients identify with each other. Then, (2.17) takes the form

G˜ (E)

��tt **

G˜ (E ′
2)⊗G˜ (E/E ′

2) //

**

⊗
i
G˜ (Gri

F E) G˜ (E ′
1)⊗G˜ (E/E ′

1)oo

tt

G˜ (E ′
2)⊗G˜ (E ′

1/E ′
2)⊗G˜ (E/E ′

1).

OO
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To prove that all the triangles commute one relies on the formal identity (id⊗ϕ2)⊗(ϕ1⊗ id) =
ϕ1⊗ϕ2 = (ϕ1⊗ id)⊗(id⊗ϕ2), so that certain isomorphisms can be performed in an arbitrary
order. It follows that the big diagram also commutes.

The compatibility with the splitting isomorphism is now a formal consequence, which we
leave to the interested reader. �

One of the main applications of our splitting principles is the following:

Theorem 2.18. Let G be a line functor. Suppose:

(1) G has a product structure;
(2) there is a functorial isomorphism υ : G˜ (0) →OS˜ ;

(3) for every exact sequence ε as in (2.2), with E ′ a line bundle, there is a functorial isomor-
phism [ε], which is multiplicative as in Definition 2.14.

Then, G extends uniquely to a multiplicative line functor, compatible with the above data. The
last property can be replaced by assuming there is a multiplicativity datum when E = E ′⊕E ′′ and
E ′ is a line bundle.

The same conclusion holds if we throughout change the assumption that E ′ is a line bundle,
with E ′′ being one.

Proof. The last remark in the theorem is analogously proven, and we just focus on E ′ being a line
bundle.

As discussed in Remark 2.15, the first assumption of the theorem fixes uniquely the multi-
plicativity datum whenever either E ′ or E ′′ are trivial vector bundles. Any multiplicative line
functor is uniquely determined as in (2.19), and we use it as a definition for [ε]. Because G has a
product structure, we only need to prove statements for the line bundle part. By construction, on
the line bundle part this is a flag isomorphism as in Definition 2.7 and hence, by Theorem 2.10,
defines a multiplicativity datum in general. From Proposition 2.17, we see that it is automatically
associative. That we can reduce to the case of split sequences follows from Proposition 2.16. �

The following is a useful complement to the above theorem.

Proposition 2.19. Suppose that:

(1) G˜ and G˜ ′ are two multiplicative line functors into the same line categories with products;

(2) the underlying product structures are equivalent;
(3) for any line bundle L on X , there is an isomorphism G˜ (L) → G˜ ′(L), compatible with

isomorphisms of line bundles and commuting with base changes S′ → S;

Then, there is a unique extension to an isomorphism of multiplicative line functors G˜ → G˜ ′ for

general vector bundles, compatible with the above data.

Proof. The proof is analogous to Theorem 2.18. In the same vein, one can define a flag isomor-
phism, decomposing G˜ (E) and G˜ ′(E) according to (2.19) and applying the second assumption.

The details are left to the reader. �

Below, we record a criteria for when a multiplicative line functor is commutative.
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Corollary 2.20. Suppose that G is a multiplicative line functor whose product structure is com-
mutative in general, and such that (2.18) commutes whenever both E ′ and E ′′ are line bundles.
Then G˜ is commutative.

In this case, the construction of G extends to the bounded derived category of vector bundles
on X with the exact sequences replaced by exact triples, and isomorphisms replaced with quasi-
isomorphisms of complexes.

Proof. The diagram (2.18) when either E ′ or E ′′ are of rank 0 automatically commutes. This
follows from the the description of (2.16) and the fact that commutativity is compatible with
units.

For the general case, notice that by assumption we are reduced to the statement for the line
bundle part of the functor, and that the commutativity datum is compatible with base change
by assumption. We pass to the variety of flags of E ′ and E ′′, D via the projection q : D → S.
By faithfulness of q∗, it is enough to verify that (2.18) commutes over D. There the splitting
isomorphism and an iterated version of the associativity in Definition 2.14 allows us to reduce to
the case when E ′ and E ′′ are sums of line bundles.

Write the line bundle decomposition as E ′ =⊕e ′
j=1 L′

j and E ′′ =⊕e ′′
j=1 L′′

j . Here, the direct sums
are ordered by the natural order of the integers. Denote by ci the transposition isomorphism
exchanging the i -th and (i +1)-th factor of either the vector bundles or the tensor products. Then
if we consider the vector bundle ⊕e

j=1L j , where the set of line bundles L j are a permutation of

the bundles L′
j and L′′

j , by assumption the rightmost square in the diagram

(2.20) G˜ (⊕e
j=1L j ) //

[ci ]

��

G˜ (⊕i−1
j=1L j )⊗G˜ (Li ⊕Li+1)⊗G˜ (⊕e

j=i+2L j )

[ci ]

��

· · ·

G˜ (⊕e
j=1L j ) // G˜ (⊕i−1

j=1L j )⊗G˜ (Li+1 ⊕Li )⊗G˜ (⊕e
j=i+2L j ) · · ·

· · · //
⊗i−1

j=1
G˜ (L j )⊗G˜ (Li )⊗G˜ (Li+1)⊗⊗e

j=i+1
G˜ (L j )

ci

��

ci

��

· · · //
⊗i−1

j=1
G˜ (L j )⊗G˜ (Li+1)⊗G˜ (Li )⊗⊗e

j=i+1
G˜ (L j )

commutes. Since the leftmost square commutes for formal reasons, the whole diagram also
commutes. Furthermore, the leftmost and rightmost vertical arrows in the diagram

(2.21) G˜ (E ′⊕E ′′) //

[c]

��

G˜ (E ′)⊗G˜ (E ′′) //

c

��

⊗e ′
j=1

G˜ (L′
j )⊗⊗e ′′

j=1
G˜ (L′′

j )

c

��

G˜ (E ′′⊕E ′) // G˜ (E ′′)⊗G˜ (E ′) //
⊗e ′′

j=1
G˜ (L′′

j )⊗⊗e ′
j=1

G˜ (L′
j )

can be written as a combination of isomorphisms of the form ci and [ci ]. The upper and lower
horizontal isomorphisms of (2.21) equal the upper and lower horizontal isomorphisms in (2.20),
for two choices of permutations L j . This follows similarly as before, from an application of the
associativity in Definition 2.14. By nesting this diagram by compositions of diagrams of the form
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(2.20), it follows that the outer contour of the diagram (2.21) commutes. Since the rightmost
square of (2.21) commutes for formal reasons, so does also the left square, which proves the first
part of the proposition.

The last remark is proven by Knudsen, see [83, 84, Theorem 2.3, Corollary 2.12]. It is also
observed in [38, §4.10]. Both refer to constructions by Knudsen–Mumford [85]. �

3. INTERSECTION BUNDLES

We will rely on the language of line functors introduced in Section 2. The main examples of
line functors developed in this article will be that of line bundles that represent direct images
of Chern classes, namely Deligne pairings and the refined integral of the second Chern class
recalled below. Together they form the geometrical underpinnings of our later construction, and
we refer to these constructions as intersection bundles.

As in the previous section, the results below are stated for algebraic varieties, but can all be
formulated over a locally noetherian base scheme or even complex analytic spaces. For the latter,
see §3.7.

3.1. Determinants. We recall results concerning graded lines, determinants and Deligne pair-
ings, which are used in subsequent subsections.

3.1.1. Graded line bundles. The category of Z-graded line bundles on a variety X consists of
objects which are a line bundle together with a locally constant function α : X →Z. An isomor-
phism of two graded line bundles (α,L) ' (β, M) is an isomorphism of line bundles φ : L ' M ,
with the requirement that α= β. Given two Z-graded line bundles, there is a natural product
(α,L)⊗ (β, M) = (α+β,L⊗M). Commutativity

(3.1) (α,L)⊗ (β, M) ' (β, M)⊗ (α,L)

is defined using the Koszul rule of signs. On the level of line bundle sections, the isomorphism is
given by

(3.2) `⊗m 7→ (−1)α+βm ⊗`.

There is a natural left inverse (−α,L∨) to (α,L), such that

(−α,L∨)⊗ (α,L) ' (0,OX ).

The right inverse is defined using the commutativity isomorphism (3.1). Graded line bundles
constitute a commutative line category with products, in the sense of Definition 2.13, where the
product is the usual tensor product.

3.1.2. Determinants. The reference for details on this material can be found in Knudsen–
Mumford’s work [85]. The maximal exterior power Λr E of a vector bundle E is a line functor. The
determinant of a vector bundle E is the Z-graded line bundle

(3.3) detE = (r,Λr E),

where r = rkE . Sometimes we implicitly identify detE with the line functor E 7→Λr E . Given an
exact sequence of vector bundles

(3.4) ε : 0 → E ′ → E → E ′′ → 0,

there is a natural isomorphism

(3.5) [ε] : detE ' detE ′⊗detE ′′
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of graded line bundles. It is defined, in the split case when E = E ′⊕E ′′, by the rule

e ′
1 ∧ . . .∧e ′

r ′ ∧e ′′
1 ∧ . . .∧e ′′

r ′′ 7→ e ′
1 ∧ . . .∧e ′

r ′ ⊗e ′′
1 ∧ . . .∧e ′′

r ′′ .

Arguing by locally splitting the sequence provides the general isomorphism by gluing. This also
follows from Theorem 2.18 and the surrounding splitting principles, proving that the determinant
is a line functor with multiplicativity datum.

If we denote by c the commutativity isomorphism in (3.1), we see that with the Koszul rule of
signs, the diagram

det(E ′⊕E ′′) c
//

��

det(E ′′⊕E ′)

��

detE ′⊗detE ′′ c
// detE ′′⊗detE ′

in fact commutes, so det is commutative. This provides a framework to deal with a plethora of
problems related to signs.

Lemma 3.1. If E is a vector bundle of rank r , and L is a line bundle, there is an isomorphism of
multiplicative and commutative line functors,

(3.6) det(E ⊗L) ' (detE)⊗L⊗r .

It is uniquely determined by the case when E is a line bundle. More generally, there is a natural
isomorphism of line functors of 2-variables,

(3.7) det(E ⊗E ′) ' (detE)⊗r ′ ⊗ (detE ′)⊗r ,

multiplicative in either E or E ′. It is characterized as reducing to (3.6) when either E or E ′ are line
bundles.

Proof. The two line functors are multiplicative in the obvious sense, with both functors commu-
tativity being immediate. The lemma then follows from Proposition 2.19. �

In fact, it is not difficult to see that the above isomorphism is given by

(e1 ⊗e ′
1)∧ (e1 ⊗e ′

2)∧ . . .∧ (e1 ⊗e ′
r ′)∧ (e2 ⊗e ′

1)∧ . . .∧ (er ⊗e ′
r ′) 7→ (e1 ∧ . . .∧er )⊗r ′ ⊗ (e ′

1 ∧ . . .∧e ′
r ′)⊗r .

Indeed, this is readily verified to be an isomorphism of multiplicative line functors, and it is the
identity when both E and E ′ are line bundles.

For a vector bundle E , taking determinants is compatible with taking duals on the underlying
line bundles. The isomorphism

(3.8) det(E∨) ' (detE)∨

we choose is the one which is induced by the pairing det(E)×det(E∨) → OX , given locally by
〈e1 ∧ . . .∧ er , f1 ∧ . . .∧ fr 〉 = det( f j (ei )). Nevertheless, note that (3.8) is not an isomorphism of
graded line bundles, since the gradings are r and −r , which do not agree. In forthcoming
arguments, the grading in principle only appears in the context of (3.1), in which case r and −r
produce the same sign and the difference is hence irrelevant.
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3.1.3. Determinant of the cohomology. For a bounded complex E• of vector bundles, the notion
of determinant thereof is

(3.9) detE• =⊗
i

(detE i )(−1)i
.

If the cohomology sheaves H i (E•) are also vector bundles, one has an isomorphism

(3.10) detE• ' detH •(E•) :=⊗
i

(detH i (E•))(−1)i
.

Recall that a perfect complex on a variety X is a complex E• of OX -modules, such that each
point has an open neighborhood U for which E•

|U is quasi-isomorphic to a bounded complex
of vector bundles. In [85] a procedure is described to extend determinants to the category of
perfect complexes, defined as a subcategory of Db

coh(X ), with morphisms defined as the quasi-
isomorphisms. Also see Proposition 2.19.

If f : X → S is a flat projective morphism, and E a vector bundle on X , the derived pushforward
R f∗E is a perfect complex. The determinant of the cohomology will be the graded line bundle

(3.11) λ(E) = detR f∗E

on S. For a point s ∈ S, the fiber of λ(E ) at s naturally is identified with the alternating product of
determinants of coherent sheaf cohomology:

λ(E)s '
⊗

i
(det H i (Xs ,E|Xs ))(−1)i

.

The grading of λ(E) is thus given by the locally constant function s 7→ χ(Xs ,E|Xs ). For an exact
sequence as in (3.4), there is a natural multiplicative isomorphism

λ(E) →λ(E ′)⊗λ(E ′′)

making λ into a multiplicative and commutative line functor.

3.2. Deligne pairings. In this subsection, we suppose that f : X → S is a flat family of projective
varieties, not necessarily of relative dimension one.

3.2.1. The norm functor. Suppose first that f : X → S is a finite flat morphism, locally of degree d
say, and that h is a function on X . On the level of structure sheaves, multiplication by h induces
an endomorphism [h] : OX → OX . Since locally on S we have OX ' O⊕d

S , we can consider the
determinant of the endomorphism [h], providing a function NX /S(h) of OS . If h is invertible, so
is NX /S(h).

If L is a line bundle on X , it is possible to describe it by 1-cocycles with values in O×
X , on open

covers of the form f −1(Ui ) for an open cover Ui of S. Taking norms of these 1-cocycles provides
a 1-cocycle with values in O×

S . The corresponding line bundle is denoted by NX /S(L).

3.2.2. The general case. Now we suppose that f : X → S is a general flat projective morphism, of
constant relative dimension n. Given line bundles L0, . . . ,Ln , there is a line bundle

〈L0, . . . ,Ln〉X /S = 〈L0, . . . ,Ln〉
on S. This is constructed in [43] under the assumption that f is Cohen–Macaulay. This hypothesis
is removed in [41]. The two approaches agree, since they can both be defined in terms of
generators and relations as follows (cf. [41, Section 5, I-4] and [43, §II.3.3]):
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(1) given rational sections `0, . . . ,`n , consider the divisors Di = div`i . Suppose that for any j ,
∩i 6= j Di is finite and flat over S. Then there is a non-zero section denoted by the symbol

〈`0, . . . ,`n〉;
(2) if `i = h`′i for a rational function h, then

〈`0, . . . ,`i , . . .`n〉 = ND/S(h|D )〈`0, . . . ,`′i , . . . ,`n〉
where D =∩ j 6=i D j and ND/S(h|D ) denotes the norm of the rational function h|D .

The symbols might be defined only locally with respect to S. In the case of relative dimension
0, this specializes to the norm functor previously defined. The second relation applied to two
sections `i and `′i in a different order could provide different results. The resulting comparison is
not trivially true, but follows from a version of Weil reciprocity. The below statements summarize
the main properties we will need for Deligne pairings. They are all proven in [43], except for the
penultimate point, which is left as an exercise to the reader.

Proposition 3.2. The Deligne pairings, defined as above, enjoy the following properties.

(1) The Deligne pairing is well-defined and commutes with arbitrary base change.
(2) For any permutation σ ∈ Sn+1, there is a natural isomorphism

[σ] : 〈L0, . . . ,Ln〉X /S ' 〈Lσ(0), . . . ,Lσ(n)〉X /S .

If Li = L j , and σ= (i , j ), then [σ] = (−1)δ, where δ= ∫
X /S

∏
k 6=i c1(Lk ).

(3) If λ ∈ H 0(O×
S ), the multiplication by λ isomorphism Li → Li induces an isomorphism

[λ] : 〈L0, . . . ,Ln〉X /S →〈L0, . . . ,Ln〉X /S .

Then [λ] =λδ, with δ= ∫
X /S

∏
k 6=i c1(Lk ).

(3 ′) Let q : X ′ → X be a flat projective morphism of constant relative dimension n′. If L0, . . . ,L`
are line bundles on X , and M`+1, . . . , Mn+n′ are line bundles on X ′, then:

(a) if `= n −1, there is a natural isomorphism

〈q∗L0, . . . , q∗Ln−1, Mn , . . . , Mn′+n〉X ′/S ' 〈L0, . . . ,Ln−1,〈Mn , . . . , Mn′+n〉X ′/X 〉X /S ;

(b) if `= n, and X is connected, there is a natural isomorphism

〈q∗L0, . . . , q∗Ln , Mn+1, . . . , Mn′+n〉X ′/S ' 〈L0, . . . ,Ln〉δX /S

where δ= ∫
X ′/X

∏
c1(Mi );

(c) if `≥ n +1, the line bundle

〈q∗L0, . . . , q∗L`, M`+1, . . . , Mn′+n〉X ′/S

is canonically trivial.

(4) If D → S is a relative Cartier divisor of X → S, there is a natural isomorphism

(3.12) 〈L0, . . . ,Ln−1,O (D)〉X /S ' 〈L0|D , . . . ,Ln−1|D〉D/S .

(5) On the level of Chern classes, we have:

c1(〈L0, . . . ,Ln〉) =
∫

X /S
c1(L0) . . .c1(Ln).
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(6) If E is of rank r , there is a natural isomorphism

〈O (1){r }〉P(E)/S ' detE ,

where 〈O (1){r }〉P(E)/S denotes the Deligne pairing where all r factors are given by O (1) . A
section e of E induces a section ẽ of O (1), and the isomorphism is given by

〈ẽ1, . . . , ẽr 〉 7→ e1 ∧ . . .∧er .

The point (3) is in fact a consequence of (3′)(b). The isomorphisms described in (3′) are the
natural ones on the level of symbols.

3.3. An intersection second Chern class. In [38, §9.6–9.7], for a flat projective family of curves
f : X → S, a line bundle IC2(E ) is constructed. It is naturally a line functor, and enjoys properties
similar to that of the cohomology class f∗c2(E ). Deligne provides a construction using filtrations,
as well as a method utilizing the determinant of the cohomology of special line bundles. The
latter, which is inspired by the Grothendieck–Riemann–Roch theorem, is recalled in §3.6 below.
Due to its higher dimensional generalisations, we will focus on Elkik’s definition of the intersec-
tion second Chern class. It is also defined using the analogues of Segre classes, relying on the
Deligne pairings in the previous section, which is one of the reasons for their flexibility.

It will be convenient to consider a commutative line category with products (see Definition
2.13), to deal with certain product properties related to exact sequences, initially considered in
[38, §9.1]. It extends the graded line bundles in §3.1.1 in this setting. We refer the reader to loc.
cit. for further details.

Definition 3.3. For a flat projective family of curves X → S, we consider the following commutative
line category with products:

(1) the objects are triples (r,L, M), where r is a locally constant function X → Z, L is a line
bundle on X and M is a line bundle on S;

(2) a morphism (r,L, M) → (r ′,L′, M ′) consists of isomorphisms L → L′, M → M ′, with the
requirement that r = r ′;

(3) the product is provided by the rule

(r,L, M)⊗(r ′,L′, M ′) = (r + r ′,L⊗L′, M ⊗M ′⊗〈L,L′〉);

(4) the commutativity isomorphism is (3.2) on the second factor, and the naive isomorphism
on the third factor times (−1)N , where N = r r ′ (degL+degL′).

The following amounts to Elkik’s definition of the functorial direct image of the second Chern
class.

Definition 3.4. Let X → S be a family of algebraic curves. If E is a vector bundle on X , we define

(3.13) IC2(E) = 〈detE ,detE〉X /S ⊗〈O (1){r +1}〉−1
P(E)/S ,

where 〈O (1){r +1}〉P(E)/S refers to the Deligne pairing with O (1) iterated r +1 times.

The following theorem is a special case, or versions of results found in [43]. We provide a
self-contained proof relying on the splitting principles in Section 2.

Theorem 3.5. The rule E 7→ IC2(E) is a line functor. It satisfies the following properties.

(IC1) The functor E 7→ (r,detE , IC2(E)) equips IC2 with the structure of a multiplicative and
commutative line functor. In particular:
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(a) for every exact sequence as in (3.4), there is a Whitney isomorphism

(3.14) IC2(E) ' IC2(E ′)⊗ IC2(E ′′)⊗〈detE ′,detE ′′〉,

which is compatible with isomorphisms of exact sequences (cf. [43, §V.4.8]) ;
(b) suppose we are given an admissible filtration E ′

2 ⊆ E ′
1 ⊆ E. Then associativity holds, in

the sense that the diagram of Whitney isomorphisms below commutes:

IC2(E)

((vv

IC2(E ′
1)⊗ IC2(E/E ′

1)⊗ IC2(E ′
2)⊗ IC2(E/E ′

2)⊗
〈det(E ′

1),det(E/E ′
1)〉

))

〈det(E ′
2),det(E/E ′

2)〉

uu

IC2(E ′
2)⊗ IC2(E ′

1/E ′
2)⊗ IC2(E/E ′

1)⊗〈det(E ′
1/E ′

2),det(E/E ′
1)〉⊗

〈det(E ′
2),det(E ′

1/E ′
2)〉⊗〈det(E ′

1),det(E/E ′
1)〉.

(IC2) For a line bundle L, there is a natural trivialization IC2(L) 'OS . If ϕ : L → L′ is an isomor-
phism of line bundles, the induced isomorphism [ϕ] : IC2(L) → IC2(L′) is compatible with
these trivializations (cf. [43, §V.4.9]) .

Proof. The line functor property is clear from the definition of IC2 and the properties of Deligne
pairings. The discussion in §3.1.2 shows that the functor in (IC1) equips IC2 with a product
structure. By the second splitting principle in Theorem 2.18, it is enough to construct the
multiplicativity datum (3.14) in the case when E ′ = L is a line bundle. By definition of the
product structure, this amounts to an isomorphism as in (a) in (IC1), the associativity in (b) being
automatic by Proposition 2.17. To this end, let p :P(E) → X be the natural projection. Then the
inclusion L → E induces a closed immersion i : D →P(E) of the divisor D =P(E/L). This closed
immersion is cut out by the section of O (1)⊗ (p∗L)∨ determined by combining the morphism
p∗L → p∗E with the tautological morphism p∗E → O (1). The Whitney isomorphism is then
obtained by rewriting detE = L⊗det(E/L) via (3.5), and O (1) =O (1)⊗(p∗L)∨⊗p∗L =O (D)⊗p∗L,
whilst applying (3.12) and multilinearity of the Deligne pairing to (3.13). More precisely, we have
using the properties described in Proposition 3.2, isomorphisms

〈detE ,detE〉 → 〈L⊗det(E/L),L⊗det(E/L)〉
→ 〈L,L〉⊗〈L,det(E/L)〉⊗〈det(E/L),L〉⊗〈det(E/L),det(E/L)〉
→ 〈L,L〉⊗〈L,det(E/L)〉2 ⊗〈det(E/L),det(E/L)〉
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and

〈O (1){r +1}〉P(E)/S → 〈O (D)⊗p∗L,O (1){r }〉P(E)/S

→ 〈O (1){r }〉P(E/L)/S ⊗〈p∗L,O (1){r }〉P(E)/S

→ 〈O (1){r }〉P(E/L)/S ⊗〈p∗L, p∗L,O (1){r −1}〉P(E)/S ⊗〈p∗L,O (D),O (1){r −1}〉P(E)/S

→ 〈O (1){r }〉P(E/L)/S ⊗〈L,L〉⊗〈L,det(E/L)〉.
The difference of these two isomorphisms provides a Whitney-type isomorphism. We multiply it
by (−1)deg(E/L)+r degL .

For the commutativity property, which is not formal, we postpone the proof to Proposition
3.8.

�

Remark 3.6. (1) The line functor property of IC2 includes in particular an obvious compati-
bility with isomorphisms X ′ → X of curves over S. See Definition 2.1 (a).

(2) The rewriting of O (1){r +1} in the proof involves the isomorphism

〈p∗L,O (1){r }〉→ 〈L,L〉⊗〈L,det(E/L)〉.
By Proposition 3.2, there is also an isomorphism 〈p∗L,O (1){r }〉→ 〈L,detE〉, which com-
bined with detE → L ⊗det(E/L) provides another isomorphism as above. These two
coincide, and we have chosen the above in the proof because it is the one used by Elkik
in [43].

(3) With the notation as in the proof of Theorem 3.5, let `i , i = 0, . . . ,r be sections of E , with
induced sections ˜̀i of O (1). Suppose that ˜̀0 =σL⊗p∗`, whereσL is the canonical section
of O (D). Let also u (resp. v) be sections of detE , such that u corresponds to `⊗u′ (resp.
v corresponds to `′⊗ v ′) under the isomorphism, detE → L⊗det(E/L). Likewise, under
the same isomorphism write `1∧ . . .∧`r = `′′⊗w . The Whitney isomorphism on the level
of symbols is then given by

〈u, v〉⊗〈 ˜̀0, ˜̀1, . . . ,〉−1 7→ (−1)deg(E/L)+r degL〈`,`′〉⊗〈`, v ′〉⊗〈`′,u′〉⊗〈u′, v ′〉
⊗〈 ˜̀1|D , ˜̀2|D , . . . , ˜̀r |D〉−1 ⊗〈`0,`′′〉−1 ⊗〈`0, w〉−1.

(3.15)

3.4. Sections of IC2. In §3.2.2 the Deligne pairings were described in terms of symbols and
relations. Such a concrete description is generally lacking for IC2. Below, we provide general
constructions of generators of IC2 in favourable situations, and describe the case of rank 2 in
more detail. Not only this enlightens on the geometric meaning of IC2, but it will also be needed
to compare Deligne and Elkik’s approaches in §3.6. More concrete applications are explicit
formulas for intersection metrics and complex metrics in Proposition 4.8 and §8.3.2.

3.4.1. Two constructions of local trivializations. Let E be a vector bundle of rank r ≥ 1 on X → S,
and s = (s1, . . . , sr−1) an ordered (r −1)-tuple of sections. Suppose that all si are non-vanishing.

For the first construction, write det s = s1 ∧ . . .∧ sr−1. Suppose there are auxiliary sections u, v
such that det s∧u and det s∧v determine sections of detE with disjoint divisors, both flat over S.
A section t of E induces a section t̃ of O (1) on p :P(E) → X , by composing p∗t : OX → p∗E with
p∗E → O (1). Denote by s̃, ũ, ṽ the induced sections or tuples of sections of O (1). We can then
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define a trivialization of IC2(E) by using the trivialization

(3.16) 〈det s ∧u,det s ∧ v〉X /S ⊗〈s̃, ũ, ṽ〉−1
P(E)/S .

For the second construction, notice that the (r − 1)-tuple s naturally yields a short exact
sequence

(3.17) 0 →O r−1
X → E → L → 0,

with L ' detE . By filtering by the first factor OX ⊆ O r−1
X , and using the standard isomorphism

detOk
X 'OX , one readily obtains a natural trivialization of IC2(O r−1

X ). We will later see in Propo-
sition 3.10 that this trivialization is independent of the ordering of the filtration.

The Whitney isomorphism of (3.14) applied to (3.17) then also provides an isomorphism

(3.18) 〈s〉 : IC2(E) ' IC2(O r−1
X )⊗ IC2(detE)⊗〈detO r−1

X ,detE〉 'OS ,

and hence a trivialization of the bundle.

Lemma 3.7. Consider a section as in (3.16) of IC2(E) associated to s = (s1, . . . , sr−1), and also the
section 〈s〉 of IC2(E) determined by (3.18). Then the two sections differ by the sign (−1)(r−1)degE .
In particular, the former is independent of the choices of u, v.

Proof. If r = 1 there is nothing to prove. If r ≥ 2, denote by s′ the tuple obtained by removing s1.
Also, denote by 0 →O r−2

X → E/s1OX → L → 0 the exact sequence obtained by taking the quotient

by s1. Applying the Whitney isomorphism to the sequence 0 →OX
s1→ E → E/s1OX → 0, and using

natural trivialities, we obtain an isomorphism

IC2(E) ' IC2(s1OX )⊗〈det(E/s1OX ), s1OX 〉⊗ IC2(E/s1OX ) ' IC2(E/s1OX ).

A diagram chase, involving the associativity in (IC1) of Theorem 3.5, shows that the section 〈s〉 is
sent to 〈s′〉 under this isomorphism.

Hence, by induction it is enough to prove that the section (3.16) is sent to the analogous section
induced by s′ of IC2(E/s1OX ). This follows from an immediate application of the description on
the level of symbols in (3.15).

�

3.4.2. Sections and the Whitney isomorphism. For the formulation of the Proposition 3.8 below,
consider first global sections ` and m of line bundles L and M , without common zeros. Then,
the global section (`,m) of L⊕M is a nowhere vanishing section, and the quotient of L⊕M by
the subbundle generated by (`,m) is isomorphic to det(L⊕M) = L⊗M . We hence have a short
exact sequence

(3.19) 0 →OX → L⊕M → L⊗M → 0

as in (3.17), and we denote by 〈(`,m)〉 : IC2(L ⊕ M) ' OS the corresponding trivialization of
IC2(L⊕M). A computation using (3.5) shows that the second map of (3.19) is

(3.20) (`′,m′) 7→ −`′⊗m +`⊗m′.

In general, if ` and m are rational sections with div` = D ′−D and divm = E ′−E in general
relative position, using the expression in (3.20) gives a short exact sequence

(3.21) 0 →OX (−D −E) → L⊕M → L⊗M ⊗OX (D +E) → 0

which identifies with (3.19) outside of D and E , and hence an isomorphism IC2(L ⊕ M) '
〈OX (−D −E ),L⊗M ⊗OX (D +E )〉. Denoting by 1D+E the canonical section of OX (−D −E ), we see
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that 〈OX (−D−E ),L⊗M⊗OX (D+E )〉 admits the trivializing section 〈1D+E ,`⊗m⊗1−1
D+E 〉. We also

denote the corresponding section of IC2(L⊕M) by 〈(`,m)〉. It coincides with the trivialization in
(3.19) if D and E are empty.

Also applying (3.14) to the standard split exact sequence

(3.22) 0 → L → L⊕M → M → 0

we find that IC2(L⊕M) ' 〈L, M〉, used in the formulation of the next proposition.

Proposition 3.8. Suppose that ` and m are rational sections of L and M, with disjoint divisors,
individually finite and flat over the base. The trivialization 〈(`,m)〉 of IC2(L⊕M) in 〈L, M〉 under
the isomorphism induced by (3.22) corresponds to the section

(−1)deg M 〈`,m〉,
where deg M is the fiberwise degree of M. It follows in particular that IC2 is a multiplicative and
commutative line functor, i.e. the diagram

IC2(E ′⊕E ′′) //

��

IC2(E ′)⊗ IC2(E ′′)⊗〈detE ′,detE ′′〉

��

IC2(E ′′⊕E ′) // IC2(E ′′)⊗ IC2(E ′)⊗〈detE ′′,detE ′〉
commutes up to the sign (−1)N where N = r1r2

(
degE ′+degE ′′) .

Proof. A straightforward computation shows that the first property implies the commutativity,
relying on Corollary 2.20 and the formalism of Deligne’s category in §3.3. See Definition 3.3.

We will need to describe the two different Whitney isomorphisms associated to (3.19) and
(3.22) recalled above, and first set up the problem. We simplify the argument by assuming that `
and m are global regular sections, the general case is analogous. From the previous Lemma 3.7
we know that the trivialization corresponding to 〈(`,m)〉 equals

(−1)degL+deg M 〈(`,m)∧`′, (`,m)∧m′〉⊗〈�(`,m), ˜̀′,m̃′〉−1.

Throughout, denote by p :P(L⊕M) → X the natural projection. Under the Whitney isomorphism
described in (3.15) we see that the first section of the above product is sent to

(3.23) 〈−`′⊗m,`⊗m′〉 7→ (−1)degL+deg M 〈`′,`〉⊗〈`′,m′〉⊗〈`,m〉⊗〈m,m′〉.
The other section 〈�(`,m), ˜̀′,m̃′〉 can be written, after applying an even permutation of the
sections (see (2) of Proposition 3.2)) as 〈 ˜̀′,m̃′, �(`,m)〉.

For the rest, recall that there is an embedding i : X =P(M) =P((L⊕M)/L) →P(L⊕M) deter-
mined by σL : p∗L → p∗ (L⊕M) →O (1). The Whitney isomorphism described in Theorem 3.5
sends this section to

〈σL ,m̃′, �(`,m)〉⊗〈p∗`′,σL , �(`,m)〉⊗〈p∗`′,m̃′⊗σ−1
L , �(`,m)〉

and then further to

〈i∗m̃′, i∗ �(`,m)〉⊗〈i∗p∗`′, i∗ �(`,m)〉⊗〈i∗p∗`′, i∗
(
m̃′⊗σ−1

L

)〉.
A direct computation shows that i∗m̃′ = m′, i∗ �(`,m) = m. The computation of the section
i∗m̃′⊗σ−1

L is more delicate, and we start to notice that it is necessarily of the form p∗`′′ for a
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section `′′ of L. It can be computed by restricting along i ′ : X → P(L ⊕M) determined by the
sequence (3.19). Here i ′∗O (1) = L⊗M . Expanding as in (3.15) we find that this section is sent to

(−1)degL〈m′,m〉⊗〈`′,`〉⊗〈`′,m′〉

Then, since ˜̀′ = p∗`′⊗σL , we can expand

(3.24) 〈 ˜̀′,m̃′, �(`,m)〉 7→ 〈σL ,m̃′, �(`,m)〉⊗〈p∗`′,σL , �(`,m)〉⊗〈p∗`′,m̃′⊗σ−1
L , �(`,m)〉.

The section �(`,m) of O (1) is obtained from the section (`,m) of L⊕M via the composition of
p∗(`,m) : p∗OX → p∗(L⊕M) with the natural quotient map p∗(L⊕M) →O (1). Its zero locus is
identified with a section i : X →P(L⊕M) of p :P(L⊕M) → X . Under the identifications of (3.19),
we have i∗O (1) = L⊗M .

The computations in (3.20) show that i ′∗σL = −m and i ′∗σM = `, so that we have `′′ =
i ′∗

(
m̃′⊗σ−1

L

)= i ′∗
(
p∗m′⊗σM ⊗σ−1

L

)=−m′/m⊗`. It follows that also i∗
(
m̃′⊗σ−1

L

)=−m′/m⊗
`. Hence, restricting to the divisor i : X →P(L⊕M), we finally find that (3.24) takes the form

(3.25) 〈m′,m〉⊗〈`′,m〉⊗〈`′,−m′/m ⊗`〉 = (−1)degL〈m′,m〉⊗〈`′,m′〉⊗〈`′,`〉.

Using that 〈m′,m〉 = (−1)deg M 〈m,m′〉 and comparing (3.25) with (3.23), we find that the two
differ by the expression 〈`,m〉. Since our Whitney isomorphism multiplies this construction with
(−1)deg M , we find the statement.

�

Remark 3.9. As recalled in Corollary 2.20, the above proposition implies that IC2 extends to a
functor on complexes of vector bundles and quasi-isomorphisms between them.

3.4.3. Relations between symbols. Suppose we are given two (r −1)-tuples of everywhere non-
vanishing sections, s and t , of a vector bundle E of rank r . We say they are in general position if
they generate a subvector bundle of rank r −1. Then (det s)∧ (det t) is a section of Λ2

(
Λr−1E

)
,

whose zero locus cuts out a closed subspace Z := Z (s, t ). On E|Z we can write det s =αdet t , for
α an invertible function on Z . In the following propositions, we will describe what amounts to
relations of the trivializations 〈s〉 and 〈t〉.
Proposition 3.10. Let s and t be two (r −1)-tuples of everywhere non-vanishing sections of a
vector bundle E of rank r , in general position, and let Z be the closed subspace where s and t
generate the same subbundle of E. If Z = X , then:

(1) if r = 1, IC2(E) is canonically trivial;
(2) if r ≥ 2, 〈s〉 =αdegE 〈t〉. Here det s =αdet t and α= det A for the matrix transforming the

basis s to t . In particular, for a permutation σ of {1, . . . ,r } and σ(s) = (sσ(1), . . . , sσ(r )), we
find that 〈σ(s)〉 = (−1)sgn(σ)·degE 〈s〉;

(3) if λ is an invertible function on S, the multiplication λ : E → E induces an isomorphism
[λ] : IC2(E) → IC2(E); then, [λ] = λ(r−1)·degE , where degE is the fiberwise degree of E (cf.
[43, §V.4.11]).

Proof. The first case corresponds to the fact that there is no input data for the trivialization 〈s〉.
For the second case, the hypothesis states that s and t generate the same subbundle of E , and
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hence there is a natural diagram

O r−1
X

t
//

A
��

E //

id
��

detE

id
��

O r−1
X

s
// E // detE

for a (r −1)× (r −1)-matrix with entries in H 0(OX ) = H 0(OS). It induces an isomorphism of the
Whitney isomorphisms (3.18), which allows us to compare the trivializations. The only non-
trivial map induced from these two sequences is the map 〈OX ,detE〉→ 〈OX ,detE〉. The section
1 in OX corresponds to det s or det t under the isomorphism detO r−1

X 'OX , so that det s =αdet t ,
where α= det A. Hence the map is described by 〈1,ω〉 7→ 〈α,ω〉 for an arbitrary section ω of detE .
From Proposition 3.2, we find that 〈α,ω〉 =αdegE 〈1,ω〉.

The last point clearly holds if we have a section 〈s〉 by the previous part of the proposition. It
holds more generally by induction and a filtration argument.

�

In the case of rank 2 vector bundles E , we can say more:

Proposition 3.11. Let the assumptions and notation be as in Proposition 3.10. Suppose further-
more that r = 2 and Z → S is finite and flat. Then 〈s〉 = NZ /S(α)〈t〉.

Proof. For simplicity we identify s = s1, t = t1, and note that Z = div(s ∧ t ) is necessarily a relative
Cartier divisor. The sections s, t both provide exact sequences of the form 0 →OX → E → detE →
0, and we need to compare the trivializations of IC2 they induce via the Whitney isomorphism.
By definition, the Whitney isomorphism sends 〈s〉 to 〈s,ω〉 in 〈sOX ,detE〉, for an arbitrary section
ω of detE and where s is considered as an element of E . Likewise 〈t〉 is sent to 〈t ,ω〉. These are
not sections of the same bundle, hence cannot be compared directly. We choose ω= s ∧ t , so
that detE 'O (Z ), and apply Proposition 3.2 to obtain 〈sOX ,detE〉 ' NZ /S(sOZ ) and idem with
〈tOX ,detE〉. Since s and t generate the same subbundle of E on Z , we can compare the sections
there, and the relation between them is that of the proposition.

To prove the proposition, we need to prove that the considered isomorphism IC2(E) '
IC2(OX )⊗ IC2(detE)⊗〈sOX ,detE〉 ' NZ /S(sOX ) ' OS coincide for s and t , or equivalently that
they are independent of s and t . In this case, the comparison of the sections 〈s〉 and 〈t〉 in IC2(E )
will coincide with the comparison of their images in OS .

The two sequences involving s and t can be completed into a diagram of the form:

(3.26) 0 //

��

OX
id

//

s
��

OX

s
��

OX
t
//

id
��

E //

��

detE

��

OX
t
// detE // detE|Z .
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This will allow us to compare the two sequences and thus also the Whitney isomorphisms. The
Whitney isomorphism involving s can be decomposed using that of t as

IC2(E) ' IC2(sOX )⊗ IC2(detE)⊗〈sOX ,detE〉
' IC2(sOX )⊗ IC2(tOX )⊗ IC2(detE|Z )⊗〈tOX ,detE|Z 〉⊗〈sOX , tOX 〉⊗〈sOX ,detE|Z 〉.

Here, we use the extension of IC2 to coherent sheaves quasi-isomorphic to a complex of vector
bundles, see Remark 3.9. The same discussion applied to t and and s provides a sequence with
identical final product, providing an isomorphism

W : IC2(sOX )⊗ IC2(detE)⊗〈sOX ,detE〉 ' IC2(tOX )⊗ IC2(detE)⊗〈tOX ,detE〉.
It follows from [38, Lemme 4.8] that the various Whitney isomorphisms applied to (3.26) com-
mute, and that the diagram of isomorphisms

IC2(E) //

id
��

IC2(OX )⊗ IC2(detE)⊗〈sOX ,detE〉
W
�� ��

IC2(E) // IC2(OX )⊗ IC2(detE)⊗〈tOX ,detE〉
in fact commutes. Noticing that det(E|Z ) ' OX (Z ), this is a rewritten version of the sought
diagram, except we have not verified that the isomorphism 〈sOX ,detE〉 ' 〈sOX ,OX (Z )〉 is the
one induced by choosing ω= s ∧ t as in the beginning of the proof.

To further investigate W , a computation similar to that of (3.20) shows that the map s sends
1 to t ∧ s and t sends 1 to s ∧ t =−t ∧ s. This shows that the lower horizontal and right vertical
sequences are in fact isomorphic up to sign. From Proposition 3.2 we find 〈s,−s ∧ t〉 = 〈s, s ∧ t〉
and 〈t ,−s ∧ t〉 = 〈t , s ∧ t〉. This implies that, while the two sequences are not the same, since the
only difference is a sign, this is not seen on these Deligne pairings. These facts taken together
prove the proposition. �

Remark 3.12. Proposition 3.11 generalizes the relations defining the Deligne pairing of two line
bundles, at least for E admitting enough sections in general position, locally with respect to S.
This can always be achieved after possibly tensoring E by a suitable relatively ample line bundle.
In Proposition 3.13 below we will describe how IC2 behaves under such modifications. One can
conclude that in rank 2, it is possible to describe IC2 directly in terms of generators and relations.
We refer to Proposition 4.8 and §8.3.2 below for an example of application along these lines.

3.5. Further properties of IC2. We will now study IC2 of various constructions, in particular
products of vector bundles or duals. The splitting principles established in Section 2 allow us to
reduce otherwise complicated computations to simpler ones.

3.5.1. Products of vector bundles. Let L be a line bundle and E a vector bundle of rank r . The
functor

(3.27) E 7→ (r,det(E ⊗L), IC2(E ⊗L))

is a commutative and multiplicative line functor into the line category with products in Definition
3.3, with the first two factors equipping IC2(E ⊗L) with a product structure.

Consider also the Chern polynomial-type line functor

(3.28) E 7→ IC2(E)⊗〈detE ,L〉r−1 ⊗〈L,L〉(r
2).
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On the level of isomorphism classes, (3.28) corresponds to the direct image of a well-known
expression for the class c2(E ⊗L), see [59, §3.2.2]. Using Theorem 2.18 and the Whitney isomor-
phism for IC2, one sees that the functor

(3.29) E 7→ (r, (detE)⊗Lr , IC2(E)⊗〈detE ,L〉r−1 ⊗〈L,L〉(r
2))

is likewise a multiplicative and commutative line functor.

Proposition 3.13. (1) Let E be a vector bundle of rank r . There is a unique isomorphism of
multiplicative line functors

(3.30) IC2(E ⊗L) ' IC2(E)⊗〈detE ,L〉r−1 ⊗〈L,L〉(r
2),

compatible with Lemma 3.1 and such that then the isomorphism is compatible with the
natural trivializations of both sides when E is a line bundle.

(2) If L and M are line bundles, the isomorphism (3.30) associated to the line bundle L ⊗M
can be identified with the isomorphism obtained by first applying M and then L:

IC2(E ⊗L⊗M) ' IC2(E ⊗L)⊗〈M ,det(E ⊗L)〉r−1 ⊗〈M , M〉(r
2)

'
(
IC2(E)⊗〈detE ,L〉r−1 ⊗〈L,L〉(r

2)
)
⊗〈M ,Lr ⊗detE〉⊗〈M , M〉(r

2)

' IC2(E)⊗〈detE ,L⊗M〉r−1 ⊗〈L⊗M ,L⊗M〉(r
2).

Proof. By Proposition 2.19 one is reduced to proving that there is a natural isomorphism of the
two functors in (3.27) and (3.29) whenever E is a line bundle. In this case the two determinants
appearing are identical. We define the isomorphism of the last factor to be the one compatible
with the trivializations IC2(E ⊗L) →OS and IC2(E) →OS whenever E is a line bundle. The last
part follows from the unicity and the fact that there is a natural isomorphism in the case of line
bundles. �

Remark 3.14. Using Elkik’s definition of IC2, we find that

(3.31) IC2(E ⊗L) = 〈det(E ⊗L),det(E ⊗L)〉X /S ⊗〈OP(E⊗L)(1){r +1}〉−1
P(E⊗L)/S .

If p : P(E) → X denotes the natural projection, OP(E⊗L)(1) is identified with OP(E)(1)⊗p∗L under
the natural isomorphism P(E ⊗L) ' P(E). Using this, the natural isomorphism det(E ⊗L) '
(detE )⊗L⊗r , the isomorphism 〈O (1){r }〉P(E)/S ' detE and general properties of Deligne pairings
in Proposition 3.2, there is a canonical way to write down an isomorphism as in Proposition 3.13
explicitly. It is possible, but cumbersome, to show that such an isomorphism using symbols is a
multiplicative line functor, and actually coincides with the abstractly constructed one.

Proposition 3.15. Let E and F be vector bundles of rank e and f on the family of curves X → S.
There are unique isomorphisms of line functors, multiplicative in E and F ,

(3.32) IC2(E ⊗F ) ' IC2(E) f ⊗ IC2(F )e ⊗〈detE ,detF 〉e· f −1 ⊗〈detE ,detE〉( f
2)⊗〈detF,detF 〉(e

2),

compatible with Lemma 3.1 and such that if F is a line bundle, the isomorphism is the isomor-
phism described in Proposition 3.13.

Proof. Here the multiplicativity is provided by the product in

E ⊗F → (e f , (detE) f ⊗ (detF )e , right hand side of (3.32)),

and uses the isomorphism in (3.7).
�
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We note that there are a priori two ways to define such an isomorphism as in the theorem,
either by filtering F with a flag followed by filtering E with a flag, or the opposite. The above is
the one obtained by first filtering F and then E .

3.5.2. Duals of vector bundles. To formulate Proposition 3.16 below, notice there is a natural
isomorphism, multiplicative and functorial in vector bundles E1 and E2,

(3.33) 〈det(E∨
1 ),det(E∨

2 )〉 ' 〈detE1,detE2〉.
Indeed, under the isomorphism (3.8) it reduces to an isomorphism of the form 〈L∨, M∨〉→ 〈L, M〉,
which can be defined on the level of symbols by 〈`∨,m∨〉 7→ 〈`,m〉. This also corresponds
to the natural isomorphism 〈L∨, M∨〉 → 〈L∨, M〉∨ → 〈L, M〉∨∨ → 〈L, M〉. Given a short exact
sequence ε as in (3.4), we can thus write down a multiplicativity datum, by exploiting the
Whitney isomorphism of the dual exact sequence ε∨,

(3.34) IC2(E∨) → IC2(E ′∨)⊗〈detE ′,detE ′′〉⊗ IC2(E ′′∨).

More precisely, the functor
E 7→ (r,detE , IC2(E∨))

is a multiplicative line functor. We hence have the following proposition, whose proof is analo-
gous to that of Proposition 3.13:

Proposition 3.16. Let E be a vector bundle on a family of curves X → S. Then, there is a unique
multiplicative isomorphism of line functors

IC2(E∨) ' IC2(E),

which is the identity on the product structures and compatible with the trivializations of both
sides when E is a line bundle.

�
An immediate corollary is the following consequence, which will be utilized in §8.4.2.

Corollary 3.17. Let E be a vector bundle. Then there is a natural isomorphism of line functors

IC2(EndE) → IC2(E ⊗E∨) → IC2(E)2e ⊗〈detE ,detE〉−e .

�

3.6. Comparison with Deligne’s constructions. The previous subsections developed and stud-
ied Elkik’s definition of the functor IC2. The original construction due to Deligne is a priori
different. In [38, §9.7], the following line bundle products of determinants of cohomology plays
the role of IC2 (see §3.1.3 and equation (3.11)):

(3.35) IX /SC 2(E) =λ(− (E − r − (det(E)−1))) 'λ(E)−1 ⊗λ(OX )r−1 ⊗λ(detE).

Since the determinant of the cohomology is a graded line bundle, the expression on the right
hand side can only be used as a definition up to sign. This is related to the remarks in the
beginning of §2.4. To make it precise, we refer the reader to the discussion surrounding [38,
(9.7.4), p. 168]. This only plays a minor role in the text, but it will be nevertheless applied in
Proposition 6.10 and Theorem 10.5.

Properties analogous to those of Theorem 3.5 are established in [38, §9.1]. In [38, Proposition
9.4] a unicity statement for IC2 is provided. The statement itself relies on a formulation in terms
of virtual categories of vector bundles, but reduces to the statement that the line functor IC2 is
uniquely determined by the properties:
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(1) IC2(L) is canonically trivial for line bundles L;
(2) IC2 satisfies a Whitney isomorphism for short exact sequences ε;
(3) IC2 is commutative up to a controlled sign;
(4) a normalization criteria.

Theorem 3.18. Elkik’s IC2 enjoys the above properties and is hence uniquely isomorphic to that
of Deligne.

Proof. Properties (1), (2) are already proven in Theorem 3.5. The property (3) is part of the
conclusion of Proposition 3.8 above. The last normalization criteria is proven in the context of
Franke’s IC2 in [51, §3.4]. A further inspection of the proof shows that it reduces to analogues of
the three first properties, together with Proposition 3.13 and the main statement of Proposition
3.8, which describes explicitly the isomorphism IC2(L⊕M) ' 〈L, M〉.

�

Remark 3.19. The version of the splitting principle in Proposition 2.19 already provides a canon-
ical isomorphism, by virtue of (1) above. However, this isomorphism does not automatically
come with a characterization.

If L and M are line bundles, the Whitney isomorphism provides an isomorphism IC2(L⊕M) '
〈L, M〉. Combining it with det(L⊕M) ' L⊗M and (3.35), we find the following corollary:

Corollary 3.20. Let L and M be line bundles on X . Then there is a canonical identification

〈L, M〉 =λ(OX )⊗λ(L⊕M)−1 ⊗λ(L⊗M).

�
We remark that in the two approaches of Deligne [38, §7] and Ducrot [41], this is essentially

the definition of the left hand side. We include this explicit corollary because we want to be able
to reference it later.

Suppose now that E is a vector bundle on X . One of the main results of [38] asserts the exis-
tence of an isomorphism of line bundles representing a Grothendieck–Riemann–Roch equality
for E . We give a proof based on our splitting principles for line functors, reducing to the simpler
case of line bundles.

Theorem 3.21 (Deligne–Riemann–Roch isomorphism). Suppose that X → S is a family of smooth
curves with relative canonical sheaf ωX /S . Then there is a canonical, up to sign, multiplicative
isomorphism of line functors,

(3.36) DRR(X /S,E) : λ(E)12 ' 〈ωX /S ,ωX /S〉rkE ⊗〈detE ,detE ⊗ω−1
X /S〉6 ⊗ IC2(E)−12.

Proof. The left hand side is a multiplicative line functor by the discussion in §3.1.3. For the
existence part of the theorem, by the splitting principle in Proposition 2.19, it is enough to equip
the right hand side with the structure of a multiplicative line functor, and prove the isomorphism
whenever E is a line bundle.

For the multiplicative structure on the right hand side, by Theorem 2.18 it is uniquely deter-
mined by the multiplicative structure for bundles of the form L⊕E ′′, where L is a line bundle. In
this case, it is straightforward to equip the line functor

〈ωX /S ,ωX /S〉rkE ⊗〈detE ,detE ⊗ω−1
X /S〉6 ⊗ IC2(E)−12

with a multiplicative structure with respect to the usual tensor product of line bundles, using the
multiplicative structures on the Deligne pairings, det and the Whitney isomorphism.
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For line bundles, we rely on the constructions of [38, Construction 7.5], which asserts that for
a line bundle L, there is an isomorphism of line bundles, determined up to sign,

λ(L)2 ⊗λ(OX )−2 →〈L,L⊗ω∨
X /S〉.

The sixth power is thus a canonical isomorphism. For convenience, we recall that the proof uses
Corollary 3.20 and rewrites one of the two copies λ(L)⊗λ(OX )−1 using the isomorphism induced
by Grothendieck–Serre duality λ(L) ' λ(L ⊗ω∨

X /S). This is finally combined with Mumford’s
isomorphism λ(OX )12 ' 〈ωX /S ,ωX /S〉, which is canonical up to sign, cf. [97, Section 5]. We get an
isomorphism

λ(L)12 →〈ωX /S ,ωX /S〉⊗〈L,L∨⊗ωX /S〉6.

This is (3.36) for line bundles, and concludes the proof. �

Remark 3.22. For the purposes of this article, the sign ambiguity in the Deligne–Riemann–Roch
isomorphism is actually irrelevant, and we may thus ignore it. Nonetheless, let us mention that
in [37, Appendice 3], Deligne describes a procedure to remove this ambiguity.

3.7. Complements in the complex analytic setting. The constructions in the previous subsec-
tions can be extended to the complex analytic category. For lack of reference on the theory of
intersection bundles in this setting, we briefly provide the argument for this. For general facts in
complex analytic geometry utilized below, we follow [29, 30] and the lectures by Grothendieck
and Houzel in the Séminaire Cartan [1].

3.7.1. Deligne pairings. Let f : X → S be a flat, locally projective morphism of complex analytic
spaces, of constant relative dimension n. Given line bundles L0, . . . ,Ln on X , we wish to construct
the Deligne pairing 〈L0, . . . ,Ln〉 by mimicking the procedure described in §3.2. That this is
possible relies upon the following lemma.

Lemma 3.23. Let L be a line bundle on X . Then, locally with respect to S, there exist relative
effective Cartier divisors D and E, such that L 'O (D −E). Furthermore, if Y ⊆ X is a given closed
analytic subspace, which is flat over S, then we can also suppose that D ∩Y and E ∩Y are relative
effective Cartier divisors in Y .

Proof. We begin with the first part of the statement, and then indicate how to extend it to cover
the second one. Let s ∈ S be any point, and I the coherent ideal sheaf defining the fiber Xs

in X . Restricting to a suitable neighborhood of s, we may suppose that there exists a relatively
very ample line bundle A such that L⊗ A is relatively very ample too, with R1 f∗(I ⊗ A) = 0 and
similarly for L ⊗ A. We reduce to show that A ' O (D), with D as in the statement. The case of
L⊗ A is analogous.

The fiber Xs is algebraizable, since it is projective. The line bundle A|Xs is then algebraizable
too, by the GAGA theorems. We abusively use the same notation for the corresponding algebraic
objects. We choose a global section ` of A|Xs , whose zero locus avoids the associated points of
Xs , as a scheme. This is possible, since the set of associated points is finite and A|Xs is very ample.
Thus, the section ` induces an injective morphism OXs ,→ A|Xs , in the algebraic category. It
remains injective after analytification, because for a scheme T of finite type over C and t ∈ T (C),
the morphism of local rings OT,t →OT an,t is flat. By the vanishing R1 f∗(I ⊗ A) = 0, after possibly
restricting to a Stein neighborhood of s, we can lift the section ` to a global section ˜̀of A. By
[92, Theorem 22.5], we see that the morphism ˜̀: OX → A is injective at the points of the fiber Xs ,
and A/ ˜̀OX is flat over S at the points of the fiber Xs . The kernel of ˜̀ is a coherent sheaf, and its
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support is a closed analytic subset of X disjoint from Xs . Because f is proper, we infer that after
possibly restricting S, we can suppose that multiplication by ˜̀ is an injective map. Besides, by
Frisch’s theorem [58], the locus of points in X where A/ ˜̀OX is flat over S is open. It contains the
whole fiber Xs . Therefore, shrinking S if necessary, we can suppose that A/ ˜̀OX is flat over S. We
have thus proven the existence of a regular section ˜̀, which defines a Cartier divisor D with the
desired property.

Suppose now that Y ⊆ X is a closed subspace, which is flat over S. In the previous paragraph,
we can further impose that the zero locus of ` avoids the associated points of Ys , as a scheme.
Then, the very same reasoning above shows that, after shrinking S if need be, the restriction ˜̀|Y
defines D ∩Y with the expected property. �

The construction of the Deligne pairing 〈L0, . . . ,Ln〉 then proceeds as in §3.2.2, by describing
generators and relations, locally with respect to the base. The lemma ensures that generators,
given by symbls 〈`0, . . . ,`n〉, do exist. For the relations to make sense, we first need to observe
that if D → S is a finite flat morphism of complex analytic spaces, then OD is a locally free
OS-algebra of finite rank, as in the algebraic case, and therefore the norm functor ND/S can be
defined. Secondly, we need to check that the construction is well-defined. By this we mean that
a compatibility condition between various defining relations, analogous to the Weil reciprocity
law, is fulfilled. The next lemma addresses this point, by reduction to the algebraic case.

Lemma 3.24. The construction of the Deligne pairing 〈L0, . . . ,Ln〉 by generators and relations in
the analytic setting, is well-defined.

Proof. Suppose that we are given a symbol 〈`0, . . . ,`n〉, where the `i define Cartier divisors
Di = D ′

i −D ′′
i , with D ′

i and D ′′
i effective and flat over S. Suppose that f and g are meromorphic

functions, such that for some j 6= k, changing ` j into f ` j and `k into g`k provides a new symbol.
Let Z be the finite flat cycle over S, defined by the intersection of the Di , excepting D j and Dk .
We are led to show the reciprocity law

(3.37) NZ∩div(g )/S( f ) = NZ∩div( f )/S(g ) in OS .

It is enough to prove this relationship after localizing at an arbitrary s ∈ S. Because OS,s is
noetherian, we have an injection OS,s ,→ ÔS,s . Therefore, we just need to establish the reciprocity
equality after completing at s.

For m ≥ 0, let Sm be the m-th infinitesimal neighborhood of s in S. It is a finite analytic space,
which can be algebraized into a finite scheme over C. We perform the base change of X → S by
Sm → S, and we obtain a flat projective morphism Xm → Sm . Since Sm is finite and the morphism
is projective, we can invoke Chow’s theorem and conclude that Xm and the morphism can be
algebraized. By the GAGA theorems, the base change of all the objects involved in the Deligne
pairing and in the symbols above, can be algebraized as well. The base change of (3.37) by Sm

thus becomes an analogous relationship in an algebraic situation, already covered by the work of
Elkik [43] and Ducrot [41]. Since the compatibility condition is satisfied in this context, we infer
that (3.37) holds after pullback to Sm . We conclude by passing to the limit. �

We have thus justified that the method of §3.2.2 carries over to the analytic setting. The
resulting Deligne pairings enjoy the complex analytic counterpart of Proposition 3.2. The proof is
based on the description in terms of generators and relations, and is formally the same. Similarly,
working on the level of symbols, we readily see that the construction is compatible with the
analytification functor. We summarize these facts.
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Proposition 3.25. The construction and properties of Deligne pairings extend to flat, locally pro-
jective families of complex analytic spaces, compatibly with the analytification functor. Precisely,
if X → S is a flat projective family of finite type C-schemes, of constant relative dimension n, with
line bundles L0, . . . ,Ln , then there is a canonical isomorphism

〈L0, . . . ,Ln〉an ' 〈Lan
0 , . . . ,Lan

n 〉.
�

3.7.2. Intersection bundles in relative dimension one. In the setting of families of compact Rie-
mann surfaces, the condition of being locally projective is automatic. Outside of genus one, the
relative cotangent bundle can be used to provide a relatively ample line bundle. For genus one
families we can always find sections of X → S, locally on S. The line bundles associated to the
Cartier divisors who are in the image of these sections produce relatively ample line bundles.
The following can be derived:

Proposition 3.26. Elkik’s intersection bundles and their properties are applicable in the setting of
proper holomorphic submersions of complex analytic spaces, with fibers of relative dimension 1.
Moreover, the construction and properties of these bundles are compatible with the analytification
functor.

�
Finally, it is formal to extend Deligne’s approach to the IC2 bundle in terms of the Knudsen–

Mumford determinant of the cohomology, as described in §3.6. For a summary of the properties
of the Knudsen–Mumford determinant in the analytic setting, we refer to Bismut–Bost [16,
Section 4 (a)]. The same arguments as in §3.6 entail the compatibility with Elkik’s approach, and
the analytic version of Deligne’s isomorphism:

Proposition 3.27. The Deligne–Riemann–Roch isomorphism applies in the setting of proper
holomorphic submersions of complex analytic spaces, with fibers of relative dimension 1. It is
compatible with the analytification functor.

�

4. INTERSECTION METRICS

In this section we recall and elaborate on the construction of hermitian metrics on the Deligne
pairings and IC2, after Deligne [38], Elkik [44] and Gillet–Soulé [63]. We refer to any of those as
intersection metrics. We discuss in further detail the case of flat hermitian vector bundles.

4.1. Bott–Chern theory.

4.1.1. Chern connections and Chern–Weil theory. Let X be a complex manifold, and E = (E ,h) a
hermitian holomorphic vector bundle5 on X , of rank r . Recall that the Chern connection of E is
the unique hermitian connection which is compatible with the holomorphic structure of E . We
will usually refer to Chern connections with the notation ∇h, or ∇ch if the metric is clear from the
context.

5Indicating the choice of a hermitian metric by a bar is customary notation in Arakelov geometry. This notation
will only be used in this section.
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Let F ∈ A1,1(X ,EndE) be the curvature of ∇h. Chern–Weil theory produces de Rham repre-
sentatives of the characteristic classes of E , extracted from the symmetric polynomials in F .
Precisely, the total Chern class of E , c(E), can be lifted to the closed differential form

c(E) = det

(
1+ i

2π
F

)
.

This is a sum of real forms of type (p, p), for p = 0, . . . ,r . The component of type (p, p) represents
the p-th Chern class cp (E) and is denoted by cp (E). More generally, any complex formal power
series in the characteristic classes can be lifted to the level of differential forms, by formally
replacing cp (E ) by cp (E ). These are called Chern–Weil representatives, or forms associated to ∇h

or E .

4.1.2. Examples. In this article we will mostly need first and second Chern forms. They are given
by

c1(E) = c1(detE) = i

2π
trF

and

(4.1) c2(E) = 1

8π2

(
tr

(
F 2)− (trF )2) .

Chern–Weil theory applies more generally to C ∞ connections on vector bundles. For a
vector bundle with connection (E ,∇) we will denote the associated Chern–Weil forms by c(E ,∇),
cp (E ,∇), etc. They are defined by the same expressions as above, in terms of the curvature of
∇. In this article we will deal with compatible connections, non-necessarily hermitian. In this
generality, the curvature has components of types (1,1) and (2,0).

4.1.3. Bott–Chern classes: axioms. For Chern–Weil forms of holomorphic hermitian vector bun-
dles, Bott–Chern theory measures the dependence on choices. We adopt the axiomatic approach
of Gillet–Soulé [63, Section 1], Bismut–Gillet–Soulé [19, Section f)] and Burgos–Litcanu [31,
Section 2].

Let ϕ be a formal power series in the Chern classes. For every complex manifold X and
holomorphic vector bundle E on X , there is an associated de Rham class ϕ(E) ∈ H•(X ,C). This
correspondence is functorial under pullback: given a morphism f : Y → X , we have ϕ( f ∗E) =
f ∗ϕ(E). Finally, for every exact sequence of holomorphic vector bundles on X

(4.2) ε : 0 → E ′ → E → E ′′ → 0,

there is a relationship in H•(X ,C)
ϕ(E) =ϕ(E ′⊕E ′′).

Given smooth hermitian metrics h,h′,h′′ on E ,E ′,E ′′, denote E
′ = (E ′,h′),E = (E ,h),E

′′ =
(E ′′,h′′). Given an exact sequence (4.2) , the combination of Chern–Weil representatives

(4.3) ϕ

(
E
′ ⊥⊕E

′′
)
−ϕ(E)

is exact. Bott–Chern theory actually provides dd c = i
2π∂∂ primitives. For an exact sequence ε as

in (4.2), we indicate the choice of arbitrary hermitian metrics on its constituents by writing ε. We
refer to it as a metrized exact sequence. There exists a unique assignment

(4.4) ε on X 7→ ϕ̃(ε) ∈⊕
p

Ap,p (X )
/

(Im∂+ Im∂)
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satisfying the following properties:

(BC1) (Differential equation) dd cϕ̃(ε) =ϕ(E
′ ⊥⊕E

′′
)−ϕ(E).

(BC2) (Functoriality) The formation of ϕ̃ commutes with pullback.
(BC3) (Normalization) If ε is both holomorphically and metrically split, then ϕ̃(ε) = 0.

We call ϕ̃(ε) the Bott–Chern class associated to ϕ and ε. In the literature it is sometimes referred
to as the Bott–Chern secondary form.

4.1.4. Bott–Chern classes: construction. Recall the construction of transgression exact sequences
from §2.2. For an exact sequence ε as in (4.2), denote by ε̃ the associated transgression exact
sequence. See equation (2.3). Indicate by ε̃ a choice of smooth hermitian metrics on the
constituents of ε̃, in such a way that:

(1) ε̃|X×{0} is isometric to ε.
(2) ε̃|X×{∞} is the standard metrically split exact sequence

0 → E
′ → E

′ ⊥⊕E
′′ → E

′′ → 0.

We set

(4.5) ϕ̃(ε) =
∫
P1

log |t |−2ϕ(Ẽ) mod Im∂+ Im∂,

where t is the usual coordinate on C⊂ P1. Here, ϕ(Ẽ) is the Chern–Weil representative of the
middle term of the short exact sequence ε̃. It can be checked that ϕ̃ thus defined fulfills (BC1)–
(BC3). For later use, we remark that (BC1) follows from the equation of currents dd c [log |t |−2] =
δ∞−δ0. We also notice that the freedom in the choice of metrics on ε̃ is reflected in the ambiguity
Im∂+ Im∂ in (4.4).

All the above can be specialized to describe the dependence of Chern–Weil forms on the
metrics. Let E be a holomorphic vector bundle on X and h, h′ two smooth hermitian metrics on
E . Consider the short exact sequence

ε : 0 → (E ,h) → (E ,h′) → 0 → 0.

The associated Bott–Chern class ϕ̃(ε) will be denoted simply by ϕ̃(E ,h,h′), or ϕ̃(E ,E
′
). It thus

satisfies dd cϕ̃(E ,h,h′) =ϕ(E ,h)−ϕ(E ,h′). It follows from the construction that

(4.6) ϕ̃(E ,h,h′) =
∫
P1

log |t |−2ϕ(p∗E , h̃),

where p : X ×P1 → X is the projection map, and h̃ is any smooth hermitian metric on p∗E
interpolating between h and h′, meaning h̃|X×{∞} = h and h̃|X×{0} = h′.

We record a few lemmas related to the Bott–Chern classes c̃p .

Lemma 4.1. Suppose we are given a metrized short exact sequence ε, and denote by ε∨ the dual
exact sequence, equipped with the dual metrics. Then c̃p (ε∨) = (−1)p c̃p (ε) .

Proof. On the level of Chern forms, for a hermitian vector bundle (E ,h), we have the relationship
cp (E∨,h∨) = (−1)k cp (E ,h). It follows that the associated Bott–Chern secondary forms both satisfy
the same axioms and hence must be equal. �
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Lemma 4.2. Let ε be a metrized short exact sequence, and F a hermitian vector bundle of rank f .
Then

c̃2(ε⊗F ) = f c̃2(ε)+ (e · f −1)c̃1(ε)+
(

f

2

)
c̃1(ε)

(
c1(E)+ c1(E ′)+ c1(E ′′)

)
Proof. For this statement when f = 1, we refer the reader to [63, Proposition 1.3.3] or [113,
Proposition 2]. The proofs are essentially all the same, but we include one for the convenience of
the reader.

Suppose φ(E) is an additive (or multiplicative) class in the Chern classes of E , and suppose
there is a decomposition

(4.7) φ(E ⊗F ) =∑
β

φβ(E)ψβ(F )

for polynomials in Chern classes φβ,ψβ. In [63, Proposition 1.3.3] a decomposition

φ̃(ε⊗F ) =∑
β

φ̃β(ε)ψβ(F )

is then proven. The proof is based on the fact that the formula (4.7) lifts to the level of forms, and
then employs the explicit formula in (4.6).

In our setting, a standard computation using the splitting principle shows that

c2(E ⊗F ) = f · c2(E)+e · c2(F )+ (e · f −1)c1(E)c1(F )+
(

f

2

)
c1(E)2 +

(
e

2

)
c1(F )2,

where e is the rank of E . An inspection of this equality applied to the above discussion shows
that this accounts for all terms in the lemma, except for the last one. The last one corresponds to
the Bott–Chern class associated to c2

1 , and we find from [63, Proposition 1.3.1] that �c1 · c1(ε) =
c̃1(ε)c1(E)+

(
c1(E

′
)+ c1(E

′′
)
)

c̃1(ε). This proves the lemma.

�

4.2. Metrics on intersection bundles.

4.2.1. Metrics on Deligne pairings. Let f : X → S be a proper submersion between complex
manifolds, of relative dimension one. Let L and M be hermitian line bundles on X , whose norms
we simultaneously denote by ‖ · ‖. We review the induced intersection metric on the Deligne
pairing 〈L, M〉. For references see Deligne [38, Section 6] and Gillet–Soulé [63, §4.10].

The metric is determined pointwise on S, and we first assume that S is a point and X a compact
Riemann surface. Let ` and m be rational sections of L and M , respectively, with disjoint divisors.
The hermitian norm of the symbol 〈`,m〉 is determined by the rule

(4.8) log‖〈`,m〉‖2 =
∫

X

(
log‖`‖2c1(M)+ log‖m‖2δdiv`

)
.

By Stokes’ theorem it is checked that this respects the relations between symbols, and that
‖〈`,m〉‖ = ‖〈m,`〉‖. Over a general base S, the construction defines a smooth hermitian metric
on 〈L, M〉. We write 〈L, M〉 for the resulting hermitian line bundle. It commutes with base change
and is compatible with the bi-multiplicativity property of Deligne pairings.
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The curvature form of 〈L, M〉 is easily computed from (4.8), and is summarized in the relation-
ship

c1(〈L, M〉) =
∫

X /S
c1(L)∧ c1(M).

Finally, directly from the definition we find the formula for a change of metrics:

(4.9) 〈L′
, M〉 = 〈L, M〉⊗ (OS , q),

where q is the hermitian metric on the trivial line bundle OS with value at s ∈ S given by

qs(1,1) = exp

(∫
Xs

c̃1(L,L
′
)c1(M)

)
.

Here, we recall that the convention for c̃1 is such that dd c c̃1(L,L
′
) = c1(L)− c1(L

′
).

4.2.2. Metrics on IC2. Continuing with the previous setting, let now E be a smooth hermitian
vector bundle on X . Following Deligne [38, Section 10], Elkik [44, Section III] and Gillet–Soulé
[63], the intersection bundle IC2(E) can naturally be equipped with a smooth hermitian metric,
denoted by IC2(E), which we recall now.

The intersection metric on IC2(E) is characterized by the following three properties:

(MIC1) (Functoriality) Formation of IC2(E) commutes with base change.
(MIC2) (Rank one normalisation) If E is a line bundle, the canonical trivialization IC2(E) 'OS

induces an isometry between IC2(E) and the trivial hermitian line bundle.
(MIC3) (Whitney isometry) Let ε be a metrized exact sequence, with underlying sequence (4.2).

Then the Whitney isomorphism

IC2(E) ' IC2(E ′)⊗ IC2(E ′′)⊗〈detE ′,detE ′′〉
induces an isometry

IC2(E) ' IC2(E
′
)⊗ IC2(E

′′
)⊗〈detE

′
,detE

′′〉⊗ (OS , q),

where q is the hermitian metric on the trivial line bundle with value at s ∈ S given by

(4.10) qs(1,1) = exp

(∫
Xs

c̃2(ε)

)
.

It follows from (MIC1) that the metric on IC2(E) can be computed pointwise on S.

Proposition 4.3. Let E ,F be a hermitian vector bundles of ranks e and f on X . Then the isomor-
phism in Proposition 3.15 induces an isometry

IC2(E ⊗F ) ' IC2(E) f ⊗ IC2(F )e ⊗〈detE ,detF 〉e· f −1 ⊗〈detE ,detE〉( f
2)⊗〈detF ,detF 〉(e

2).

Proof. If E ,F are both of rank one, the isomorphism is compatible with the trivializations of IC2

of a line bundle. Since the latter are isometries, this case is covered.
We proceed by induction on the ranks, supposing that F is a line bundle first. We can suppose

that there is an exact sequence ε : 0 → M → E → E ′′ → 0, with M a line bundle. Then we know
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that the diagram

IC2(E ⊗F ) //

��

IC2(M ⊗F )⊗ IC2(E ′′⊗F )⊗〈M ⊗F,det(E ′′⊗F )〉

��

IC2(E)⊗〈detE ,F 〉e−1 ⊗〈F,F 〉(e
2) // IC2(M)⊗ IC2(E ′′)⊗〈M ,detE ′′〉⊗〈M ,F 〉e−1

⊗
〈detE ′′,F 〉e−1 ⊗〈F,F 〉(e

2)

commutes. We denote by ε the metrized sequence with the metrics on M ,E ′′ induced by E . By
the induction hypothesis, and the fact that the isomorphism (3.6) is an isometry, we see that the
rightmost arrow is an isometry. To metrically describe the first row, we notice that there is an
isometry

IC2(E ⊗F ) → IC2(M ⊗F )⊗ IC2(E
′′⊗F )⊗〈M ⊗F ,det(E

′′⊗F )〉⊗ (OS , q)

where qs(1,1) = exp
(∫

Xs
c̃2(ε⊗F )

)
. For the lower row, there is an isometry

IC2(E)⊗〈detE ,F 〉e−1 ⊗〈F ,F 〉(e
2) // IC2(M)⊗ IC2(E

′′
)⊗〈M ,detE

′′〉⊗〈M ,F 〉e−1

⊗
〈detE

′′
,F 〉e−1 ⊗〈F ,F 〉(e

2)⊗ (OS , q ′)

where q ′
s(1,1) = exp

(∫
Xs

c2(ε̃)+ (e −1)c1(F )c̃1(ε)
)
. The computation of the last term follows from

the description of the change of metrics on Deligne pairings in (4.9). From Lemma 4.2 we see
that qs = q ′

s , so the isomorphism is an isometry whenever F is a line bundle and E is of arbitrary
rank, independently of the chosen metrics.

The analogous induction argument on the rank of F together with the general form of Lemma
4.2 proves the statement in general. �

Proposition 4.4. The natural isomorphism exhibited in Proposition 3.16 induces an isometry

IC2(E) ' IC2(E
∨

).

Proof. We can argue by the splitting principle as in the proof of the proposition, and reduce to
the statement that c̃2(ε) = c̃2(ε∨). This follows from Lemma 4.1. �

Corollary 4.5. The natural isomorphism in Corollary 3.17 induces an isometry

IC2(EndE) → IC2(E)2e ⊗〈detE ,detE〉−e .

�
Recall from Definition 2.1 (a) that the line functor propery of IC2 includes a compatibility

with isomorphisms X ′ → X over S. The following lemma is obvious, but we record it for later
reference.

Lemma 4.6. Let g : X ′ → X be an isomorphism of relative curves over S. Let E be a hermitian
vector bundle on X . Then, the canonical isomorphism IC2(g∗E) ' IC2(E) induces an isometry
IC2(g∗E) ' IC2(E).

�
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4.2.3. Example: the flat unitary case in rank 2. For concreteness, we now assume that E is a
hermitian vector bundle of rank 2 on X , whose metric is flat on the fibers of f : X → S. We will
describe the metric on IC2(E) at the level of trivializations. In Section 8 this will be applied to
exhibit concrete expressions for complex metrics.

Introduce an auxiliary relatively ample line bundle L, such that E ⊗L is globally generated on
fibers and R1 f∗(E ⊗L) = 0. Endow L with a smooth hermitian metric, positive on fibers. Since
metrics on Deligne pairings are already understood by §4.2.1, computing the metric on IC2(E)
is tantamount to computing the metric on IC2(E ⊗L) by Proposition 4.3. Thus, we just need to
treat the latter.

According to §3.4, trivializations of IC2(E ⊗L) are produced as follows. By [40, Lemme 7.1] and
[63, Proof of Lemma 4.10.4], locally with respect to S, we can find a nowhere vanishing section s
of E ⊗L and an exact sequence of vector bundles

(4.11) ε : 0 →OX
s→ E ⊗L →Q → 0.

By the Whitney isomorphism we obtain a section 〈s〉 of IC2(E ⊗L). See equation (3.18) and
Lemma 3.7. We endow OX and Q with the hermitian metrics induced from E ⊗L. In particular,
the norm of 1 ∈OX is given by the norm of the section s. We can then compute the norm of 〈s〉 by
applying (MIC3). For this, we begin with a particular instance of [113, Theorem 5], whose proof
we leave as an exercise.

Lemma 4.7. The Bott–Chern secondary form of (4.11) satisfies∫
X /S

c̃2(ε) =−degL.

�
Similarly, for the norm of the canonical trivialization e ′ of 〈OX ,Q〉 we find

log‖e ′‖2 =
∫

X /S
log‖s‖2c1(Q).

Using that for an exact sequence with induced metrics c̃1 vanishes, we find c1(Q) = c1(E ⊗L)−
c1(O X ) = c1(E )+c1(L)−c1(O X ). Besides, c1(E ) vanishes on fibers. Thus, we can equivalently write

log‖e ′‖2 =
∫

X /S
log‖s‖2c1(L)+

∫
X /S

log‖s‖2dd c log‖s‖2.

The result of applying (MIC3) is then recorded in the following:

Proposition 4.8. With the notation above, the norm of the section 〈s〉 is given by

(4.12) log‖〈s〉‖2 =−degL+
∫

X /S
log‖s‖2c1(L)− i

2π

∫
X /S

∂ log‖s‖2 ∧∂ log‖s‖2.

�
Notice that the second integral, without the minus sign, is a relative version of the Dirichlet

norm of log‖s‖2, denoted below
{
log‖s‖2

}
Dir

.
Suppose next that t is another nowhere vanishing section of E ⊗L, such that the zero locus

Z = div(s ∧ t) is finite étale over S. On Z , we can write s|Z = αt|Z , for some α ∈ Γ(Z ,O×
Z ). After

Proposition 3.11, the relationship between the trivializations 〈s〉 and 〈t〉 is 〈s〉 = NZ /S(α)〈t〉.
Combining with Proposition 4.8, we derive an analytic expression for the holomorphic function
NZ /S(α), which determines it up to a constant of modulus one.
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Corollary 4.9. With the notation above, we have

log |NZ /S(α)|2 =
∫

X /S
log

‖s‖2

‖t‖2
c1(L)+{

log‖t‖2}
Dir

−{
log‖s‖2}

Dir
.

�
As a side remark, we observe that Proposition 4.8 and Corollary 4.9 provide an alternative

intrinsic construction of the metric on IC2(E ⊗L).

5. INTERSECTION CONNECTIONS

In this section, f : X → S is a proper submersion of complex manifolds with connected
fibers of dimension n. We develop a refinement of classical Chern–Simons trangression forms
[33], for holomorphic vector bundles with compatible connections. The formalism originates
from the construction of characteristic classes of holomorphic vector bundles with compatible
connections sketched by Gillet–Soulé [62, Section 4]. When X → S is a family of Riemann surfaces,
we apply this theory to construct connections on Deligne pairings and IC2 bundles, naturally
induced by compatible connections. These we call intersection connections. We introduce the
theory in greater generality than what is needed, so that it might be easily applied to the case of
higher relative dimensions in a future work.

5.1. Transgression classes. Suppose we have an exact sequence (4.2) of holomorphic vector
bundles on X . If the individual vector bundles are equipped with compatible connections
∇′,∇,∇′′, we denote the corresponding sequence with connections by ε∇. If ϕ is a power series
as in §4.1.3, we know as in the discussion surrounding (4.3) that

(5.1) ϕ(E ′⊕E ′′,∇′⊕∇′′)−ϕ(E ,∇)

is exact. We will consider in detail a specific construction of trangression class, Tϕ.

5.1.1. Construction. We form the product p : X ×P1 → X , and recall the notation from transgres-
sion bundles §2.2. Let ∇̃ be any compatible connection on Ẽ such that:

∇̃|X×{∞} =∇, ∇̃|X×{0} =∇′⊕∇′′.

We say that ∇̃ interpolates between ∇ and ∇′⊕∇′′. Such a connection always exists by a partition
of unity argument. When E ′ (or E ′′) is of rank zero, the above can be seen as an interpolation
between two connections ∇1,∇2 on E . A relevant example, called the naive interpolation, is

(5.2) ∇na = |x|2
|x|2 +|y |2 p∗∇2 + |y |2

|x|2 +|y |2 p∗∇1,

where (x : y) are the standard homogeneous coordinates on P1.

Definition 5.1. Given an interpolating connection ∇̃ as above, we define the transgression class of
ϕ as

(5.3) Tϕ(ε∇,∇̃) =
∫
P1

−d t

t
ϕ(Ẽ ,∇̃), t = x/y.

The integral is absolutely convergent. By the equation of currents,

−d

[
d t

t

]
= 2πi (δ∞−δ0)
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one finds that Tϕ(ε∇,∇̃) indeed provides a simple transgression of (5.1). We will say more in
Proposition 5.5.

Lemma 5.2. For two interpolating connections ∇̃a,∇̃b we have

Tϕ(ε∇,∇̃a) = Tϕ(ε∇,∇̃b)+dη

for a form η. If ϕ is of pure degree n +1, the form η can be chosen so that it has only types of
bidegrees (p, q), with q ≤ n −1.

Proof. We carry out a double transgression. Form the product q : (X ×P1)×P1 → X ×P1. Hence-
forth, to avoid ambiguity we denote the first (resp. second) copy of P1 by P (resp. P ′), with
inhomogenous coordinate t (resp. t ′). On q∗Ẽ , we consider ∇na the naive interpolation (5.2)
between q∗∇̃a and q∗∇̃b. Then,

Tϕ(ε∇,∇̃a) = Tϕ(ε∇,∇̃b)− 1

2πi
d

∫
P ′

d t ′

t ′
ϕ(q∗Ẽ ,∇na).

Plugging this relationship into the definition of Tϕ(E ,∇̃a), we find

Tϕ(ε∇,∇̃a) = Tϕ(ε∇,∇̃b)+ 1

2πi

∫
P

d t

t
d

∫
P ′

d t ′

t ′
ϕ(q∗Ẽ ,∇na).

For this, we try to move the differential d out of the first integral. We compute

1

2πi
d

∫
P

d t

t

(∫
P ′

d t ′

t ′
ϕ(q∗Ẽ ,∇na)

)
=

∫
P

(δt=0 −δt=∞)

(∫
P ′

d t ′

t ′
ϕ(q∗Ẽ ,∇na)

)
− 1

2πi

∫
P

d t

t
d

(∫
P ′

d t ′

t ′
ϕ(q∗Ẽ ,∇na)

)
.

We claim that the first term on the right hand side vanishes. Indeed, if p ′ : X ×P ′ → X is the
projection map, then the very construction of the naive interpolation ∇na is such that

ϕ(q∗Ẽ ,∇na)|t=0 = p ′∗ϕ(E ,∇), ϕ(q∗Ẽ ,∇na)|t=∞ = p ′∗ϕ(E ′⊕E ′′,∇′⊕∇′′).

In other words, at t = 0, ∇na is the naive interpolation in variable t ′ between ∇ and ∇ itself, hence
constant in t ′, and similarly at t =∞. We infer∫

P
(δt=0 −δt=∞)

(∫
P ′

d t ′

t ′
ϕ(q∗Ẽ ,∇na)

)
=

(∫
P ′

d t ′

t ′

)
(ϕ(E ,∇)−ϕ(E ′⊕E ′′,∇′⊕∇′′)) = 0,

as was to be shown. Hence,

1

2πi

∫
P

d t

t
d

(∫
P ′

d t ′

t ′
ϕ(q∗Ẽ ,∇na)

)
=− 1

2πi
d

∫
P×P ′

d t

t
∧ d t ′

t ′
ϕ(q∗Ẽ ,∇na).

Now, since ∇na is compatible, ϕ(q∗Ẽ ,∇na) has only components of type (p, q) with q ≤ n +1 if ϕ
is of pure degree n +1. Integrating over the surface P ×P ′ decreases types by (2,2). The double
integral hence has only components of type (p, q) with q ≤ n −1. This concludes the proof. �

The following proposition will be applied in §5.2 to develop a sensible theory of compatible
connections on IC2(E ), provided a compatible connection on E . It can in principle be developed
to a more general theory of connections on Elkik’s intersection bundles [43], and we include for
possible future reference the general formulation.
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Proposition 5.3. Let ϕ be a polynomial in Chern classes of pure degree n + 1. Then the form∫
X /S Tϕ(ε∇,∇̃) only depends on ε∇, and not the interpolating connection ∇̃, and hence provides a

well-defined form on S. It is of type (1,0).

Proof. The difference for two choices of interpolating connection is of the form
∫

X /S dη= d
∫

X /S η.
Since the fiber integral reduces the bidegree by (n,n), this contribution disappears when inte-
grating, by Lemma 5.2 and for type reasons. The final integral is also of type (1,0) for similar
reasons. �

The following is an immediate consequence of the proposition and the construction (4.5) of
Bott–Chern classes.

Corollary 5.4. Let the assumptions and notation be as in Proposition 5.3. Let ε be a metrized
exact sequence, and ε∇ the corresponding short exact sequence equipped with the corresponding
Chern connections. Then there is an equality of (1,0)-forms∫

X /S
Tϕ(ε∇,∇̃) = ∂

∫
X /S

ϕ̃(ε).

�
For ϕ of pure degree n +1 as above, let us denote by

(5.4) Tϕ(ε∇) = class of Tϕ(ε∇,∇̃) modulo
⊕

p
q≤n−1

d Ap,q (X ).

We leave to the reader to check the following formal properties.

Proposition 5.5. The class Tϕ(ε∇) in (5.4) satisfies:

(TC1) (Differential equation) dTϕ(ε∇) = 2πi
(
ϕ(E ′⊕E ′′,∇′⊕∇′′)−ϕ(E ,∇)

)
.

(TC2) (Functoriality) The formation of Tϕ(ε∇) commutes with pull-back.
(TC3) (Normalization) If ε∇ is holomorphically split in a way which respects the connections,

then Tϕ(ε∇) = 0.

�

5.1.2. Chern–Simons integrals. Until the end of this section, we suppose that f : X → S is a
family of compact Riemann surfaces. For the purpose of this article, the most important case of
transgression class is for ϕ= c2. In that case, we define

(5.5) T c2(ε∇) =−
∫
P1

d t

t
c2(Ẽ ,∇̃), t = x/y, (x : y) ∈P1,

so that

(5.6) dT c2(ε∇) = 2πi (c2(E ′⊕E ′′,∇′⊕∇′′)− c2(E ,∇)),

where the first term on the right hand side can be expanded according to the Whitney formula.
In the special case of an exact sequence

ε∇ : 0 → (E ,∇1) → (E ,∇2) → 0 → 0

we write T c2(E ,∇1,∇2) = T c2(ε∇). Then we have

(5.7) dT c2(E ,∇1,∇2) = 2πi (c2(E ,∇1)− c2(E ,∇2)).
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Definition 5.6. With the previous assumptions and notation, we define the Chern–Simons integral
of an exact sequence with connections ε∇ as

I T (ε∇) =
∫

X /S
T c2(ε∇).

In a similar vein, for a vector bundle with two compatible connections (E ,∇1,∇2) define

I T (E ,∇1,∇2) =
∫

X /S
T c2(ε∇) ∈ A1,0(S).

Proposition 5.7. Let ∇ : E → E ⊗A 1,0
X be a connection and θ a (1,0)-form with values in End(E).

Denote by F the curvature of ∇. Then

I T (E ,∇,∇+θ) = 1

2πi

∫
X /S

(
tr(F ∧θ)+ 1

2
tr(θ∧∂θ)

)
− 1

2πi

∫
X /S

(
tr(F )∧ tr(θ)+ 1

2
tr(θ)∧ tr(∂θ)

)
.

In particular, if F = 0, then

I T (E ,∇,∇+θ) = 1

4πi

∫
X /S

(
tr(θ∧∂θ)− tr(θ)∧ tr(∂θ)

)
.

Proof. We compute the naive interpolation:

∇na =∇+ 1

1+|t |2θ.

The curvature of ∇na is

F na = F +d

(
1

1+|t |2
)
∧θ+ 1

1+|t |2 [∇,θ]+
(

1

1+|t |2
)2

θ∧θ.

For the computation of I T (E ,∇,∇+θ), we gather the terms in tr(F na 2) and (trF na)2 which contain
exactly one factor d

(
1/(1+|t |2)

)
. Later, when we take the fiber integral, we discard all the terms

of type (3,0). To carry out this step, we notice that [∇,θ](0,1) = ∂θ. With these observations at hand,
the lemma reduces to a routine computation. �

Remark 5.8. We notice that the expression provided by the proposition slightly differs from the
well-known Chern–Simons form for the change of connection on a C ∞ vector bundle:

CS(∇+α,∇) =− 1

8π2

(
tr(α∧∇α)+2tr(α∧F∇)+ 2

3
tr(α∧α∧α)

)
.

This transgression form is attached to the piece of degree 2 of the Chern character, while we
rather work with the second Chern class to avoid the denominator 2 in ch2. Furthermore, some
simplifications occur in the holomorphic setting and in the fiber integrals above, for type reasons.

A routine computation using Proposition 5.7 proves the following lemma, recorded for refer-
ence:

Lemma 5.9. Let E ′,E ′′ be holomorphic vector bundles with connections ∇′,∇′′. Suppose that θ′,θ′′
are (1,0)-forms with values in the endomorphims of E ′ and E ′′. Then the Chern–Simons integral
in the direct sum case

I T (E ′⊕E ′′,∇′⊕∇′′, (∇′+θ′)⊕ (∇′′+θ′′))
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is given by the formula

I T (E ′,∇′,∇′+θ′)+ I T (E ′′,∇′′,∇′′+θ′′)+
∫

X /S
tr(θ′′)c1(E ′,∇′)+ tr(θ′)c1(E ′′,∇′′+θ′′).

�
The difference between two Chern–Simons integrals for variations of connections on the same

underlying exact sequence can likewise be computed via a Whitney type formula:

Proposition 5.10. Let ε∇a and ε∇b be the same short exact sequences equipped with different
compatible connections. Then

I T (ε∇a )− I T (ε∇b ) = I T (E ′,∇′
a,∇′

b)+ I T (E ′,∇′′
a ,∇′′

b )

+
∫

X /S

(
tr(∇′′

b −∇′′
a )c1(E ′,∇′

a)+ tr(∇′
b −∇′

a)c1(E ′′,∇′′
b )

)− I T (E ,∇a,∇b).

As a particular case, one can deduce that the Chern–Simons integral satisfies the cocycle relation

I T (E ,∇1,∇3) = I T (E ,∇1,∇2)+ I T (E ,∇2,∇3).

Proof. The second statement follows from the first one by taking E ′′ to be of rank 0, and we focus
on the first statement.

By construction, the difference of the Chern–Simons integrals of the proposition is∫
X×P1/S

−d t

t

(
c2(Ẽ ,∇̃a)− c2(Ẽ ,∇̃b)

)
for connections ∇̃a,∇̃b interpolating between the split and non-split cases. On the other hand,
the difference c2(Ẽ ,∇̃a)− c2(Ẽ ,∇̃b) can be written as the differential of (5.5), and has the form

d
1

2πi

∫
P1

−d t ′

t ′
c2(q∗Ẽ ,∇na),

where q : X ×P1 ×P1 → X ×P1 is the projection on the first two factors, and ∇na is the naive
interpolation between ∇̃a,∇̃b. This is the same expression as the one appearing in Proposition
5.3, and expanding the integral in the same way as in the proof shows that the left hand side
equals

I T (E ′⊕E ′′,∇′
a ⊕∇′′

a ,∇′
b ⊕∇′′

b )− I T (E ,∇a,∇b).

The first term is computed according to Lemma 5.9, and this concludes the proof. �

5.1.3. Properties. Similar to Bott–Chern classes, Chern–Simons integrals are characterized by a
list of axioms:

Proposition 5.11. The Chern–Simons integral satisfies, and is uniquely determined by, the follow-
ing properties.

(CS1) (Type) I T (ε∇) ∈ A1,0(S).
(CS2) (Functoriality) For any base change g : S′ → S between complex manifolds, we have

I T (g∗ε∇) = g∗I T (ε∇),

where we abusively write g for the base changed morphism X ×S S′ → X .
(CS3) (Normalization) If ε∇ is a holomorphically split exact sequence, compatibly with the

connections, then I T (ε∇) = 0.
54



(CS4) (Differential equation)

d I T (ε∇) = 2πi
∫

X /S

(
c2(E ′,∇′)+ c2(E ′′,∇′′)+ c1(E ′,∇′)c1(E ′′,∇′′)− c2(E ,∇)

)
.

Proof. Properties (CS1) and (CS3)–(CS4) are already known, and the functoriality is clear. We
assume that there is another assignment I T ′ satisfying the above. We first base change our
family X → S by p : S ×P1 → S and consider the transgression exact sequence ε̃∇, equipped with
connections ∇̃′,∇̃,∇̃′′ interpolating between ε∇ at 0 and the split case ε′∇ at ∞.

The form D(ε̃∇) = I T ′(ε̃∇)− I T (ε̃∇) is d-closed by (CS4) and in A(1,0)(S ×P1) by (CS1), and
hence holomorphic for type reasons. Since P1 admits no holomorphic 1-forms, we conclude
that D(E ,∇1,∇2) = p∗θ for θ ∈ A(1,0)(S). By (CS2), the specialization to S × {0} equals D(ε∇) = θ,
and likewise the specialization to S × {∞} equals D(ε′∇) = θ. By the normalization in (CS3) the
latter is zero, and hence so is D(ε∇), thus proving the claim. �

Remark 5.12. The analogous properties are enjoyed by, and characterize, I T (E ,∇1,∇2).

5.2. Intersection connections.

5.2.1. On Deligne pairings. Let L and M be holomorphic line bundles on X and ∇L,∇M compati-
ble connections, with curvatures FL and FM . Suppose we are given meromorphic sections ` of L
and m of M , whose divisors are in general position defining a symbol 〈`,m〉. We will define the
intersection connection ∇〈L,M〉, following the definition of Freixas–Wentworth of the intersection
connection of two relative flat line bundles [57]. The precise relation is explored in §7.1.

Definition 5.13. With the above notation and assumptions, the intersection connection on 〈L, M〉
is given by the formula

(5.8)
∇〈L,M〉〈`,m〉

〈`,m〉 = i

2π

∫
X /S

∇M m

m
∧FL + trdivm/S

(∇L`

`

)
.

In the definition, the trace of a differential form defined in a neighborhood of divm makes
sense, provided the latter is finite étale over an open subset of S. The Deligne pairing 〈L, M〉
can be locally generated by symbols 〈`,m〉 where ` and m satisfy this property, which can be
subsumed in the general position assumption.

The next proposition provides an alternative description of the intersection connection on the
Deligne pairings, and relates it to Chern–Simons integrals. As a byproduct, it also proves that the
above is a well-defined connection.

Proposition 5.14. Let (L,∇L), (M ,∇M ) be holomorphic line bundles with compatible connections
on X . The intersection connection on 〈L, M〉 is the unique connection which satisfies the following
properties:

(1) it coincides with the Chern connection whenever ∇L and ∇M are Chern connections;
(2) if ∇′ L =∇L +θL and ∇′ M =∇M +θM , then

∇′ 〈L,M〉 =∇〈L,M〉+ I T (L⊕M ,∇L ⊕∇M ,∇′ L ⊕∇′ M ).

Proof. The unicity statement is clear, since we can always compare with the situation of Chern
connections.

For the first statement, suppose we are given hermitian metrics on L and M . The Chern
connection on 〈L, M〉 in the frame 〈`,m〉 is ∂ log‖〈`,m〉‖2, which is computed from the definition
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in (4.8). It is readily seen to coincide with the expression in (5.8). Notice that the cited formula is
actually symmetric in `,m.

For the second statement, notice that by Lemma 5.9

(5.9) I T (L⊕M ,∇L ⊕∇M ,∇L +θL ⊕∇M +θM ) =
∫

X /S

(
θM ∧ c1(L,∇L)+θL ∧ c1(M ,∇M +θM )

)
.

By transitivity, it is enough to prove the statement when either θL or θM is zero. We carry out the
case when θM = 0; the other case being similar. Then we can write

I T (L⊕M ,∇L ⊕∇M , (∇L +θL)⊕∇M ) = i

2π

∫
X /S

FM ∧θL.

On the other hand, the corresponding difference between the right hand side of (5.8) for the two
inputs ∇L and ∇L +θL is

i

2π

∫
X /S

∇M m

m
∧dθL + trdivm/S (θL) .

For type reasons, we have

i

2π

∫
X /S

∇M m

m
∧dθ = i

2π

∫
X /S

d

[∇M m

m

]
∧θL.

We claim that the equation of currents:
i

2π
FM = δdivm + i

2π
d [∇M m/m] holds, from which the

required identification of the forms follow. In case the connection on M is a Chern connection,
this is the classical Poincaré–Lelong formula. Both sides transform in the same way upon
modifying the connection ∇M and hence hold generally, from which we conclude. �

5.2.2. On IC2 bundles. We introduce the intersection connection on IC2(E ), given a compatible
connection on E . We will use the logic of Proposition 5.14 to actually define the intersection
connection on IC2. Let E be a holomorphic vector bundle on X and∇ : E → E⊗A 1,0

X a connection.
Fix an auxiliary hermitian metric h on E , with Chern connection ∇h. Denote by ∇h,IC2 the Chern
connection of IC2(E ,h).

Definition 5.15. With the above notation and assumptions, the intersection connection on IC2(E )
is given by the formula

(5.10) ∇IC2 =∇h,IC2 + I T (E ,∇h,∇).

Because I T (E ,∇h,∇) is a differential form of type (1,0), the connection ∇IC2 is compatible
with the holomorphic structure. If h′ is another metric on E , then by the relationship between
Bott–Chern theory and transgression classes exhibited in Corollary 5.4, we have

∇h′,IC2 =∇h,IC2 + I T (E ,∇h,∇h′).

It follows from the the cocycle property of Proposition 5.10 that ∇IC2 in (5.10) is independent of
the auxiliary metric. By construction, the curvature is computed as:

(5.11) c1(IC2(E),∇IC2 ) =
∫

X /S
c2(E ,∇) = 1

8π2

∫
X /S

(
tr

(
F 2
∇
)− (trF∇)2) .

The next proposition is an alternative characterization of the intersection connection:

Proposition 5.16. The assignment (E ,∇) 7→ (IC2(E),∇IC2 ) is the unique one that satisfies the
following properties.
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(1) (Normalization) If E is a line bundle, the natural trivialization IC2(E) 'OS identifies the
intersection connection with the trivial connection on OS .

(2) (Whitney isomorphism) If ε∇ is a short exact sequence of vector bundles with connections,
the Whitney isomorphism

IC2(E) → IC2(E ′)⊗ IC2(E ′′)⊗〈detE ′,detE ′′〉⊗ (OS , I T (ε∇))

is parallel. Here, the Deligne pairing is equipped with the intersection connection (5.8) and
(OS ,θ) denotes the trivial line bundle equipped with the connection d +θ.

(3) (Functoriality) If g : S′ → S is a morphism of complex manifolds and ∇′ is the pull-back of
∇ to X ×S S′, then ∇′ IC2 = g∗∇IC2 .

Remark 5.17. The proposition includes as a special case that for two line bundles L and M
with connections, the Whitney isomorphism IC2(L⊕M) →〈L, M〉 is parallel for the intersection
connections. This can be proven independently using Proposition 5.14 and by reducing to the
case of Chern connections. Hence, we could have used this as a definition of the intersection
connections on the Deligne pairings.

Proof of Proposition 5.16. For the unicity statement, remark that the connections are determined
locally, and by (3) we can restrict ourselves to small open sets. The statement then follows by
induction on the rank of the vector bundle, by a filtering argument applied to E . This filtering
exists for sufficiently small open sets of S. We leave the details to the reader.

For the properties, we first notice that they are satisfied when ∇ is a Chern connection. It
is trivially true when E is of rank one. For higher ranks, we again use the filtering argument
and proceed by induction on the rank of E . To establish the Whitney isomorphism in the
Chern connection setting, it is then enough to notice two facts: the intersection connection on
the Deligne pairings is the Chern connection when the connections on E ′ and E ′′ are Chern
connections by Proposition 5.14, and by (MIC3) in §4.2.2 and Corollary 5.4 the Chern–Simons
integral is the ∂ derivative of a Bott–Chern class.

All the properties then follow from formal properties of the Chern–Simons integrals and by
comparisons with the Chern connection case. The case of the Whitney isomorphism is less direct
and we furnish details. By Proposition 5.7 and Proposition 5.10, both sides transform the same
way when modifying the connections. Since it holds in the case of Chern connections, it holds in
general. �

Proposition 5.18. Let (E ,∇E ) be a holomorphic vector bundle with compatible connection on X .
Then:

(1) if (F,∇F ) is also a holomorphic vector bundle with compatible connection, the natural
isomorphism

IC2(E ⊗F ) ' IC2(E) f ⊗ IC2(F )e ⊗〈detE ,detF 〉e· f −1 ⊗〈detE ,detE〉( f
2)⊗〈detF,detF 〉(e

2)

from Proposition 3.15 is parallel for the connections induced from the intersection connec-
tions;

(2) the isomorphism IC2(E) ' IC2(E∨) from Proposition 3.16 is parallel for the intersection
connections.

(3) the isomorphism IC2(EndE) ' IC2(E)2e ⊗〈detE ,detE〉−e from Corollary 3.17 is parallel
for the interesection connections.
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Proof. From Proposition 4.3 and Proposition 4.4, this follows from the case of Chern connec-
tions associated to metrics. Direct proofs by computations of the necessary Chern–Simons
integrals to reduce to the case of Chern connections are tedious but straightforward. We remark
rather that the proofs of the cited propositions provide the same type of formulas for trans-
gression classes and Chern–Simons integrals, since they are all based on integrals of the form∫
P1 log |t |−2c2(Ẽ ,∇̃), or their derivatives, as exploited in the discussion surrounding Corollary

5.4. Indeed, the referenced formulas do not require ∇̃ to be a Chern connection but simply an
interpolating connection.

The third item follows from the first two.
�

The following obvious lemma is the counterpart of Lemma 4.6 for intersection connections,
and we state it without proof.

Lemma 5.19. Let g : X ′ → X be an isomorphism of relative curves over S. Let (E ,∇) be a vector
bundle with compatible connection on X . Endow g∗E with the pullback connection. Then, the
canonical isomorphism IC2(g∗E) ' IC2(E) is parallel for the induced intersection connections.

�

6. MODULI SPACES AND INTERSECTION BUNDLES

In this section we review and elaborate on several moduli spaces of vector bundles in the rela-
tive setting. We address descent properties of intersection bundles and Deligne’s isomorphism
from representation spaces of rigidified objects to their GIT quotients.

Our exposition on moduli spaces is based on Seshadri [103], Drezet–Narasimhan [40] and
Simpson [105, 106]. The reader is referred to these sources for proofs of general facts. We will
reserve detailed citations to justify those features which are less documented. To facilitate the
comparison with Simpson’s work, we adopt similar notation as his.

Most of the time we work in the algebraic category, in order to be consistent with the literature.
Some of the constructions below have complex analytic counterparts that we will need. In this
case, we shall indicate the necessary modifications.

6.1. Moduli spaces of semistable and flat vector bundles. Let f : X → S be a smooth projective
morphism of integral complex algebraic varieties6, with connected fibers of dimension one and
genus g ≥ 2.

6.1.1. Representation spaces. Assume that f has a fixed section σ : S → X . Let r ≥ 1 be an integer.
We consider Simpson’s representation spaces of the following types:

• R(X /S,σ,r ) = moduli scheme of rigidified (slope) semistable vector bundles of rank r
and degree 0, up to isomorphism. It represents the functor which, to a scheme S′ → S,
associates the set of isomorphism classes of (E ,τ), where:
(a) E is a vector bundle of rank r on X ′ = X ×S S′, whose restriction to fibers is slope

semistable of degree 0;
(b) τ : σ∗E

∼→O⊕r
S′ is a rigidification of E along σ;

6More generally, one can allow S to be a scheme of finite type over C, but integrality will later be necessary for
descending intersection bundles.
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(c) morphisms of triples are isomorphisms of vector bundles compatible with the trivi-
alizations.

The structure morphism R(X /S,σ,r ) → S is quasi-projective. The fibers over the closed
points of S are irreducible, smooth and of a fixed dimension e ≥ 1. There is a non-empty
open subscheme Rµ(X /S,σ,r ) parametrizing slope stable vector bundles.

On X ×S R(X /S,σ,r ) there is universal object denoted by E un, which is unique up to
unique isomorphism. For simplicity, the rigidification is implicit in the notation.

• RdR(X /S,σ,r ) = moduli scheme of rigidified flat vector bundles of rank r , up to isomor-
phism. With similar notation as in the previous item, it classifies triples (E ,τ,∇), where
(E ,τ) is a rigidified vector bundle of rank r on X ′ and ∇ : E → E ⊗Ω1

X ′/S′ is a relative
connection. We say that (E ,∇) is a relative flat vector bundle. The structure morphism
RdR(X /S,σ,r ) → S is quasi-projective, and the fibers over closed points are irreducible
and normal. We will also consider:
(a) Rir

dR(X /S,σ,r ) the non-empty open subscheme parametrizing irreducible relative
flat vector bundles. The morphism Rir

dR(X /S,σ,r ) → S has smooth fibers over closed
points.

(b) Rµ

dR(X /S,σ,r ) is the non-empty open subscheme of Rir
dR(X /S,σ,r ) parametrizing

slope stable vector bundles. Recall that stability is an open condition [105, Lemma
3.7].

On X ×S RdR(X /S,σ,r ) there is a universal object, denoted by (E un
dR,∇un). The rigidification

is implicit in the notation. Thus, E un
dR is a vector bundle on X ×S RdR(X /S,σ,r ), and ∇un is

a flat relative holomorphic connection on it.

Forgetting the connection provides "a forgetful map"

Rµ

dR(X /S,σ,r ) → Rµ(X /S,σ,r ).

The pullback of E un by the forgetful map is isomorphic to E un
dR, through a unique isomorphism

preserving the rigidifications.

6.1.2. Coarse moduli. The discussion in this section will be common to the the cases RdR and R.
We will only discuss the case of RdR. To translate to the setting of R, we need to replace Rir

dR by Rµ.
There is an action ofGLr /C on RdR(X /S,σ,r ) corresponding to changing the rigidifications. The

action preserves the fibers. All the points are GIT semistable with respect to a suitable lineariza-
tion of the action. Therefore, we can take the GIT quotient MdR(X /S,r ) = RdR(X /S,σ,r )/GLr /C.
This is a good quotient in the sense of Gieseker. It can be shown that MdR(X /S,r ) does not
depend on the choice of section. Since sections exist locally for the étale topology, by a de-
scent argument this actually allows to get rid of the assumption of a section σ. The structure
map MdR(X /S,r ) → S is quasi-projective. The properly stable points in RdR(X /S,σ,r ) for the
action of SLr /C ⊂GLr /C constitute exactly Rir

dR(X /S,σ,r ). The geometric quotient of the latter is a
non-empty open subscheme Mir

dR(X /S,r ) of MdR(X /S,r ).
The scheme MdR(X /S,r ) is a coarse moduli scheme of polystable objects on the geometric

fibers of X → S, meaning completely reducible flat vector bundles in the case of MdR(X /S,r ). The
universal vector bundle E un

dR does not descend to the coarse moduli scheme. However, étale locally
with respect to Mir

dR(X /S,r ), there is a vector bundle with connection F un
dR on X ×S Mir

dR(X /S,r ),
which is universal up to twisting by a line bundle coming from Mir

dR(X /S,r ) (also étale locally).
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In the case of de Rham representation spaces and stable vector bundles, we summarize the
above discussion in the following diagram of natural morphisms, where the vertical arrows
denote GIT quotients:

Rµ(X /S,σ,r )

����

Rµ

dR(X /S,σ,r )oo � � //

����

Rir
dR(X /S,σ,r ) �

�
//

����

RdR(X /S,σ,r )

����

Mµ(X /S,r ) Mµ

dR(X /S,r )oo � � // Mir
dR(X /S,r ) �

�
// MdR(X /S,r ).

6.1.3. The trivial determinant case. There are analogues of all the above where we further im-
pose that vector bundles and connections have trivial determinant. In this case, we will write
RdR(X /S,σ,SLr ) and R(X /S,σ,SLr ).

For the sake of clarity, we indicate the necessary modifications for flat vector bundles. In
this situation, RdR(X /S,σ,SLr ) parametrizes quadruples (E ,τ,∇,ρ), where (E ,τ,∇) is an object of
RdR(X /S,σ,r ) over a base scheme S′ → S, and ρ : detE

∼→OX ′ is a trivialization. We require that
the determinant of ∇ corresponds to the trivial relative connection on OX ′ via ρ. Furthermore,
the rigidification τ is required to have determinant one with respect to the rgidification along
σ. The coarse moduli MdR(X /S,SLr ) is the good quotient of RdR(X /S,σ,SLr ) by the action of
SLr /C on rigidifications. On Mir

dR(X /S,SLr ), a universal bundle exists étale locally, and it is
unique up to twisting by an r -torsion line bundle coming from S. Forgetting ρ induces a
closed embedding RdR(X /S,σ,SLr ) ,→ RdR(X /S,σ,r ) and a natural morphism MdR(X /S,SLr ) →
MdR(X /S,r ). Universal objects on representation spaces pull-back to universal objects, and
therefore no distinction in the notation will be made for those.

Remark 6.1. The formation of the previous moduli spaces is obviously functorial with respect to
isomorphisms of relative curves X ′ → X over S. For instance, such an isomorphism induces a nat-
ural isomorphism RdR(X ′/S,σ′,r ) ' RdR(X /S,σ,r ) over S, and a compatible natural isomorphism
of the corresponding universal objects.

6.1.4. Schematic properties. We state schematic features of relative moduli spaces. For lack of
adequate reference, we provide complete proofs in the appendix.7 We place ourselves in greater
generality than we actually need, since the methods of proof allow it without further effort. Recall
the running assumption that S is integral.

Proposition 6.2. (1) The structure morphisms RdR(X /S,σ,r ) → S and MdR(X /S,r ) → S are
flat. The loci of irreducible connections are smooth over S.

(2) The schemes RdR(X /S,σ,r ) and MdR(X /S,r ) are integral complex algebraic varieties.
(3) If S is normal, then RdR(X /S,σ,r ) and MdR(X /S,r ) are normal.

The analogues of (1)–(3) hold in the determinant one case.

Recall the notion of geometrically unibranch scheme [69, (6.15)]. For instance, a normal
scheme is geometrically unibranch.

Proposition 6.3. (1) The schemes R(X /S,σ,r ) and M(X /S,r ) are irreducible.
If moreover S is geometrically unibranch (resp. normal), then:

(2) R(X /S,σ,r ) and M(X /S,r ) are integral and geometrically unibranch (resp. normal).
(3) The morphism R(X /S,σ,r ) → S is smooth.

7It is best to read the appendix after §6.2.
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(4) The morphism M(X /S,r ) → S is flat and the fiber over a closed point s is isomorphic to
M(Xs ,r ).

(5) The morphism Mµ(X /S,r ) → S is smooth.

The analogues of (1)–(5) hold in the determinant one case.

6.2. Moduli spaces of representations of the fundamental group. Moduli spaces of flat vector
bundles are related to moduli spaces of representations of the fundamental group, via the
Riemann–Hilbert correspondence. The construction and properties of the latter partly hinge on
topological considerations. An essential difference is that the spaces of representations can be
constructed in the complex analytic category and not only the algebraic category. Hence, in this
subsection we allow f : X → S to be a smooth proper morphism of reduced complex analytic
spaces with one-dimensional connected fibers.

6.2.1. Representation spaces. Let Γ be a finitely generated group and G a complex linear reductive
group. We consider the representation space

R(Γ,G) = Hom(Γ,G(C)).

It has a natural structure of complex, affine variety. We write

R(Γ,r ) = R(Γ,GLr (C)).

Now let X0 be a compact Riemann surface and p ∈ X0. The most important examples we
shall consider are of the form RB(X0, p,G) = R(π1(X0, p),G). These are referred to as Betti spaces
of representations of the fundamental group in G. Notice that the structure of complex ana-
lytic space does not depend on the complex structure of X0. When G = GLr , we shall simply
write RB(X0, p,r ). The latter is irreducible and normal, and the locus classifying irreducible
representations Rir

B(X0, p,r ) is smooth. Similarly for SLr .
More generally, these definitions extend to the relative setting, provided f : X → S admits a

section σ:
RB(X /S,σ,G) =relative Betti representation space

of representations of the fundamental group in G.

We will only need that the formation of RB(X /S,σ,G) commutes with base change, and it has the
structure of a local system of analytic spaces over S. If S is algebraic, RB(X /S,σ,G) is even a local
system of schemes. Since the reader may not be familiar with these notions of local systems,
we refer to Simpson [106, pp. 12–14] for the precise definition and properties. When G=GLr ,
the spaces of irreducible representations Rir

B(X /S,σ,r ) inherit the structure of local systems of
analytic spaces or schemes over S. Similary for SLr .

The above constructions are functorial for morphisms of linear reductive groups G→H. For
instance, we have induced natural maps RB(X /S,σ,G) → RB(X /S,σ,H).

6.2.2. Coarse moduli. The group G acts by conjugation on the affine space R(Γ,G), and we can
consider the GIT quotient

M(Γ,G) = R(Γ,G)
//
G.

Analogously, for a fixed Riemann surface X0 and p ∈ X0, consider the GIT quotient

MB(X0,G) = RB(X0, p,G)
//
G.

As the notation suggests, the construction does not depend on the base point. When G=GLr

we simply write MB(X0,r ). It classifies isomorphism classes of semisimple representations of
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the fundamental group of X0. It is an irreducible and normal space, and the locus Mir
B(X0,r )

classifying irreducible representations is smooth. Similarly for SLr .
Likewise, in the relative setting X → S, when there exists a section σ we define

MB(X /S,G) = RB(X /S,σ,G)
//
G,

where G acts fiberwise by conjugation on G.8 The resulting quotient is independent of the section,
and by a descent argument the existence of a section is no longer required.

The morphism MB(X /S,G) → S has the structure of a local system of analytic spaces. In
particular, if S is simply connected and 0 ∈ S is a base point, there is a natural isomorphism of
analytic spaces over S

MB(X /S,G) ' MB(X0,G)×S,

whence a retraction
p0 : MB(X /S,G) −→ MB(X0,G);

see [106, Lemma 6.2] and its proof. For G = GLr or SLr , the subspaces classifying irreducible
representations inherit the structure of local systems.

Finally, ifG→H is a morphism of reductive groups, there is an induced morphism MB(X /S,G) →
MB(X /S,H) of local systems of analytic spaces.

We summarize our notation, for the case of representations Γ = π1(X0, p) → GLr (C), in the
following diagram:

Rir
B(X0, p,r ) �

�
//

����

RB(X0, p,r ) = R(Γ,r )

����

Mir
B(X0,r ) �

�
// MB(X0,r ) = M(Γ,r ).

Here the downwards arrows denote the GIT quotients.

6.2.3. Deformation theory of representations.

Tangent spaces and Atiyah–Bott–Goldman forms. Consider the case of a compact Riemann
surface X0 of genus g ≥ 2 with a base point p, and set as before Γ=π1(X0, p). Let x ∈ Mir

B(X0,r ),
corresponding to the conjugacy class of an irreducible representation ρ : Γ→GLr (C). The fiber
Tx Mir

B(X0,r ) of the C ∞ vector bundle TRMir
B(X0,r ) ' T (1,0)Mir

B(X0,r ) is canonically isomorphic to
H 1(Γ,Ad(ρ)). This can be described concretely. For a smooth 1-parameter family of irreducible
representations ρt : Γ→GLr (C) in Rir

B(X0, p,r ), with ρ0 = ρ, then κt = dρtρ
−1
t ∈ Z 1(Γ,Ad(ρt )) is a

1-cocycle of Γ with values in Ad(ρt ). The cohomology class of κ0 in H 1(Γ,Ad(ρ)) is the tangent
vector of Tx Mir

B(X0,r ) corresponding to the 1-parameter family. See [90, Chapter 2] and [106,
Theorem 10.4 & Lemma 11.2] for further details.

The space Mir
B(X0,r ) carries a canonical holomorphic 2-form, known as the Atiyah–Bott–

Goldman symplectic form (cf. Goldman [66, Section 1.7]). At a point corresponding to an
irreducible representation ρ, it is given in terms of the skew-symmetric pairing H 1(Γ,Ad(ρ))×
H 1(Γ,Ad(ρ)) →C

(6.1) (α,β) 7→
∫

X0

tr(α∪β),

8Even though the theory of GIT quotients can only be performed in the algebraic category, this definition works
in the analytic category by reducing to the product situation as in [106, §6].
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where tr : H 2(Γ,Ad(ρ)) → H 2(Γ,C) ' H 2(X0,C) is induced by the trace functional on matrices.
Notice that while the complex structure of Mir

B(X0,r ) does not depend on the complex structure
of X0, the integration map above involves the orientation of X0. For instance, replacing X0 by the
conjugate Riemann surface would change the sign of the form. We will use the notation ωGLr for
the Atiyah–Bott–Goldman form, where the orientation will be implicit from the context. In the
case of SLr representations, we similarly have a holomorphic 2-form ωSLr .

Universal property of the Atiyah–Bott–Goldman form. In the theory of intersection connec-
tions and complex Chern–Simons line bundles to be developed later (Section 7 and Section 8),
the following universal property of the Atiyah–Bott–Goldman forms will be fundamental. For
concreteness, we consider the case of ωGLr .

Let be given a smooth family of irreducible representations ρ : Γ→GLr (C ∞(S)). There is an
associated C ∞ classifying map

ν : S → Mir
B(X0,r ).

We wish to describe the differential dν as a section of ν∗T (1,0)MB(X0,r )⊗A 1
S . Introducing local

holomorphic coordinates si on S, dν is obtained as the class of the cocycle κ ∈ Z 1(Γ,Ad(ρ))⊗
A1(S), where

(6.2) κ(γ) = dρ(γ) ρ(γ)−1 =∑
j

∂ρ(γ)

∂s j
ρ(γ)−1d s j +

∑
j

∂ρ(γ)

∂s j
ρ(γ)−1d s j .

We define

(6.3)
∫

X0

tr(dν∪dν) :=
∫

X0

κ∪κ ∈ A2(S),

where the latter integral is evaluated by the following rule. If α=∑
j λ j ⊗θ j , β=∑

λ′
`
⊗θ′

`
, with

λ j ,λ′
`
∈ H 1(Γ,Ad(ρ)) and θ j ,θ′

`
∈ A1(S), then

(6.4)
∫

X0

tr(α∪β) :=
(∫

X0

tr(λ j ∪λ′
`)

)
θ j ∧θ′`.

See equation (6.1) for the integral involving the λ’s. With this understood, the universal property
is summarized in the following lemma.

Lemma 6.4. With the notation as above, we have the equality of differential forms

1

2

∫
X0

tr(dν∪dν) = ν∗ωGLr .

A similar relationship holds in the SLr case.

Proof. The proof is an easy exercise left to the reader. We only bring the reader’s attention to the
factor 2, which arises due to the following basic fact. Let ω : V ×V →C be an alternating 2-form
on a finite dimensional C-vector space V . Let {e j } j be a basis of V , with dual basis {e∨

j } j . Then, ω
is identified with

1

2

∑
j ,k
ω(e j ,ek ) e∨

j ∧e∨
k ∈∧2 V ∨.

�
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6.2.4. The Riemann–Hilbert correspondence. Assume again that f : X → S is algebraic. The
Riemann–Hilbert correspondence, which associates to a flat holomorphic vector bundle its holo-
nomy representation, yields an isomorphism of complex analytic spaces over San Ran

dR(X /S,σ,r ) '
RB(X an/San,σ,r ). The locus of irreducible connections and representations correspond via this
isomorphism. The actions of GLr are compatible as well, and there is an induced isomorphism
of the GIT quotients Man

dR(X /S,r ) ' MB(X an/San,r ). Similar facts hold in the determinant one case.
Notice in particular that schematic properties which can be detected in the analytic category,
can be transported from Betti to de Rham spaces, and vice versa. This is behind Proposition 6.2
above.

Remark 6.5. (1) Through the Riemann–Hilbert correspondence, the structure of local system
of the Betti spaces corresponds to Simpson’s Gauss–Manin connection of de Rham spaces
[106, Section 8]. The latter is formalized by saying that the de Rham spaces are crystals of
schemes on S. While we will not need this description, this motivates the terminology
crystalline for Chern–Simons line bundles, introduced in Theorem A and elaborated in
detail in Section 8 below.

(2) Contrary to the irreducible locus, it is not clear that the stable locus of Rµ

dR(X /S,σ,r )
inherits the crystalline structure, since stability is not a topological condition. This seems
to be inadvertently used in the approach to Hitchin’s connection in [101, p. 139].

6.3. Universal IC2 and Deligne’s isomorphism. We establish descent properties of IC2 and
Deligne’s isomorphism for the universal objects on relative representation spaces. The approach
is classical and is based on Kempf’s descent lemma.

Proposition 6.6. (1) The line bundle IC2(E un
dR) on RdR(X /S,σ,r ) descends to MdR(X /S,r ).

(2) If S is geometrically unibranch, the line bundle IC2(E un) on R(X /S,σ,r ) descends to
M(X /S,r ).

The analogues of (1) and (2) hold in the determinant one case.

Proof. We prove the first point. The others are similar. The scheme MdR(X /S,r ) is the good
quotient of RdR(X /S,σ,r ) by the reductive group GLr /C, and RdR(X /S,σ,r ) is an integral complex
algebraic variety by Proposition 6.2. Hence we can apply Kempf’s descent lemma [40, Théorème
2.3]: it is enough to show that for every closed point x ∈ RdR(X /S,σ,r ) with closed orbit under
GLr /C, the stabilizer G of x acts trivially on IC2(E un

dR). Let s ∈ S be the closed point lying below x.
Notice that both x and s are C-rational. Thus, x corresponds to a rigidified flat vector bundle
(E ,∇) on the complex projective curve Xs . That the orbit of x is closed means that (E ,∇) is
completely reducible. We decompose

E = E⊕k1
1 ⊕ . . .⊕E⊕kn

n ,

where each Ei is a vector bundle of rank ri , preserved by ∇, and such that (Ei ,∇) is irreducible.
Furthermore, we suppose that the (Ei ,∇i ) are pairwise non-isomorphic. Then, for distinct i
and j we have Hom((Ei ,∇), (E j ,∇)) = 0, while Aut((Ei ,∇)⊕ki ) =GLki (C). Accordingly, we have an
identification

G 'GLk1 (C)× . . .×GLkn (C).

We need to show that the latter acts trivially on

IC2(E) '⊗
i

IC2(E⊕ki
i )⊗⊗

i< j
〈detE⊕ki

i ,detE
⊕k j

j 〉.
64



The action of G on the Deligne pairings is trivial. Indeed, an automorphism of detE⊕ki
i given by

multiplication by u ∈C× acts on 〈detE⊕ki
i ,detE

⊕k j

j 〉 as multiplication by uk j degE j , by Proposition
3.2. This equals 1 because degE j = 0. For IC2, we notice that G acts by a character, hence a
power of the determinant. The power is determined as in the case Deligne pairings, and it is zero
by Proposition 3.10. This concludes the proof.

�

Definition 6.7. We call the descended bundles of Proposition 6.6 the universal intersection bundles,
or universal IC2 bundles. We still denote them IC2(E un) and IC2(E un

dR).

Remark 6.8. Via the natural maps MdR(X /S,SLr ) → MdR(X /S,r ), the universal intersection bun-
dles pull-back to the universal intersection bundles.

Corollary 6.9. Let F be a fixed vector bundle on X . In the determinant one case, the intersectionn
bundles IC2(E un

dR⊗F ) and IC2(E un⊗F ) descend to MdR(X /S,SLr ) and M(X /S,SLr ), respectively.

Proof. We treat the case of E un
dR. Let f be the rank of F . By Proposition 3.15 and the determinant

one condition, we have a natural isomorphism

IC2(E un
dR⊗F ) ' IC2(E un

dR) f ⊗ IC2(F )r ⊗〈detF,detF 〉(r
2).

It is compatible with the SLr actions by the functoriality of the isomorphism. By Proposition 6.6,
we know that IC2(E un

dR) descends. For the intersection bundles involving F there is nothing to say,
since they are actually defined on S. �

For the next proposition, let F be a fixed vector bundle of rank f on X , and recall from (3.35)
and Theorem 3.18 the functorial isomorphism relating the IC2 bundle and the determinant of
the cohomology. Specializing for instance to E un

dR ⊗F on RdR(X /S,σ,SLr ), we obtain a natural
isomorphism, compatible with the SLr actions

(6.5) IC2(E un
dR⊗F ) 'λ(E un

dR⊗F )−1 ⊗λ((detF )r )⊗λ(OX )r · f −1.

Recall also the Deligne–Riemann–Roch isomorphism of Theorem 3.21.

Proposition 6.10. (1) The universal determinant line bundle λ(E un
dR⊗F ) on RdR(X /S,σ,SLr )

descends to MdR(X /S,SLr ).
(2) The isomorphism (6.5) descends to MdR(X /S,SLr ).
(3) Deligne’s isomorphism for E un

dR⊗F descends to MdR(X /S,SLr ).
If S is geometrically unibranch, the analogues hold for E un⊗F on R(X /S,σ,SLr ).

Proof. The first two items are proven at once, similarly to Corollary 6.9. For the third item, we
recall that Deligne’s isomorphism is obtained as a combination of λ(OX )12 ' 〈ωX /S ,ωX /S〉 and
(6.5), which both descend. Finally, the case of E un is analogous.

�

6.3.1. Descent on the stable and irreducible loci. The descent statements of Proposition 6.6 and
Proposition 6.10 admit an alternative treatment if we restrict to the stable or irreducible loci,
without assumptions on the base scheme. This is possible due to the local existence of universal
vector bundles and the functorial properties of intersection bundles. This approach will be
important in geometric differential considerations in Section 8. We provide the main lines of the
argument for IC2(E un

dR) restricted to Rir
dR(X /S,σ,r ), and leave details and other instances to the

reader.
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Étale locally on Mir
dR(X /S,r ), there is a universal vector bundle F un

dR , unique modulo twising
by a line bundle coming from the base. We form IC2(F un

dR). For any line bundle L on a suitable
étale open of Mir

dR(X /S,r ), it follows from Proposition 3.13 that we have a canonical functorial
isomorphism

IC2(F un
dR ⊗π∗L) ' IC2(F un

dR)⊗〈detF un
dR ,π∗L〉r−1 ⊗〈π∗L,π∗L〉(r

2),

where π : X ×S Mir
dR(X /S,r ) → Mir

dR(X /S,r ) is the natural morphism, or a localization thereof in
the étale topology of the base. Since for any line bundle M we have 〈M ,π∗L〉 ' Ldeg M , it follows
that the latter two line bundles are canonically trivial, hence reducing to a natural isomorphism

(6.6) IC2(F un
dR ⊗π∗L) ' IC2(F un

dR).

By Proposition 3.13 and the functoriality of IC2 under base change, it can be checked that the
collection of such IC2(F un

dR) satisfies the étale descent (i.e. gluing) conditions [4, Théorème 1.1].
Let us momentarily denote by IC2(F un

dR) the resulting line bundle on Mir
dR(X /S,r ). Consider the

quotient map p : Rir
dR(X /S,σ,r ) → Mir

dR(X /S,r ). We still have to construct a natural isomorphism
p∗IC2(F un

dR) ' IC2(E un
dR). This exists étale locally, because F un

dR pulls-back to E un
dR up to twisting

by a line bundle coming from Rir
dR(X /S,σ,r ), and by equation (6.6). One obtains a collection of

isomorphisms defined étale locally over Rir
dR(X /S,σ,r ), and again the functoriality properties of

IC2 ensure descent.
It is similarly checked that the descended IC2(E un

dR) on Mir
dR(X /S,r ) obtained by this method

coincides with the one provided by Proposition 6.6. For this, we use that Rir
dR(X /S,σ,r ) →

Mir
dR(X /S,r ) is a principal PSLr /C-fibration. Therefore, if U → Mir

dR(X /S,r ) is a surjective étale
cover and U ′ is the pull-back to Rir

dR(X /S,σ,r ), then the composition U ′ → Mir
dR(X /S,r ) is faitfully

flat and quasi-compact, hence a morphism of effective descent for quasi-coherent sheaves [4,
Exposé VIII, Théorème 1.1].

Consider now a morphism of complex algebraic varieties S′ → S, and decorate base changed
objects to S′ with a prime symbol, e.g. X ′ = X ×S S′. Since RdR spaces represent moduli functors,
there is a natural identification RdR(X ′/S′,σ′,r ) = RdR(X /S,σ,r )′. It induces a morphism on the
GIT quotiens MdR(X ′/S′,r ) → MdR(X /S,r ), which respects the irreducible loci.

Proposition 6.11. If S′ → S is a morphism of complex algebraic varieties and q : Mir
dR(X ′/S′,r ) →

Mir
dR(X /S,r ) is the natural map, then there is a canonical isomorphism of line bundles q∗IC2(E un

dR) '
IC2(E un ′

dR ) on Mir
dR(X ′/S′,r ).

Proof. Locally for the étale topology on Mir
dR(X /S,r ) we have a universal object F un

dR . We consider
the pullback q∗F un

dR , defined over an étale open of Mir
dR(X ′/S′,r ). Possibly refining, there is

an isomorphism q∗F un
dR ' F un ′

dR ⊗π′ ∗L, where F un ′
dR is a local universal object on Mir

dR(X ′/S′,r )
and L is a line bundle defined over an étale open of Mir

dR(X ′/S′,r ); also we denoted the natural
projection byπ′ : X ′×S′ Mir

dR(X ′/S′,r ) → Mir
dR(X ′/S′,r ). Reasoning as in the discussion above, there

is an induced natural isomorphism q∗IC2(F un
dR) ' IC2(F ′ un

dR ), and this local construction satisfies
the necessary gluing condition for the étale topology, by Proposition 3.13 and the functoriality of
IC2 under base change. This provides the desired isomorphism. �

Corollary 6.12. Under the assumptions of the proposition, suppose furthermore that S′ is non-
singular. Possibly excluding the case g = r = 2, the isomorphism q∗IC2(E un

dR) ' IC2(E un ′
dR ) holds on

MdR(X ′/S′,r ).
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Proof. The involved line bundles are know to exist over the whole space, by Proposition 6.6. Since
S′ is smooth, MdR(X ′/S′,r ) is normal, and by [106, Proposition 11.3] MdR(X ′/S′,r ) \ Mir

dR(X ′/S′,r )
has codimension at least 2. Consequently, the isomorphism of Proposition 6.11 extends to the
whole space. �

6.4. Complements in the complex analytic setting. Strictly speaking, Simpson’s de Rham spaces
seem only well-documented in the algebraic category.9 By contrast, as in §6.2, Betti spaces exist
in the analytic category and may be used as a replacement of de Rham counterparts. We provide
some complements needed later in the theory of complex Chern–Simons line bundles.

6.4.1. Betti spaces. Suppose that f : X → S is a smooth proper morphism of reduced analytic
spaces, with connected fibers of dimension 1 and genus g ≥ 2. For simplicity, throughout
we assume the choice of a section σ : S → X . In this generality, the relative Betti moduli
spaces RB(X /S,σ,G), MB(X /S,G) were constructed in §6.2. In Section 9, we will have need
for MB(X /S,PSLr ) and the distinguished component of locally liftable representations. This
is defined as the image of the natural map MB(X /S,SLr ) → MB(X /S,PSLr ), and denoted by
MB(X /S,PSLr )`. This is a finite étale quotient of MB(X /S,SLr ). Indeed, the r -torsion part of the
relative Jacobian, Jac(X /S)[r ] acts properly and freely on MB(X /S,SLr ), and the natural mor-
phism MB(X /S,SLr ) → MB(X /S,PSLr ) consists in taking the quotient by Jac(X /S)[r ]. Notice that
the latter can also be interpreted as MB(X /S,µr ), where µr is the group of r -th roots of unity. All
this can be restricted to the loci of irreducible representations.

In the case of a single Riemann surface X0, the space Mir
B(X0,PSLr ) also carries a symplectic

holomorphic 2-form, denoted by ωPSLr . On the subspace of liftable representations, it can be
described as the pushforward of ωSLr via the finite étale map Mir

B(X ,SLr ) → Mir
B(X ,PSLr )`.

6.4.2. Universal objects. In the algebraic category, de Rham representation spaces carry a uni-
versal vector bundle with relative connection. This can be transported to the Betti spaces via
the Riemann–Hilbert correspondence, and it results in a complex analytic vector bundle with
holomorphic relative connection. The latter makes sense more generally in the analytic category,
as we now explain.

In [106, Lemma 7.3], Simpson describes RB(X /S,σ,r ) as a representable functor on the cate-
gory of complex analytic spaces over S. His argument is written for S associated to an algebraic
scheme, but this restriction is not necessary for what follows. As a functor, RB(X /S,σ,r ) asso-
ciates to a complex analytic space S′ over S the isomorphism classes of pairs (E ,τ), where E

is a locally free sheaf of f ′−1(OS′)-modules of rank r on X ′ = X ×S S′, and τ is a rigidification
along σ; we write f ′ for the base change of f to S′. To such an object, one associates a rigidified,
relative flat holomorphic vector bundle by letting E = E ⊗ f −1(OS′ ) OX ′ , with connection 1⊗dX ′/S′ .
In particular, this can be applied to S′ = RB(X /S,σ,r ) itself, and we obtain a universal rigidified
vector bundle with flat relative connection (E un

B ,∇un). This has the universal property that over a
point given by a representation ρ : π1(Xs ,σ(s)) →GLr (C), the connection ∇un has holonomy ρ.
The determinant one case is similarly addressed.

Restricted to the irreducible locus, the universal object (E un
B ,∇un) does not descend to Mir

B(X /S,r ),
but it does locally, up to tensoring by line bundles coming from the base Mir

B(X /S,r ) (the étale
and analytic topologies are equivalent; line bundles coming from the base are naturally relatively
flat). This is established as for moduli of vector bundles [105, Theorem 4.7 (4)], by replacing

9To that extent, see the first phrase in the proof of [105, Proposition 5.3].
67



Luna’s by Palais’ slice theorems in the proof. We will refer to these as local universal objects. Both
the algebraic and analytic theories are compatible by construction. The corresponding facts in
the determinant one case hold as well.

6.4.3. Universal endomorphism bundles. The endomorphism bundle End(E un
B ) and its connec-

tion descend to Mir
B(X /S,r ), because the center of GLr (C) acts trivially on them. We still denote

by End(E un
B ) the descended endomorphism bundle. If F un

B is a local universal bundle over
Mir

B(X /S,r ), then there is a natural isomorphism End(E un
B ) ' End(F un

B ); similarly for their flat
relative connections. The analogous statement holds for SLr monodromies.

For a similar reason, Mir
B(X /S,PSLr ) carries a universal endomorphism bundle with connec-

tion. Later, our focus of interest will rather be the universal endomorphism bundle restricted to
Mir

B(X /S,PSLr )`, which can be obtained by descent from Mir
B(X /S,SLr ).

We will use the notation (U ,∇un) for universal endomorphism bundles. We will next encounter
those in §8.4.

6.4.4. Descent of IC2. Considering all the above, the argument §6.3.1 for descending the universal
IC2 bundle applies to complex analytic Betti spaces formally in the same way. For instance, we
may descend IC2(E un

B ) to Mir
B(X /S,r ). Locally, the descended line bundle is naturally isomorphic

to IC2(F un
B ), for a local universal bundle F un

B over Mir
B(X /S,r ). The resulting descended line

bundle will still be denoted by IC2(E un
B ). Corresponding statements hold for SLr , and for the

universal endomorphism bundle in the PSLr case. The base change Proposition 6.11 has an
analogue in this context too.

Remark 6.13. Over Mir
B(X /S,SLr ) (resp. Mir

B(X /S,PSLr )) there is a universal adjoint bundle U0,
of traceless endomorphisms, which is more natural to work with from the point of view of Lie
algebras. It relates to U by a natural isomorphism U ' U0 ⊕OX , where OX is endowed with
the trivial connection. For the purposes of this paper, we can indistinctly work with both, since
IC2(U ) is naturally isomorphic to IC2(U0). See Theorem 3.5, Proposition 5.16 and §8.4 below.

7. CANONICAL EXTENSIONS OF FLAT RELATIVE CONNECTIONS

In Section 5, we developed the general formalism of intersection connections. The setting
requires a family of compact Riemann surfaces f : X → S and a holomorphic vector bundle E on
X , endowed with a compatible connection ∇ : E → E ⊗A 1,0

X . However, in the study of moduli
spaces of flat vector bundles in Section 6, the natural datum we encountered is a relative flat
connection. This poses an extension problem. In rank one this was addressed in a canonical
manner by Freixas–Wentworth [57] and was applied to the construction of intersection connec-
tions on Deligne pairings and reciprocity laws. In this section, we tackle the general case and
discuss consequences for intersection connections on IC2 bundles.

7.1. Intersection connections induced by flat relative connections. Let f : X → S be a proper
submersion of complex manifolds, with one-dimensional connected fibers. We fix a holomorphic
vector bundle E → X , and a flat relative connection ∇ : E → E ⊗A 1,0

X /S . We will show that IC2(E)
inherits a natural compatible connection, and describe some of its properties.

A connection ∇̃ : E → E ⊗A 1,0
X is called a compatible extension of ∇ if the vertical projection

of ∇̃ onto E ⊗A 1,0
X /S recovers ∇. Such an extension always exists. To see this, by a partition of

unity argument, it is enough to construct an extension locally, and by the holomorphic implicit
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function theorem we can even suppose that X → S is of the form U ×V →V for small complex
open sets U ,V , in which case the statement is clear.

Lemma 7.1. Let ∇1,∇2 : E → E ⊗A 1,0
X be compatible extensions of ∇. Then, the attached intersec-

tion connections on IC2(E) coincide: ∇IC2
1 =∇IC2

2 .

Proof. We must check that I T (∇1,∇2) = 0. Because ∇1,∇2 are both compatible extensions of ∇,
we can write ∇2 = ∇1 +θ, where θ is a C ∞ section of EndE ⊗ f ∗A 1,0

S . We examine the several
contributions in the expression of I T (∇1,∇1 +θ) provided by Proposition 5.7. The various terms
all vanish for similar reasons, and we only explain

∫
X /S tr(F ∧θ). Decomposing the curvature F

of ∇1 into its (2,0) and (1,1) components, we find∫
X /S

tr(F ∧θ) =
∫

X /S
tr(F (2,0) ∧θ)+

∫
X /S

tr(F (1,1) ∧θ)

=
∫

X /S
tr(F (1,1) ∧θ),

for type reasons. For the latter integral, we work locally on S and introduce holomorphic
coordinates s j . By linearity we reduce to the case θ = ϕ⊗d s j , where ϕ is a smooth section
of EndE . Then ∫

X /S
tr(F (1,1) ∧θ) =

(∫
X /S

tr(F (1,1)ϕ)

)
d s j .

The integral on the right is a function on S, and thus it is computed fiber by fiber. On fibers
F (1,1) = 0, since ∇ is flat. Therefore, the integral vanishes. �

The fiberwise flat assumption on ∇ cannot be removed from the above lemma. This can be
seen, for example, by a computation using Proposition 5.14 and (5.9).

Definition 7.2. The compatible connection ∇IC2 on IC2(E) constructed above is called the inter-
section connection attached to, or induced by, ∇.

Likewise, for two relatively flat connections on two line bundles L and M, we define the intersec-
tion connection on 〈L, M〉, as the one obtained by the intersection connection of any compatible
extensions.

Notice that the formation of ∇IC2 satisfies the analogous of §5.2, by Lemma 7.1. In particular it
commutes with base change. For future reference, we write down the following, which is now
immediate.

Proposition 7.3. Suppose that ∇ is the vertical projection of the Chern connection ∇h attached to
a smooth hermitian metric h on E. Then ∇IC2 =∇h,IC2 . �

For completeness, we address the compatibility with the connection on Deligne pairings
found in [57].

Proposition 7.4. Let (L,∇L) and (M ,∇M ) be line bundles with compatible flat relative connec-
tions. Then, the induced intersection connection on IC2(L⊕M) ' 〈L, M〉 agrees with the Freixas–
Wentworth intersection connection on Deligne pairings.

Proof. We compute the intersection connection on IC2(L ⊕ M) using the direct sum of any
compatible extensions of ∇L and ∇M . It is independent of this choice by Lemma 7.1. The Whitney
isomorphism being parallel for direct sums, we need to compare the expression in Definition
5.13 with that of [57, Theorem 3.12 & Definition 3.13]. The expressions are identical, modulo
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that the latter is computed for a specific choice of extensions, the canonical extensions in op. cit.
Since the intersection connection is actually independent of this choice, we conclude. �

7.2. Harmonic and normalized extensions. Assume now that f : X → S admits a sectionσ : S →
X , and that we are given the following data:

• a holomorphic vector bundle E on X of rank r ≥ 1, rigidified along σ;
• a flat relative connection ∇ : E → E ⊗A 1,0

X /S , irreducible on fibers;
• a hermitian metric h on E .

Let ∇̃ : E → E ⊗A 1,0
X be an extension of ∇. We will define notions of harmonicity and normal-

ization for ∇̃. We derive some inspiration from Spinaci’s [108, Section 4], on deformations of
harmonic maps, although we actually do not rely on non-abelian Hodge theory.

7.2.1. Local structure of ∇̃. We begin our considerations by supposing that S is contractible,
and for concreteness we assume it admits complex coordinates. In this case, we can form the
following diagram:

(7.1) Γ=π1(X0, p) æ X̃ ' X̃0∈

p̃

×S //

π̃

((

X = X0∈
p

×S
φ
//

π
  

X

f

��

S ∈
0

σ

cc

Let us explain the various items.

• 0 ∈ S and p =σ(0) ∈ X0 are fixed base points.
• Tildes indicate universal covers with respect to the base points. We fix a lift p̃ ∈ X̃0 of p.
• φ : X := X0×S

∼→ X is a Ehresmann trivialization, such thatσ corresponds to the constant
section p of π. This exists by [61, Theorem 5.8].

• Through the canonical identification X̃ ' X̃0 ×S, the action of π1(X , (p,0)) on X̃ corre-
sponds to the action of π1(X0, p) on the first factor of X̃0 ×S.

• To lighten the presentation, we make no distinction of notation between objects on X
and their pullbacks to X or X̃ .

The complex structure on X is transported to a complex structure on X via φ, so that the
latter is tautologically a biholomorphism and π is holomorphic. Also, the universal cover X̃ is
considered with the complex structure induced from X . We proceed in the same way for E and
its holomorphic structure.

Denote by v = {v j }r
j=1 the rigidification of E along σ, organized in a column vector. It gives rise

to a rigidification of E on X̃ , along the constant section p̃. By means of parallel transport along
fibers, there exists a unique C ∞ trivialization of E on X̃ , which is fiberwise flat and coincides
with v along the constant section p̃. We also organize this trivialization in a column vector u. We
notice that u is holomorphic on fibers.

On X̃ , the connection ∇̃ is expressed in the C ∞-basis u as follows:

(7.2) ∇̃! d +Ξ, Ξ ∈ A1(X̃ ,glr ).
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This means that for any column vector g ∈C ∞(X̃ )⊕r , we have

(7.3) ∇̃(g t u) = d g t u +g t Ξ u.

Because ∇̃ extends ∇, the matrix of forms Ξ vanishes on fibers. Therefore, it takes the form

(7.4) Ξ ∈ glr (C ∞(X̃ ))⊗ π̃∗A1(S).

The matrix of forms Ξ decomposes as Ξ(1,0) +Ξ(0,1) according to A1(S) = A1,0(S)⊕ A0,1(S).
The condition that ∇̃ be compatible is that ∇̃(0,1) = ∂E , and hence this completely determines

Ξ(0,1). Precisely,

(7.5) ∂E u =Ξ(0,1)u, Ξ(0,1) ∈ glr (C ∞(X̃ ))⊗ π̃∗A0,1(S).

7.2.2. Harmonicity and normalization. Let Φ be an endomorphism of E on X̃ . If we choose a
hermitian metric on TX /S , then we can take the formal adjoint ∇∗ with respect to h, fiberwise.
We say that Φ is harmonic with respect to h if we have ∇∗∇Φ = 0 on fibers. Since we are in
relative dimension one, this notion is independent of the choice of hermitian metric on TX /S , but
depends on the complex structure of the fibers. If Φ is already defined on X , then harmonicity
entails ∇Φ= 0, by compactness of the fibers. This means thatΦ is a fiberwise flat endomorphism.
Finally, if we expressΦ in the basis u as a matrixΦ ∈ glr (C ∞(X̃ )), then the harmonicity condition
becomes d∗dΦ=0. This formulation compares to [108, Definition 4.9]; see Proposition 2.5 (4) op.
cit. for the notation.

Now in the setting of §7.2.1, introduce complex coordinates {s j }m
j=1 on S, and expand

Ξ(1,0) =∑
j
Ξ(1,0)

j ⊗ π̃∗d s j , Ξ(1,0)

j ∈ glr (C ∞(X̃ )).

Requiring that all the Ξ(1,0)

j are harmonic with respect to h is independent of the choice of

coordinates. In this situation, we may just say that Ξ(1,0) is harmonic with respect to h. It is
formal to check that this is intrinsic to ∇̃, namely it does not depend on the choice of Ehresmann
trivialization and lift p̃ of p. Over a general base S, we say that ∇̃ is harmonic with respect to
h if, locally over contractible coordinate open subsets of S, the forms Ξ(1,0) defined above are
harmonic with respect to h.

Another condition we introduce is that of normalization. Restricting ∇̃ along the section σ, we
obtain a compatible connection on σ∗E . Using the rigidification, this is seen as a compatible
connection on the trivial bundle O⊕r

S . This is of the form d +ϕ, with ϕ ∈ A1,0(S,glr ). We say that
∇̃ is normalized if tr(ϕ) = 0, that is σ∗∇̃ has trivial determinant. More concretely, in terms of the
connection forms above, the normalization condition amounts to Ξ(p̃, s) = 0.

It is immediate that harmonicity and normalization are preserved under base change.

Proposition 7.5. There is at most one normalized, compatible extension of ∇ which is harmonic
with respect to h.

Proof. We can suppose that S is contractible and admits holomorphic coordinates s j .
Suppose that we are given two harmonic and normalized extensions ∇̃1 and ∇̃2. We take

the difference ϕ := ∇̃1 − ∇̃2 ∈ A0(X ,EndE)⊗ f ∗A1,0(S). Therefore, if ϕ = ∑
j ϕ j ⊗ f ∗d s j , then

ϕ j ∈ A0(X ,EndE). By the normalization condition, we have tr(σ∗ϕ j ) = 0. We will show that the
ϕ j vanish.

We perform the construction (7.1). We express the connections in the flat relative basis u, as
d +Ξ1 and d +Ξ2. By (7.5), we already know that Ξ(0,1)

1 =Ξ(0,1)
2 . The difference Ξ(1,0)

1 −Ξ(1,0)
2 is the
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expression of ϕ in the basis u. The harmonicity condition entails that the ϕ j are fiberwise flat
sections of EndE . From the irreducibility assumption on ∇ it then follows that ϕ j = f j idE , for
some f j ∈C ∞(S). Finally, tr(σ∗ϕ j ) = r f j vanishes, so that ϕ j = 0 as stated. �

7.3. Canonical extensions. The goal of this subsection is a higher rank generalization of [57,
Theorem 1.1 (i)]:

Theorem 7.6. Let f : X → S be a proper submersion of complex manifolds, with one-dimensional
connected fibers, and σ : S → X a given section. Let (E ,h) be a hermitian holomorphic vector
bundle on X , endowed with a rigidification alongσ and a flat relative connection ∇ : E → E⊗A 1,0

X /S .
Assume that ∇ is fiberwise irreducible. Then, there exists a unique normalized extension ∇̃ : E →
E ⊗A 1,0

X of ∇, which is harmonic with respect to h.

Proof. Uniqueness has been settled in Proposition 7.5. Incidentally, this allows us to reduce the
existence part to the case when S is contractible and admits holomorphic coordinates {s j }m

j=1.
In general, we can first reason locally over S, and then the uniqueness property ensures the
necessary gluing.

We perform the construction (7.1), and adopt the notation and conventions in §7.2. Recall in
particular the vertically flat trivialization u of E on X̃ . The fundamental group Γ acts by pullback
functoriality on u, through a representation ρ : Γ→GLr (C ∞(S)): for γ ∈ Γ, we have

(7.6) γ∗u(x, s) = ρ(γ, s)u(x, s), γ ∈ Γ, (x, s) ∈X .

By assumption, ρ is pointwise irreducible.
Let e be a smooth local section of E on X , and pull it back to a section on a Γ-invariant open

subset U ⊆ X̃ . In the basis u, we can write

e = g t u, with g ∈C ∞(U )⊕r column vector.

Because e is Γ-invariant, the action of Γ on g is given by

(7.7) γ∗g = ρ∨(γ)g ,

where ρ∨ is the contragradient representation ρ∨(γ) = ρ(γ−1)t .
As in (7.2)–(7.4), the extension we seek should have an expression ∇̃! d +Ξ in the basis u,

with Ξ ∈ glr (C ∞(X̃ ))⊗ π̃∗A1(S). Taking into account (7.6)–(7.7), we find that for ∇̃ to descend to
X , the connection form Ξ needs to obey the transformation law

(7.8) γ∗Ξ= Ad(ρ)(γ) Ξ+dρ(γ) ρ(γ)−1,

where we write dρ(γ) ρ(γ)−1 instead of π̃∗(dρ(γ) ρ(γ)−1), in order to simplify the notation. Notice
that dρ ρ−1 ∈ Z 1(Γ,Ad(ρ))⊗A1(S) is the cocycle κ in (6.2). We will separately define the (0,1) and
(1,0) parts of Ξ.

As we saw in (7.5), the (0,1) part Ξ(0,1) is already dictated by ∂E u =Ξ(0,1)u. Applying γ∗ to this
equation, we obtain

(7.9) γ∗Ξ(0,1) = Ad(ρ)(γ) Ξ(0,1) +∂ρ(γ) ρ(γ)−1.

Notice that Ξ(0,1)(p̃, s) = 0, since u(p̃, s) is identified with the rigidification, which is holomorphic.
Next, we decompose

(7.10) ∂ρ(γ) ρ(γ)−1 =∑
j
κ′j (γ)d s j .
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Then κ′j ∈ Z 1(Γ,Ad(ρ)) is a smooth family of 1-cocyles parametrized by S. For s ∈ S, we take the

cohomology class [κ′j (s)] ∈ H 1(Γ,Ad(ρ(s))). Consider the period isomorphism of the latter with

H 1
dR

(
Xs , (End(Es),∇)

)
, the de Rham cohomology of End(Es) with respect to the flat connection

induced by ∇. We denote by ω j (s) ∈ A1(Xs ,End(Es)) the harmonic representative of the class
corresponding to [κ′j (s)], taken with respect to ∇ and h. We express ω j (s) in the basis u:

Λ(ω j ) := matrix expression of ω j in the basis u.

Because of the irreducibility assumption on the connection,Λ(ω j ) is a smooth family of matrices
of closed 1-forms on X̃0, parametrized by S. The action of the fundamental group on Λ(ω j ) is
given by

(7.11) γ∗Λ(ω j ) = Ad(ρ)(γ) Λ(ω j ).

The cohomological relationship between κ′j (s) and ω j (s) is expressed as the period equation

(7.12) κ′j (γ) =
∫ γp̃

p̃
Λ(ω j )+ (

Ad(ρ)(γ)−1
)
β j (s),

for β j (s) ∈ slr (C) providing a coboundary term
(
Ad(ρ)−1

)
β j (s) ∈ B 1(Γ,Ad(ρ(s))). By the irre-

ducibility assumption H 0(Γ,Ad0(ρ(s))) = 0, so β j (s) is in fact unique. The index 0 in Ad0 means
the restriction to traceless elements. By Lemma 7.7 below, β j (s) is actually C ∞ in s. We define

(7.13) Ξ(1,0)(x, s) =∑
j

(∫ x

p̃
Λ(ω j )

)
d s j −

∑
j
β j (s)d s j in glr (C ∞(X̃ ))⊗ π̃∗A1,0(S),

where the integral takes place on X̃0 and is well-defined since the Λ(ω j ) are closed. By equations
(7.10)–(7.12), Ξ(1,0) satisfies the transformation law

(7.14) γ∗Ξ(1,0) = Ad(ρ)(γ) Ξ(1,0) +∂ρ(γ) ρ(γ)−1.

To conclude the proof, let Ξ :=Ξ(1,0) +Ξ(0,1). It satisfies (7.8), as we see by adding up (7.9) and
(7.14). Thus, d +Ξ defines a connection ∇̃ : E → E ⊗A 1

X , extending ∇. By construction, it is
compatible with the holomorphic structure of E . It is also harmonic with respect to h, because
Ξ(1,0) is an antiderivative (in the variable x) of

∑
j ω j ∧d s j , and the ω j are harmonic on fibers. It

is normalized too, since Ξ(p̃, s) =Ξ(1,0)(p̃, s) =−∑
j β j (s)d s j , and the β j (s) have been chosen to

have zero trace. �

To complete the proof of Theorem 7.6, we still need to show that the coboundary terms β j (s)
in the period relationship (7.12) are smooth in s ∈ S.

Lemma 7.7. Let T be a manifold and ρ : Γ→GLr (C `(T )) a family of irreducible representations,
for some integer ` ≥ 0. Let c(t) = (Ad(ρ(t))− id)α(t) ∈ B 1(Γ,Ad(ρ(t))) be a coboundary, with
traceless α. If c(t ) is C ` in t ∈ T , then so is α.

Proof. We proceed by induction. We begin with the C 0 case. Choose a hermitian norm ‖ · ‖
on slr (C). Suppose for a contradiction that α is not continuous at some t0. Then there exists
ε> 0 and a sequence of points tn → t0, such that εn := ‖α(tn)−α(t0)‖ ≥ ε. The quotients Mn =
(α(tn)−α(t0))/εn ∈ slr (C) are uniformly bounded, and after possibly restricting to a subsequence,
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we may assume that Mn → M , for some traceless matrix M of norm one. From c = (Ad(ρ)− id)α,
we derive

c(tn)− c(t0)

εn
= (

Ad(ρ(tn))− id
)

Mn + (
Ad(ρ(tn))−Ad(ρ(t0))

) α(t0)

εn
.

The left hand side converges to 0, because c is continuous and εn ≥ ε> 0. On the right hand side,
the first term converges to (Ad(ρ(t0))− id)M , by continuity of ρ. The second term converges to 0,
because ρ is continuous and εn ≥ ε> 0. Passing to the limit, we find M ∈ H 0(Γ,Ad(ρ0(t0)) = 0,
which contradicts ‖M‖ = 1. We conclude that α is continuous.

Next we assume that the C ` regularity has been established for some `≥ 0, and we tackle the
C `+1 case. We first check the existence of directional derivatives at some t0. After introducing
local coordinates around t0, we can suppose that T is a ball in RN centered at t0 = 0. Let
u ∈ RN \ {0} be any direction. Take a sequence of non-zero real numbers εn → 0, with εnu ∈ T .
We claim that the quotients Mn = (α(εnu)−α(0))/εn are uniformly bounded. Otherwise, after
possibly going to a subsequence, we can suppose that ‖Mn‖ → ∞. Restricting to a further
subsequence if necessary, we can also suppose that Qn = Mn/‖Mn‖ converges to a traceless
matrix Q, of norm 1. Proceeding as above, we have the relationship

1

‖Mn‖
c(εnu)− c(0)

εn
= (Ad(ρ(εnu))− id)Qn + Ad(ρ(εnu))−Ad(ρ(0))

εn

α(0)

‖Mn‖
.

Because c is now differentiable and ‖Mn‖→∞, the left hand side converges to 0. The first term
on the right hand side converges to (Ad(ρ(0))−id)Q. The second term converges to 0, because ρ is
differentiable and ‖Mn‖→∞. Therefore (Ad(ρ(0))−id)Q = 0, which entails Q = 0 and contradicts
that Q has norm 1. Thus, the Mn are uniformly bounded. Now we take a subsequence Mnk . By
boundedness, there is a further subsequence Mnk j

which converges to some limit M ∈ slr (C). By

a similar argument as before, we find

Duc(0)− (Duρ(0))α(0) = (Ad(ρ(0))− id)M ,

where Du denotes the directional derivative. By the irreducibility assumption, the solution M
to this equation is uniquely determined by c(0) and α(0), and hence does not depend on the
subsequence. We conclude that the Mn converge to M , and hence Duα(0) exists. Repeating the
same argument for the other points of T , we see that Duα exists everywhere and satisfies the
differential equation

(7.15) Duc(t )− (Duρ(t ))α(t ) = (Ad(ρ(t ))− id)Duα(t ).

The left hand side of this equation is C `. Therefore, by the induction hypothesis, Duα is C ` too.
Since this is true for any direction u, we conclude that α is of class C `+1. �

Definition 7.8. Let the setting be as in Theorem 7.6. The extension ∇̃ is called the canonical
extension of ∇ with respect to h. If we do not need to specify the metric h, we may refer to ∇̃ simply
as a canonical extension of ∇.

Remark 7.9. Several comments on the theorem and its proof are in order.

(1) By the theorem of Corlette–Donaldson [35, 39], the irreducibility assumption guarantees
the existence of a unique harmonic metric on E , which agrees with the standard metric
on O⊕r

S through the rigidification. Letting h be this choice of metric, the corresponding
extension ∇̃ is genuinely canonically attached to ∇.
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(2) Canonical extensions are compatible with base change. This is because harmonicity and
normalization are preserved by base change, and by the characterization of canonical
extensions in terms of these.

(3) In rank one, EndE is trivial and the harmonicity notion does not depend on the choice of
h. Also, the normalization amounts to a rigidification of ∇̃. This means that the restriction
σ∗∇̃ corresponds to the trivial connection through the trivialization σ∗E

∼→OS . This is
consistent with [57, Theorem 1.1 (i)]. The construction of the canonical extension in the
Section 4 of op. cit. guarantees the harmonicity property. Therefore, by the uniqueness
part of Theorem 7.6, both constructions agree. Besides, in [57] the canonical extension
was characterized by a reciprocity law for connections. We do not know of an analogous
description in higher rank.

(4) For connections with SLr monodromies, the normalization condition is automatically
fulfilled.

(5) If the metric h on E is flat on fibers, and ∇ is the vertical projection of the associated
Chern connection ∇ch, it is possible to see that the canonical extension with respect to h
coincides with ∇ch. This can be inferred from the characterization and from Fay’s explicit
computations in the proof of [48, Theorem 4.1] (see in particular equation (4.5) therein).

7.4. Curvature of ∇IC2 . The next objective is the curvature of ∇IC2 . We first place ourselves in
the setting of §7.2–§7.3. Hence, we are given a rigidified, flat irreducible ∇ : E → E ⊗A 1,0

X /S and
a hermitian metric h on E . Since the curvature is a local invariant, we can suppose that S is
contractible and admits complex coordinates. We then have the central fiber X0, the base point
p =σ(0) and the family of irreducible representations ρ : Γ=π1(X0, p) →GLr (C ∞(S)) attached
to ∇, as in the proof of Theorem 7.6. Recall the discussion §6.2.3, where we studied the C ∞
classifying map associated to ρ

ν : S → Mir
B(X0,r ).

The differential dν ∈ H 1(Γ,Ad(ρ))⊗ A1(S) was described as the class of the cocycle κ= dρ ρ−1 ∈
Z 1(Γ,Ad(ρ))⊗ A1(S). We adopted an integration convention for the cup products of such classes,
and we related them to the Atiyah–Bott–Goldman form in Lemma 6.4. In the theorem below, we
denote by det: MB(X0,GLr ) → MB(X0,GL1) the determinant map.

Theorem 7.10. With the notation above, the curvature of ∇IC2 is given by

c1(IC2(E),∇IC2 ) =− 1

8π2

∫
X0

(tr(dν∪dν)− trdν∪ trdν)

=− 1

4π2

(
ν∗ωGLr −ν∗det∗ωGL1

)
.

(7.16)

Consequently, if ∇ is holomorphic, then c1(IC2(E),∇IC2 ) ∈ A2,0(S) and ∇IC2 is a holomorphic
connection.

Proof. For the proof, we interpret ∇IC2 as being induced by a canonical extension ∇̃. By equation
(5.11), the curvature of ∇IC2 is expressed in terms of F∇̃. We thus have to relate the latter to dν.

In the vertically flat basis u, ∇̃ decomposes as d +Ξ, so that for the curvature we find

F∇̃ = dΞ+Ξ∧Ξ.

Notice that, while Ξ is only defined on X̃ , the curvature F∇̃ descends to X . We insert this in
(5.11). Most traces disappear for formal reasons, and since the derivatives in the S-direction do

75



not contribute to the integrals we find that

c1(IC2(E),∇IC2 ) = 1

8π2

(∫
X0

tr(dxΞ∧dxΞ)−
∫

X0

tr(dxΞ)∧ tr(dxΞ)

)
,

where we decomposed d = dx +ds according to the product X̃ = X̃0×S. We thus have to see that
dxΞ represents the class dν.

From the very definition (7.13) of Ξ(1,0), we deduce that dxΞ
(1,0) is cohomologous to ∂ρ ρ−1.

Now for Ξ(0,1). Recall from (7.9) the action of γ ∈ Γ on Ξ(0,1), and that Ξ(0,1)(p̃, s) = 0. Therefore,
applying (7.9) we find∫ γp̃

p̃
dxΞ

(0,1) = γ∗Ξ(0,1)(p̃,•) = Ad(ρ)(γ) Ξ(0,1)(p̃,•)+∂ρ(γ) ρ(γ)−1 = ∂ρ(γ) ρ(γ)−1.

This means that dxΞ
(0,1) is cohomologous to ∂ρ(γ) ρ(γ)−1. We have thus proven that dxΞ repre-

sents dρ ρ−1, that is dν.
To conclude the first part of the proof, it remains to explain the sign in front of the integral

(7.16). This comes from the sign convention in the definition of (6.3)–(6.4), plus the fact that
dxΞ is an actual 2-form and, contrary to dν, the usual anticommutativity rule applies to its
constituent 1-forms.

If ∇ is holomorphic, then ν is holomorphic. Therefore, dν ∈ H 1(Γ,Ad(ρ))⊗A1,0(S). This implies
that c1(IC2(E),∇IC2 ) has type (2,0). Since ∇IC2 is a compatible connection, we infer that it has to
be holomorphic. The proof is complete.

�

Remark 7.11. (1) For connections with SLr monodromies, the second factor in the integral
(7.16) vanishes.

(2) For flat unitary connections, the theorem recovers the well-known curvature formula for
∇IC2 . See Takhtajan–Zograf [119, 122].

(3) In the holomorphic case, a crude form of Theorem 7.10 was obtained by Fay in his study of
non-abelian theta functions. See [48, Theorem 5.7] and [49, Section 1]. The holomorphic
differential forms Ω(σ,τ) and ω(s) therein correspond to local connection forms of ∇IC2 .
Our theorem clarifies the geometric content of his explicit constructions.

The statement about holomorphic connections can be extended to non-irreducible connec-
tions over general parameter spaces.

Corollary 7.12. Let X → S be a family of compact Riemann surfaces over a reduced complex
analytic space. Let (E ,∇) be vector bundle with a flat relative holomorphic connection. Then, for
every desingularization µ : S′ → S, the intersection connection ∇IC2 on S′ associated to the base
change (µ∗E ,µ∗∇) is holomorphic.

Proof. We prove the statement when S itself is a smooth analytic space, the statement for general
reduced analytic spaces can be deduced from this. Holomorphicity being a local statement, we
can suppose that S is contractible and that X → S admits a section σ.

We then consider the statement over the representation space itself. We recall that the irre-
ducible locus Rir

B(X /S,σ,r ) is smooth over S and hence smooth (as in the proof of Proposition 6.2
in the appendix). Let R̃ → RB(X /S,σ,r ) be a desingularization of the representation space which
is an isomorphism over the irreducible locus. The universal vector bundle on RB(X /S,σ,r ), intro-
duced in §6.4.2, pulls-back to R̃ and admits a relative holomorphic connection. The intersection
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connection on IC2 can be computed, over the irreducible locus, using a canonical extension,
in which case we know it is holomorphic by Theorem 7.6. By density of the irreducible locus, it
must be holomorphic on all of R̃.

Given (E ,∇) as in the statement of the corollary, with the additional assumptions in the
beginning of the proof, this amounts to a holomorphic map S → RB(X /S,σ,r ). Denote by
µ : S′ → S a birational map, such that S′ is also smooth and the map S′ → S → RB(X /S,σ,r ) factors
as S′ → R̃ → RB(X /S,σ,r ) for a holomorphic map S′ → R̃. The intersection connection associated
to (µ∗E ,µ∗∇) is the intersection connection of the corresponding family on R̃, whose connection
is holomorphic by the previous argument. By the same token, the intersection connection on
(E ,∇) pulls back to that of (µ∗E ,µ∗∇). A smooth connection which is holomorphic on a dense
open set must be holomorphic everywhere, from which we conclude. �

8. THE COMPLEX CHERN–SIMONS LINE BUNDLE

We introduce complex Chern–Simons line bundles on relative moduli spaces of flat vector
bundles. The construction builds upon the previous developments on intersection bundles
and intersection connections. We establish the main properties and propose a characterization,
which in particular involves a fundamental compatibility with Simpson’s Gauss–Manin connec-
tion, referred to as crystalline property. We study the behaviour of the complex Chern–Simons
line bundles under a change of orientation of the underlying Riemann surfaces. This gives rise to
the notion of complex metric, for which we provide explicit expressions in rank 2.

8.1. Construction and curvature. Throughout this subsection, f : X → S is a smooth proper
morphism of non-singular connected complex algebraic varieties with one-dimensional con-
nected fibers of genus g ≥ 2. For simplicity, we suppose that f admits a section σ : S → X . We
will now make use of the notation and results of Section 6.

Recall the moduli scheme Rir
dR(X /S,σ,r ) of rigidified vector bundles of rank r , equipped with

irreducible flat relative connections. Let E un
dR be the universal vector bundle and ∇un the universal

relative connection. Because S is non-singular, Rir
dR(X /S,σ,r ) is non-singular as well. The results

of §7.1 apply and produce a holomorphic intersection connection ∇IC2 on IC2(E un
dR), which lives

on Rir
dR(X /S,σ,r ). Here we stress the holomorphic nature of ∇IC2 , which is granted by Theorem

7.10. By Proposition 6.6, we know that IC2(E un
dR) descends to the coarse moduli Mir

dR(X /S,r ). The
following lemma shows that the connection descends, too.

Lemma 8.1. The line bundle with holomorphic connection (IC2(E un
dR),∇IC2 ) on Rir

dR(X /S,σ,r )
descends to Mir

dR(X /S,r ). The descended connection is independent of the choice of section σ : S →
X .

Proof. Recall from §6.1.2 that, locally for the étale topology, Mir
dR(X /S,r ) has a universal object,

modulo twisting by a line bundle coming from the base. By Lemma 7.1, the claim amounts
to the following observation. Let E be a holomorphic vector bundle on X with a compatible
connection. Let L be a line bundle on S, endowed also with a compatible connection. Then
the attached intersection connections on IC2(E ⊗ f ∗L) and IC2(E) coincide via the canonical
isomorphism IC2(E ⊗ f ∗L) ' IC2(E ). This is an immediate consequence of Proposition 5.18, and
the fact that the intersection connections on the canonically trivial line bundles 〈detE , f ∗L〉 'OS

and 〈 f ∗L, f ∗L〉 'OS (cf. Proposition 3.2) are the trivial connections, as can be checked from the
explicit expression (5.8). �
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Definition 8.2. The complex Chern–Simons line bundle on Mir
dR(X /S,r ) is the line bundle with

holomorphic connection obtained by descent from (IC2(E un
dR),∇IC2 )∨ on Rir

dR(X /S,σ,r ) (notice the
dual). We denote it (LCS(X /S),∇CS), or more loosely LCS(X /S).

The definition carries over to the case of SLr monodromies, and results in a complex Chern–
Simons line bundle on Mir

dR(X /S,SLr ). One checks that it is the pullback of LCS(X /S) through
the natural map Mir

dR(X /S,SLr ) → Mir
dR(X /S,r ). Therefore, we will employ the same notation for

the complex Chern–Simons line bundle on Mir
dR(X /S,SLr ).

Via the Riemann–Hilbert correspondence, we can transport the complex Chern–Simons line
bundle to the Betti moduli space, and similarly in the SLr case. We will still write (LCS(X /S),∇CS)
or LCS(X /S) for the resulting holomorphic line bundle connection on the Betti space, and
occasionally refer to it as the Betti realization. More generally, the complex Chern–Simons line
bundle on the Betti space can be defined for a complex analytic base S. See in particular §6.4.2
regarding local universal objects. At the end of this section we will provide some complements
on this variant.

Remark 8.3. (1) By Lemma 8.1, the construction of LCS(X /S) is independent of the section
σ. By a simple descent argument, this allows to generalize the definition in the absence
of a section.

(2) The line bundle underlying LCS(X /S) is defined on the whole RdR(X /S,σ,r ) and descends
to MdR(X /S,r ), as we proved in Proposition 6.6. Nevertheless, for the connection to be
defined, we need to restrict to the locus of irreducible representations. It would be
interesting to know whether the connection extends as a singular connection. For a
partial result in this direction, see Corollary 7.12. This problem is related to the type of
singularities of the moduli spaces. In the SLr setting, the singularities are known to be
canonical for high enough genus [7].

The first property of LCS(X /S) we wish to discuss is the base change functoriality.

Proposition 8.4. Let S′ → S be a morphism of non-singular complex algebraic varieties, and
q : Mir

dR(X ′/S′,r ) → Mir
dR(X /S,r ) the natural map. Then there is a canonical isomorphism of line

bundles with connections q∗LCS(X /S) 'LCS(X ′/S′).

Proof. By Proposition 6.11 there is a canonical isomorphism q∗IC2(E un
dR) ' IC2(E un ′

dR ), which in
terms of local universal objects is given as q∗IC2(F un

dR) ' IC2(F un ′
dR ), in turn induced by q∗F un

dR '
F un ′

dR ⊗π′ ∗L. Here π′ : X ′×S′ Mir
dR(X ′/S′,r ) → Mir

dR(X ′/S′,r ) is the natural projection. Reasoning
as in the proof of Lemma 8.1 to get rid of π′ ∗L, and then recalling the independence property
of Lemma 7.1, we infer that the isomorphism q∗IC2(F un

dR) ' IC2(F un ′
dR ) preserves the universal

intersection connections. �

There is an obvious functoriality with respect to isomorphisms X ′ → X of relative curves over
S:

Lemma 8.5. Let g : X ′ → X be an isomorphism of relative curves over S. Let g̃ : Mir
dR(X ′/S,r ) '

Mir
dR(X /S,r ) be the induced natural isomorphism. Then, there is a canonical isomorphism

g̃∗LCS(X /S) 'LCS(X ′/S).

Proof. Inspecting the construction of the complex Chern–Simons line bundles, this reduces to
Lemma 5.19 and Lemma 7.1. The details are left to the reader. �
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8.1.1. Curvature of LCS(X /S). To state the curvature theorem for LCS(X /S), we will next argue
in the Betti realization. Since the curvature is a local invariant, it is enough to describe it after
restricting to a simply connected open subset S◦ ⊆ S. Fix a base point 0 ∈ S◦. Recall from §6.2.2
that MB(X /S,r ) is a local system of complex analytic spaces, so there is a natural isomorphism
Mir

B(X /S,r )|S◦ ' Mir
B(X0,r )×S◦ over S◦, and a resulting holomorphic retraction to the fiber at 0:

p0 : Mir
B(X /S,r )|S◦ → Mir

B(X0,r ).

Theorem 8.6. Let the notation be as above. Then:

(1) The first Chern form of the complex Chern–Simons line bundle on Mir
B(X0,r ) is

(8.1) c1(LCS(X0),∇CS) = 1

4π2

(
ωGLr −det∗(ωGL1 )

)
.

(2) The first Chern form of the complex Chern–Simons line bundle on Mir
B(X0,SLr ) is

(8.2) c1(LCS(X0),∇CS) = 1

4π2
ωSLr .

(3) In general, the first Chern form of (LCS(X /S),∇CS) is crystalline. That is, it satisfies

(8.3) c1(LCS(X /S),∇CS)|S◦ = p∗
0 c1(LCS(X0),∇CS).

Proof. The first and second formulas are a direct application of Theorem 7.10. For the third one,
because both sides of the identity are holomorphic differential forms, it is enough to check the
claim over a non-empty open neighborhood of 0 contained in S◦. Therefore, we can reduce to
the case when S◦ is contractible and admits holomorphic coordinates. Then we are in position to
apply Theorem 7.10, from which one concludes the desired equality by a simple inspection. �

Remark 8.7. While Mir
B(X0,r ) depends on X0 only as a topological surface, the curvature of

LCS(X0) depends on the orientation of X0. A change of the orientation would change the sign of
the curvature. See §6.2.3.

Corollary 8.8. Except possibly for g = r = 2, the complex Chern–Simons line bundle on Mir
B(X /S,SLr )

is crystalline. That is, if (S◦,0) is a simply connected open subset of S with a base point, and
p0 : Mir

B(X /S,SLr )|S◦ → Mir
B(X0,SLr ) is the retraction to the fiber at 0, then there exists a unique

holomorphic isomorphism of flat vector bundles

(LCS(X /S),∇CS)|S◦
∼−→ p∗

0 (LCS(X0),∇CS)

restricting to the identity on Mir
B(X0,SLr ).

Proof. First, the complement of Mir
B(X0,SLr ) in MB(X0,SLr ) has codimension ≥ 2, by [106, Propo-

sition 11.3]. Although this reference is stated forGLr monodromies, the argument can be adapted
to SLr monodromies. By [26, Theorem B], the space MB(X0,SLr ) is simply connected. We infer
that Mir

B(X0,SLr ) is simply connected too, and consequently so is Mir
B(X /S,SLr )|S◦ . Second, by

Theorem 8.6, (LCS(X /S),∇CS)|S◦ and p∗
0 (LCS(X0),∇CS) have the same curvature. Moreover, by

Proposition 8.4, (LCS(X /S),∇CS)|S◦ restricts to (LCS(X0),∇CS) on Mir
B(X0,SLr ). Therefore, by paral-

lel transport there exists a unique extension of the identity automorphism of (LCS(X0),∇CS) into
a horizontal isomorphism LCS(X /S) ' p∗

0 LCS(X0), necessarily holomorphic, as stated. �
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8.2. Characterization. The setting and notation of the previous subsection are still in force. We
proceed to characterize LCS(X /S) by an extension property from the moduli space of stable
vector bundles.

Recall the moduli space Rµ(X /S,σ,r ) of rigidified stable vector bundles of rank r and degree
0. By the theorem of Narasimhan–Seshadri [99, Theorem 2], the universal vector bundle E un

carries a natural fiberwise flat Chern connection, whence an induced intersection connection
∇IC2 on IC2(E un). This intersection connection is itself a Chern connection, by Proposition 7.3.
Arguing as in Lemma 8.1, it descends to the coarse moduli space Mµ(X /S,r ), and the result is
independent of the choice of section. It will be useful to give it a name and a specific notation.

Definition 8.9. The unitary Chern–Simons line bundle on Mµ(X /S,r ) is the line bundle with
compatible connection obtained by descent from (IC2(E un),∇IC2 )∨ on Rµ(X /S,σ,r ) (notice the
dual). We denote it as (LCSU(X /S),∇CSU), or more loosely LCSU(X /S).

There is an analogous construction in the trivial determinant case, which agrees with the
pullback of LCSU(X /S) by the natural morphism Mµ(X /S,SLr ) → Mµ(X /S,r ). Therefore, we still
denote it by LCSU(X /S). Let us mention that the latter is a relative variant of the Ramadas–Singer–
Weitsman line bundle [102, Theorems 1 & 2], although this will not be needed.

The theorem of Narasimhan–Seshadri [99, Theorem 2] can be recast as a closed immersion
of C ∞ manifolds Mµ(X /S,r ) ,→ Mµ

dR(X /S,r ), a section of the forgetful map π : Mµ

dR(X /S,r ) →
Mµ(X /S,r ). This is a totally real embedding, as it stems from the interpretation as character
varieties. The corresponding fact also holds in the trivial determinant case. Next, recall the open
inclusion Mµ

dR(X /S,r ) ⊂ Mir
dR(X /S,r ). This allows us to consider Mµ(X /S,r ) ⊆ Mir

dR(X /S,r ).

Theorem 8.10. The complex Chern–Simons line bundle LCS(X /S) on Mir
dR(X /S,r ) is a holomor-

phic extension of LCSU(X /S) on Mµ(X /S,r ). Except possibly for g = r = 2, on Mir
dR(X /S,SLr ) it is

the unique extension with the additional property of being crystalline, up to unique isomorphism.

Proof. Let us first see that LCS(X /S) indeed extends LCSU(X /S). For this, we can argue at the level
of representations spaces and universal IC2 bundles, with their natural intersection connections.
Denote the forgetful map π : Rµ

dR(X /S,σ,r ) → Rµ(X /S,σ,r ). The universal vector bundle E un

pulls-back to the universal vector bundle E un
dR. Therefore, by the compatibility of IC2 with base

change, we have IC2(E un
dR) =π∗IC2(E un).

Denote by ∇ch the Chern connection on E un. Pulling it back byπ, we obtain a Chern connection
on E un

dR, still written as ∇ch. Let ∇̃ be a compatible extension of ∇un. By the construction of
intersection connections, we reduce to show that the Chern–Simons integral I T (∇ch,∇̃) restricts
to 0 on Rµ(X /S,σ,r ), for π∗(IC2(E un),∇IC2 ) trivially restricts to (IC2(E un),∇IC2 ).

Write ∇̃ = ∇ch +θ, with θ a (1,0)-form with values in EndE un
dR. Proposition 5.7 provides an

expression for I T (∇ch,∇ch + θ). We will work out the several terms in that expression, and
see that they individually vanish when restricted to Rµ(X /S,σ,r ). For this purpose, the key
observation is that the restrictions of ∇̃ and ∇ch to fibers over Rµ(X /S,σ,r ) coincide. Therefore,
along Rµ(X /S,σ,r ) the form θ becomes a section of EndE un ⊗ g∗A 1

Rµ(X /S,σ,r ), where g : X ×S

Rµ(X /S,σ,r ) → Rµ(X /S,σ,r ) is the universal curve. Together with the fact that F ch vanishes on
fibers, we infer that∫

X /Rµ

dR
(X /S,σ,r )

tr(F ch ∧θ) vanishes along Rµ(X /S,σ,r ),
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where X = X ×S Rµ

dR(X /S,σ,r ). For type reasons, the next term provided by Proposition 5.7 can
be rewritten as ∫

X /Rµ

dR
(X /S,σ,r )

tr(θ∧∂θ) =
∫
X /Rµ

dR
(X /S,σ,r )

tr(θ∧∇chθ).

With the latter presentation, it is easier to understand the restriction of the integral to Rµ(X /S,σ,r ),
since contrary to ∂, the action of ∇ch commutes with the restriction operation. We use again that
the restriction of θ becomes a smooth section of EndE un⊗g∗A 1

Rµ(X /S,σ,r ). Since the fiber integral
reduces the degree of differential forms by 2, we necessarily have that∫

X /Rµ

dR
(X /S,σ,r )

tr(θ∧∇chθ) vanishes along Rµ(X /S,σ,r ).

The rest of the terms in Proposition 5.7 are treated in the same way.
For the second part of the theorem, we first need to review a couple of facts. The first one is

that the complement of Mµ

dR(X /S,SLr ) in Mir
dR(X /S,SLr ) has codimension ≥ 2. If S is reduced to

a point, the analogous question for Higgs bundles has been treated by Hitchin [75, pp. 371–373],
and his method adapts to flat vector bundles. The general case is deduced from the stated
property on fibers, since Mir

dR(X /S,SLr ) and S are integral. The second fact we will need is that
if S◦ ⊆ S is a contractible open subset, then Mµ(X /S,SLr )|S◦ and Mµ

dR(X /S,SLr )|S◦ are simply
connected. For Mµ

dR(X /S,SLr )|S◦ , we use that it has codimension ≥ 2 in Mir
dR(X /S,SLr )|S◦ , which

we already know to be simply connected (proof of Corollary 8.8). Next for Mµ(X /S,SLr )|S◦ . Given
0 ∈ S◦, the space Mµ(X /S,SLr )|S◦ is C ∞ isomorphic to Mµ(X0,SLr )× S◦, as follows from the
existence of Ehresmann trivializations and the interpretation as a character variety provided by
the theorem of Narasimhan–Seshadri.10 Except for g = r = 2, the complement of Mµ(X0,SLr ) in
M(X0,SLr ) has complex codimension ≥ 2, because M(X0,SLr ) is normal and the stable locus is
exactly the smooth locus. See [98, Theorem 1] for a proof of this fact for semistable vector bundles
of degree 0; the trivial determinant case is similar. Finally, M(X0,SLr ) is simply connected by [26,
Theorem B], hence so do Mµ(X0,SLr ) and Mµ(X /S,SLr )|S◦ 'C ∞ Mµ(X0,SLr )×S◦.

Now for the proof of uniqueness. Let (L1,∇1) and (L2,∇2) be two holomorphic and crys-
talline extensions of (LCSU(X /S),∇CSU). We are thus given isomorphisms of C ∞ line bundles
with connections: ϕ j : (L j ,∇ j )|Mµ(X /S,SLr ) ' (LCSU(X /S),∇CSU), j = 1,2. Consider the product
L =L1 ⊗L ∨

2 with the holomorphic connection ∇ induced by ∇1 and ∇2. The isomorphisms
ϕ j induce a C ∞ trivialization of (L ,∇) along Mµ(X /S,SLr ), denoted by ϕ. We will show that ϕ
has an extension to a trivialization of (L ,∇). Notice that such an extension will automatically
be holomorphic, and then necessarily unique: use the holomorphicity and that the embed-
ding Mµ(X /S,SLr ) ,→ Mµ

dR(X /S,SLr ) is totally real on fibers, plus the density of Mµ

dR(X /S,SLr ) in
Mir

dR(X /S,SLr ). Let F∇ be the curvature of ∇, which is a holomorphic 2-form. Let us see that
it vanishes. This can be checked locally with respect to S, so that we can localize over a con-
tractible open subset S◦. Because L is crystalline by assumption, the curvature of ∇ restricted
to S◦ is completely determined by the restriction to a fiber, say Mir

dR(X0,SLr ) for 0 ∈ S◦. And in
turn, this is determined by further restricting to the dense open subset Mµ

dR(X0,SLr ). But F∇
restricts to 0 on the totally real submanifold Mµ(X0,SLr ) ⊂ Mµ

dR(X0,SLr ). Therefore, because it is
holomorphic, F∇ necessarily vanishes on Mµ

dR(X0,SLr ), as required. To sum up, we have shown
that ∇ is flat. To extend the trivialization ϕ, it is again enough to argue over contractible open

10One can also go through Higgs bundles, and proceed as in Simpson’s [106, Lemma 7.17–7.18], for stable bundles
are stable Higgs bundles with trivial Higgs field, and correspond to unitary representations.
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subsets S◦ ⊆ S. Indeed, such local extensions will necessarily be holomorphic and unique, and
hence they will glue into a global extension. We saw that Mµ

dR(X /S,SLr )|S◦ is simply connected.
Therefore, by parallel transport, the trivialization ϕ on Mµ(X /S,SLr )|S◦ extends to a trivialization
of (L ,∇) on Mµ

dR(X /S,SLr )|S◦ . This further extends to Mir
dR(X /S,SLr )|S◦ , because the complement

of Mµ

dR(X /S,SLr )|S◦ has codimension ≥ 2. This concludes the proof. �

Since we have just been dealing with moduli of stable vector bundles, we take the occasion to
state one more property of LCS(X /S).

Proposition 8.11. The restriction of (LCS(X /S),∇CS) to the fibers of Mµ

dR(X /S,r ) → Mµ(X /S,r ) is
trivial.

Proof. The statement can be reformulated as follows. Let X be a compact Riemann surface,
and E a stable vector bundle of degree 0 on it. It has a flat Chern connection ∇ch. Introduce
the affine variety S given by H 0(X ,EndE ⊗Ω1

X ). For concreteness, we take a basis of the latter
θ1, . . . ,θn , and the associated holomorphic coordinates s1, . . . , sn on S. We form the product
X = X ×S, with projections p1, p2. Then (p∗

1 E , p∗
1∇ch) is a holomorphic vector bundle with flat

Chern connection on X . Let ϑ=∑
j s jθ j be the universal holomorphic differential form on X

with values in End p∗
1 E . Finally, set ∇̃ = p∗

1 E +ϑ, which is a holomorphic connection on p∗
1 E . If

∇IC2 is the associated intersection connection on IC2(p∗
1 E), we must show that this defines a

trivial line bundle with trivial connection.
The line bundle IC2(p∗

1 E ) is indeed trivial: by base change functoriality, IC2(p∗
1 E ) is the trivial

line bundle on S with fiber the complex line IC2(E). Similarly, the intersection connection
attached to the Chern connection ∇ch,IC2 is the trivial connection. We are thus led to prove that
I T (p∗

1∇ch, p∗
1∇ch +ϑ) vanishes. For this, we invoke the explicit formula of Proposition 5.7. The

vanishing of I T is then automatic, since the curvature of p∗
1∇ch is F ch = 0 and ∂ϑ= 0. �

Remark 8.12. As an addendum to Remark 7.11 (3), a variant of Proposition 8.11 in the language
of Szegö kernels was observed by Fay in [49, p. 176], after equation (5)′ in loc. cit.

8.3. Complex metrics.

8.3.1. General theory. Let X0 be a compact Riemann surface, with a point p ∈ X0. We denote by
X 0 the complex conjugate Riemann surface, obtained by changing the almost complex structure
from I to −I . The underlying differentiable surfaces are thus the same, hence so are their
fundamental groups based at p. We write Γ= π1(X0, p). Using the notation of §6.2.2 we have
identified M(Γ,r ) = MB(X0,r ) = MB(X 0,r ) with the space of irreducible representations Mir(Γ,r ).
We similarly have the spaces M(Γ,SLr ) and Mir(Γ,SLr ).

Consider the complex Chern–Simons line bundles LCS(X0) and LCS(X 0) in their Betti realiza-
tions, hence living on Mir(Γ,r ). The underlying line bundles are actually defined on the whole
of M(Γ,r ). Our goal is to canonically trivialize LCS(X0)⊗OM(Γ,r ) LCS(X 0) as a holomorphic line
bundle, in such a way that on Mir(Γ,r ) the trivialization is horizontal for the tensor product
connection.

We need some preparation. We begin with the space Rµ(X0, p,r ). The universal vector bundle
E un carries a smooth hermitian metric, fiberwise flat, for which the rigidification is orthonormal.
We already know that IC2(E un) and the intersection connection descend to Mµ(X0,r ). We need a
bit more:
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Lemma 8.13. The smooth hermitian metric on IC2(E un) descends to Mµ(X0,r ), and it does not
depend on the choice of base point p ∈ X0.

Proof. This can all be reframed as the rigidification independence of the metric on IC2. Let E
be a stable vector bundle of degree 0 on X0, and e and e′ two bases of Ep . Denote by h1 and
h2 the associated flat hermitian metrics, for which e and e′ are orthonormal, respectively. We
must show that the induced metrics on IC2(E) coincide. To see this, we may place ourselves in
the universal setting. Namely, let S be the complex variety of bases of Ep . We form the product
X = X0 ×S, with projections p1 and p2. On the vector bundle E = p∗

1 E , which is rigidified along
the constant section p, there is a universal hermitian metric, fiberwise flat. If ∇ is its Chern
connection, and ∇IC2 the associated intersection connection on IC2(E ), we have to see that ∇IC2

is trivial. For this to make sense, as in the proof of Proposition 8.11, we first notice that IC2(E ) is
the trivial line bundle with fiber IC2(E) on S.

Fix an auxiliary flat Chern connection ∇0 on E , and equip E with the pullback connection,
still denoted by ∇0. Write ∇=∇0 +θ, where θ is a differential form of type (1,0) with values in
the endomorphism bundle. The flat Chern connection on E is independent of the rigidification,
and this means that the vertical projection of θ vanishes. That is, θ is a smooth section of
EndE ⊗p∗

2 A 1,0
S . Now we apply Proposition 5.7, and we see that I T (∇0,∇0 +θ) = 0. Indeed, on

the one hand the curvature of ∇0 vanishes. On the other hand, for type reasons, the integral∫
X /S

tr(θ∧∂θ) = 0,

and similarly with the other terms in Proposition 5.7. As a result, the intersection connection
attached to ∇ on IC2(E ) is the same as the intersection connection attached to ∇0. The latter is
trivial, since ∇0 was a pullback from X and intersection connections are compatible with base
change. This concludes the proof. �

Let us take up the digression towards our goal. Recall the unitary counterpart of the Chern–
Simons line bundle, LCSU(X0) on Mµ(X0,r ) (Definition 8.9). By Lemma 8.13, it carries a smooth
hermitian metric whose Chern connection is then ∇CSU. Similarly, we consider LCSU(X 0) on
Mµ(X 0,r ), endowed with its natural metric and Chern connection. By the Narasimhan–Seshadri
theorem, the varieties Mµ(X0,r ) and Mµ(X 0,r ) are both naturally C ∞ isomorphic to the space of
conjugacy classes of irreducible unitary representations of Γ, Mir(Γ,Ur ). Actually, they are com-
plex conjugate, as can be easily inferred from the explicit description of the complex structure in
[48, Theorem 4.1]. In particular, LCSU(X0) and LCSU(X 0) live on the same C ∞ manifold.

Lemma 8.14. As C ∞ line bundles, LCSU(X0) and LCSU(X 0) are complex conjugate and isometric.

Proof. The proof rests on the following observations. First, consider a locally defined universal
object F un on Mµ(X0,r ). Then, in terms of the complex conjugate F

un
, we see that F

un ∨
is a

local universal object on Mµ(X 0,r ). Second, we have the isomorphism IC2(F un) = IC2(F un ∨)
of Proposition 3.16, which is an isometry by Proposition 4.4. Finally, expressing the universal
IC2 bundles in terms of the determinant of the cohomology (3.35), we see that indeed there is a
natural isomorphism

IC2(F un) = IC2(F un ∨) ' IC2(F
un ∨

).

�
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After the lemma, the hermitian metric on LCSU(X0) can be interpreted as providing a C ∞

trivialization of LCSU(X0)⊗LCSU(X 0) on Mir(Γ,Ur ). By definition, this trivialization is horizontal
for the tensor product of the built-in Chern connections. We will refer to the trivialization of
LCSU(X0)⊗LCSU(X 0) simply as the hermitian metric on LCSU(X0).

Theorem 8.15. Except possibly for g = r = 2, the hermitian metric on LCSU(X0) uniquely extends
to a holomorphic trivialization of LCS(X0)⊗OM(Γ,r ) LCS(X 0). On Mir(Γ,r ), the trivialization is
horizontal for the tensor product of the complex Chern–Simons connections.

Proof. During the proof, we will write L =LCS(X0)⊗OM(Γ,r ) LCS(X 0) and ∇ for its (holomorphic)
connection on Mir(Γ,r ).

If such a holomorphic extension exists, then it is necessarily unique, because Mir(Γ,Ur ) ⊂
Mir(Γ,r ) is totally real, and Mir(Γ,r ) is dense in M(Γ,r ).

We remark that it suffices to establish the extension property from Mir(Γ,Ur ) to Mir(Γ,r ), since
L is a holomorphic line bundle on the whole M(Γ,r ), and the latter is a normal complex analytic
space, with codim(M(Γ,r ) \ Mir(Γ,r )) ≥ 2 by [106, Proposition 11.3].

Let us address the extension property. First, we restrict to the setting of Mir(Γ,SUr ) ⊂ Mir(Γ,SLr ).
For the first Chern form of (L ,∇), we have

c1(L ,∇) = c1(LCS(X0),∇CS)+ c1(LCS(X 0),∇CS) = 0,

by Theorem 8.6 (2) and because X0 and X 0 have opposite orientations. See Remark 8.7. This
means that (L ,∇) is flat on Mir(Γ,SLr ). By Theorem 8.10, we know that (L ,∇) extends the
C ∞ bundle with connection LCSU(X0)⊗LCSU(X 0) on Mir(Γ,SUr ). The hermitian metric, seen
as a trivialization, is horizontal for the connection on LCSU(X0)⊗LCSU(X 0). From the simple
connectivity of Mir(Γ,SLr ), via parallel transport by ∇ we can extend the hermitian metric to a
horizontal holomorphic trivialization.

For GLr monodromies, simple connectivity is no longer available. But we can reduce to the
case of SLr monodromies and Deligne pairings of flat line bundles, treated in [56]. We provide
the main lines of the argument and leave the details to the reader. If E is a vector bundle of rank
r on X0, and L is an r -th root of detE , then by Proposition 3.13 we have a canonical functorial
isomorphism

(8.4) IC2(E) = IC2(E ⊗L−1 ⊗L) ' IC2(E ⊗L−1)⊗〈L,L〉(r
2).

If E is endowed with a flat hermitian metric, so is L and all the terms carry naturally induced
metrics. The isomorphism is an isometry by Proposition 4.3. A change of L by an r -torsion line
bundle leaves both sides invariant by construction, including with metrics.

A universal version of (8.4) can be realized on moduli spaces. Precisely, consider a Cartesian
diagram

M̃ir(Γ,r )

��

// M(Γ,1)

[r ]
��

Mir(Γ,r )
det
// M(Γ,1),

where [r ] is the r -power map, which is finite and étale, with Galois group Jac(X0)[r ]. A universal
version of (8.4) exists on M̃ir(Γ,r ). The piece corresponding to IC2(E ⊗L−1) comes from a moduli
space Mir(Γ,SLr ). The piece corresponding to 〈L,L〉 comes from M(Γ,1). The universal version
of (8.4) is compatible with the natural intersection connections. The holomorphic extension of
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the metric for the term of the form IC2(E ⊗L−1) has been treated above. For Deligne pairings
of flat line bundles, this was addressed by Freixas–Wentworth [56, Corollary 4.7 & §4.4.2]. The
conclusion is that on M̃ir(Γ,r ) there is a holomorphic extension of the metric on LCSU(X0). To
show that it descends to Mir(Γ,r ), we need to justify that it is invariant under the action of
Jac(X0)[r ] on M̃ir(Γ,r ). But we already saw that this is the case for the hermitian metrics. By
uniqueness of the holomorphic extension, the invariance holds for the latter too. �

Definition 8.16. The holomorphic trivialization provided by Theorem 8.15 is called the complex
metric of LCS(X0)⊗OM(Γ,r ) LCS(X 0), or simply LCS(X0).

Remark 8.17. (1) For Deligne pairings of flat line bundles, the holomorphic extension of
the metric of [56] was obtained by an explicit construction, in terms of the symbols
defining the Deligne pairings. This seems unavoidable, since M(Γ,1) ' (C×)2g is not
simply connected.

(2) We do not have a good understanding of the complex metric restricted to the boundary
M(Γ,r ) \ Mir(Γ,r ). It is natural to expect a relationship with the complex metrics of the
Chern–Simons line bundles of the moduli spaces of lower rank bundles stratifying the
boundary.

(3) The complex Chern–Simons line bundles and the complex metric can be pulled back to
R(Γ,r ).

8.3.2. Example: explicit formulas in rank 2. We wish to describe the complex metrics of Theorem
8.15 explicitly. For concreteness, we restrict to vector bundles of rank 2. The discussion is further
simplified by arguing on the level of representation spaces, rather than the coarse moduli. Finally,
since the case of Deligne pairings was treated in [56], as in §4.2.3 we may tensor our vector
bundles by a sufficiently positive hermitian line bundle, in order to achieve global generation.
We notice that op. cit. provides explicit formulas for Deligne pairings of flat rigidified line bundles
with non-necessarily flat, hermitian line bundles.

Let X0 = Γ\H be a compact Riemann surface of genus g ≥ 2, where Γ⊂PSL2(R) is a torsion-free
Fuchsian subgroup andH is the upper half-plane. On X0 we fix the hyperbolic metric of curvature
−1. Hence, if τ = x + i y is the variable on H, then the Riemannian tensor is |dτ|2/(Imτ)2 =
(d x2 +d y2)/y2. This induces a hermitian metric on the canonical sheaf ωX0 . We realize X 0 as
Γ\H, whereH is the lower half-plane, and endow ωX 0

with the dual of the hyperbolic metric too.
Given a representation ρ : Γ→ GL2(C), we will denote by Eρ the corresponding flat vector

bundle on X0, and E c
ρ the flat vector bundle associated to ρ∨ on X 0. Thus, these are fibers of

universal vector bundles E and E c . Concretely, Eρ is obtained as H×ΓC2, where Γ acts on C2

through ρ. Similarly E c
ρ is given byH×ΓC2, with Γ acting through ρ∨ on C2.

Let ρ0 ∈ Rir(Γ,U(2)) be a unitary, irreducible representation. Then Eρ0 and E c
ρ0

are mutually
conjugate, stable vector bundles of degree 0. Since stability is an open condition, there exists an
open neighborhood U of ρ0 in Rir(Γ,2) such that, for ρ ∈U , both Eρ and E c

ρ are stable. Notice
that, in general, E c

ρ is not complex conjugate to Eρ.

By [103, Lemme 20], for ρ ∈U , the vector bundles Eρ⊗ω2
X0

and E c
ρ⊗ω2

X 0
are globally generated,

with vanishing H 1. Possibly shrinking U , we can suppose that there exists a global section s = s(ρ)
of Eρ, depending holomorphically on ρ, such that E /sOX0×U is a line bundle. We can as well
suppose that there exists a section t of E c

ρ with the corresponding property. We may arrange so

that t (ρ0) = s(ρ0) are conjugate. In particular, we are in the setting of §4.2.3. We form the induced
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section 〈s〉⊗〈t〉 of IC2(Eρ⊗ω2
X0

)⊗ IC2(E c
ρ ⊗ω2

X0
). At unitary ρ ∈U , Proposition 4.8 describes the

logarithm of the norm of 〈s〉⊗ 〈t〉. Further restricting U if necessary, we shall extend this to a
holomorphic function on U .

Pulling back toH, we can interpret s as a holomorphic quadratic differential with multiplier ρ.
This is given as a vector ( f1, f2)t ⊗dτ2, holomorphic in τ ∈H and ρ ∈U , with

f (γτ,ρ)γ′(τ)2 = ρ(γ) f (τ,ρ), f =
(

f1

f2

)
.

Similarly, we can interpret t as a vector (g1, g2)t ⊗dτ2, where the gi are holomorphic in τ ∈H and
ρ ∈U .

We introduce
〈〈s, t〉〉 = (

f1(τ,ρ)g1(τ,ρ)+ f2(τ,ρ)g2(τ,ρ)
)

y4.

It is readily checked that this expression is Γ-invariant. It is manifestly C ∞ on X0 ×U , and holo-
morphic in ρ. At ρ = ρ0, it coincides with the pointwise squared norm of s(ρ0) on X0, which is
strictly positive. Then, possibly shrinking U around ρ0, we can suppose that Re〈〈s, t〉〉 > 0
on X0 × U . For this, it is enough to observe that, since X0 is compact, the function ρ 7→
infq∈X0 Re〈〈s, t〉〉(q,ρ) is continuous. Therefore, considering the principal branch of the log-
arithm, the expression log〈〈s, t〉〉 is defined on X0 ×U , and is holomorphic in ρ. Since we seek an
extension of equation (4.12) in Proposition 4.8, we define

(8.5) LOG(〈s〉⊗〈t〉) = 2−2g +
∫

X0

log〈〈s, t〉〉d x ∧d y

2πy2
− 1

π

∫
X0

∂

∂τ
log〈〈s, t〉〉 ∂

∂τ
log〈〈s, t〉〉d x ∧d y.

This is a holomorphic function on U , whose exponential describes the complex metric of
IC2(Eρ⊗ω2

X0
)⊗ IC2(E c

ρ ⊗ω2
X 0

) on U .

Remark 8.18. Variants of the construction above were already envisioned by Fay. See for instance
[48, Theorem 5.7 & Remark 1, p.105]. This method can only produce valid expressions in a
neighborhood of unitary irreducible representations. The non-trivial content of Theorem 8.15 is
the existence of an analytical continuation to the whole of R(Γ,r ). The key ingredient is the flat
holomorphic connection provided by our complex Chern–Simons theory.

8.4. Complements in the complex analytic setting.

8.4.1. Complex Chern–Simons for GLr and SLr . In the foregoing theory of complex Chern–
Simons line bundles, we restricted to the algebraic category. The reason is that in the literature,
RdR(X /S,σ,r ), R(X /S,σ,r ), etc. have been properly developed in this generality only. Neverthe-
less, it was already remarked that the Betti realization of the complex Chern–Simons bundle
carries over to the complex analytic setting. The functoriality, curvature and crystalline proper-
ties carry over too, formally untouched. We do not discuss the analogue of the characterization
in §8.2, since we have not elaborated on relative moduli spaces of stable vector bundles in the
analytic category. The complex Chern–Simons line bundle in the complex analytic setting will
be still denoted by LCS(X /S).

8.4.2. Complex Chern–Simons for PSLr . On the relative moduli space Mir
B(X /S,PSLr ) discussed

in §6.4, there is also a counterpart of the complex Chern–Simons line bundle, obtained by
the same method as for LCS(X /S), but departing from the universal endomorphism bundle
with connection (U ,∇un). In applications, we will focus on the locus of liftable representations

86



Mir
B(X /S,PSLr )`. In this case, the complex Chern–Simons line bundle can be obtained by descent

from LCS(X /S)2r on Mir
B(X /S,SLr ). We proceed to prove this fact.

Proposition 8.19. The universal intersection bundle with connection (IC2(E un
B ),∇IC2 )⊗(2r ) on

Mir
B(X /S,SLr ) descends to Mir

B(X /S,PSLr ), and the descended object is canonically isomorphic to
(IC2(U ),∇IC2 ).

Proof. We first address the descent of the line bundle IC2(E un
B )2r , and we will incorporate the

connection datum afterwards.
The statement is local with respect to S. Possibly localizing, we may suppose that S is con-

tractible and Stein. After base changing to a suitable open subset S′ ⊂ Mir
B(X /S,PSLr )`, we reduce

to the discussion below, where we put f ′ : X ′ = X ×S S′ → S′.
Let E be a rank r vector bundle on X ′, with trivial determinant on fibers. By Corollary 3.17,

there is a canonical, functorial isomorphism

IC2(EndE) = IC2(E ⊗E∨) ' IC2(E)2r ⊗〈detE ,detE〉1−r .

Since detE is trivial on fibers, there is a canonical isomorphism detE ' f ∗ f∗ detE , and then by
(3′)(c) of Proposition 3.2, the Deligne pairing 〈detE ,detE〉 is canonically trivial.

Now introduce L a line bundle on X ′, fiberwise of degree 0. We form the diagram

(8.6) IC2(E ⊗E∨)
α

//

��

IC2(E)2r

��

IC2((E ⊗L)⊗ (E ⊗L)∨) // IC2(E ⊗L)2r ⊗〈det(E ⊗L),det(E ⊗L)〉1−r

where the horizontal arrows are defined as above by applying Proposition 3.15 and Proposition
3.16, and the rightmost arrow is obtained by developing the products according to Proposition
3.13 and comparing the two expressions. We claim the diagram commutes. To prove this, denote
the automorphism obtained by going around (8.6) by αL . By functoriality, αL ∈O×

S′ only depends
on the isomorphism class of L. Moreover, if M is a line bundle on S′, then αL⊗ f ′∗M =αL . This is a
local statement, and we can assume that M is trivial, in which case it is obvious. This argument
can be done for any base change of X ′ → S′ along any morphism S′′ → S′, and implies that
L 7→αL is an invertible holomorphic function on Jac(X ′/S′). Since Jac(X ′/S′) → S′ is proper and
smooth the invertible functions are constant along fibers. To find αL we evaluate at L being the
trivial bundle, and find that αL = 1, i.e. the diagram commutes.

We specialize to the case of L being r -torsion. Consider the natural diagram of isomorphisms

〈det(E ⊗L),det(E ⊗L)〉 //

��

〈(detE)⊗Lr , (detE)⊗Lr 〉

��

OS′ 〈detE ,detE〉⊗〈detE ,Lr 〉2 ⊗〈Lr ,Lr 〉oo

where the left vertical arrow is obtained by developing det(E ⊗L) ' (detE)⊗L⊗r and then using
the trivializations related to that of the first step and Lr 'OS′ . We recognize that the top left term
is the additional term in (8.6) in the comparison between between IC2(E)2r and IC2(E ⊗L)2r .
This diagram commutes, by an argument which amounts to an application of 3′(c) of Proposition
3.2.

Now that we know that IC2(E un
B )2r descends, the corresponding statement for connections is a

consequence of Proposition 5.18 and Lemma 7.1. �
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After the proposition, the following notation is justified.

Notation 8.20. The complex Chern–Simons line bundle on Mir
B(X /S,PSLr )` is denoted by LCS(X /S)2r .

Proposition 8.21. (1) The functoriality with respect to base change and isomorphisms of
relative curves, the curvature and the crystalline properties of LCS(X /S) on Mir

B(X /S,SLr )
descend to corresponding features for LCS(X /S)2r on Mir

B(X /S,PSLr )`.
(2) In the case of a single Riemann surface X0, we have

(8.7) c1(LCS(X0)2r ) = r

2π2
ωPSLr .

(3) Except possibly for g = r = 2, the complex metric on LCS(X0)2r descends to Mir
B(X0,PSLr )`.

Proof. The first item is formal to check if we interpret LCS(X /S)2r in terms of the universal
endomorphism bundle. The second property follows from the fact that ωPSLr is obtained by
descent of ωSLr (see §6.4.1) and by Theorem 8.6. The third property is addressed in a similar vein
as the second part of the proof of Theorem 8.15, when reducing from GLr to SLr monodromies.

�

9. APPLICATIONS TO PROJECTIVE STRUCTURES

We apply the general theory of Section 7 and Section 8 to spaces of projective structures
on families of Riemann surfaces. We build complex Chern–Simons line bundles on those,
and show they are naturally isomorphic to Deligne pairings of canonical sheaves. This leads
to the definition of the Chern–Simons transform of a family of projective structures, as an
induced connection on the Deligne pairing. We then study its properties in detail. Over the
Teichmüller space, the Chern–Simons transform establishes an equivalence between relative
projective structures and compatible connections on the Deligne pairing. A similar result has
been independently obtained by Biswas–Favale–Pirola–Torelli [23], with a different, somewhat
ad hoc method. We go on to consider the transform of classical families of projective structures.
For Fuchsian uniformizations, we recover Wolpert’s result on the relationship between the first
tautological class and the Weil–Petersson form on Teichmüller space. The proof is an example
of the application of Higgs bundles to the practical computation of intersection connections.
For Schottky and quasi-Fuchsian groups, we propose a conceptual and simple construction of
potentials of the Weil–Petersson forms, first studied by Takhtajan–Zograf [120] and Takhtajan–
Teo [112]. Finally, we compare our results to the work of Guillarmou–Moroianu [70] on complex
Chern–Simons line bundles on Teichmüller spaces of cocompact convex hyperbolic 3-manifolds.
In this section we entirely work in the analytic category.

9.1. Background on projective structures. We review the theory of families of projective struc-
tures. We divide the exposition in five parts. For an easier reading, we provide references at the
beginning of each part.

9.1.1. Projective structures and their holonomies. Cf. [42, Section 2], [60, Section 1.3], [78, Section
1].

Let X0 be a compact Riemann surface of genus g ≥ 2. A projective structure on X0, subordinate
to the complex structure of X0, is a maximal atlas of holomorphic charts on X0, with values in P1

and transition maps induced by complex Möbius transformations. These are called projective
charts. The set of projective structures on X0 is denoted by P (X0).
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Let π : X̃0 → X0 be a universal cover of X0, with fundamental group Γ. Given a projective
structure α ∈ P (X0), there exists a developing map for α. This is a local biholomorphism
h : X̃0 →P1, such that for every contractible open subset U of X0, the morphism (h ◦π−1)|U is a
projective chart of α. Any other developing map g relates to h by g = A ◦h, for a unique Möbius
transformation A.

Let α ∈ P (X0) and h : X̃0 → P1 be a developing map for α as above. For every γ ∈ Γ, acting
on X̃0 by deck transformations, the composition h ◦γ is another developing map for α, hence
of the form ρ(γ)◦h for a unique ρ(γ) ∈PSL2(C). This defines a representation ρ : Γ→PSL2(C),
called the holonomy, or monodromy representation of h. If A is a Möbius transformation, the
holonomy representation of A ◦h is AρA−1. The PSL2(C)-orbit of ρ only depends on α, and may
be loosely called the holonomy representation of α. Holonomy representations of projective
structures are known to be irreducible. Thus, there is a well-defined holonomy map

(9.1) hol : P (X0) → Mir
B(X0,PSL2).

9.1.2. Schwarzian equations: local theory. Cf. [36, Chapter I, §4–§5], [42, Section 3], [71, Section
2], [72, Section 4].

Projective structures on X0 can be reframed in terms of Schwarzian differential equations. We
first review the local aspects.

LetΩ be a domain in Cwith holomorphic coordinate z. If h : Ω→C is a local biholomorphism,
then its Schwarzian holomorphic quadratic differential is defined as S (h, z) = {h, z}d z2, where

{h, z} = 6
∂2

∂z∂w
log

(
h(z)−h(w)

z −w

)∣∣∣∣
z=w

is the Schwarzian derivative. The Schwarzian differential fulfills two fundamental properties:

(1) if z = g (t ) is a change of variable, then there is a cocycle relation

(9.2) S (h ◦ g , t ) = g∗S (h, z)+ {z, t }d t 2.

The reason of writing {z, t }d t 2 instead of S (g , t) will be apparent in the global theory
§9.1.3 below, when we define the notion of projective connection.

(2) if g : Ω→C is another local biholomorphism, then S (g ) =S (h) if, and only if g = A ◦h
for some A ∈PSL2(C).

Suppose now that Ω is simply connected. Let q(z)d z2 be a holomorphic quadratic differential
on Ω. The problem of solving the Schwarzian equation S (h) = q(z)d z2 is equivalent to a second
order linear differential equation

(9.3) u′′(z)+ 1

2
q(z)u(z) = 0.

The space of solutions is a 2-dimensional C-vector space. If u1 and u2 are two independent
solutions, one derives from (9.3) that their Wronskian is a non-zero constant, and it can be
normalized to be 1. The meromorphic function h = u1/u2 solves the Schwarzian equation.
If z = g (t) is a change of coordinates on Ω and g ′(t)1/2 is a fixed square root of g ′(t), setting
v j (t ) = u j (g (t ))g ′(t )−1/2 produces a basis of solutions of the Schwarzian equation in the variable
t .

In order to globalize the previous discussion to Riemann surfaces, we are required to express
equation (9.3) intrinsically as a second order differential operator D : κ∨ → κ∨⊗ω2, where ω
is the canonical sheaf on Ω and κ is a choice of theta characteristic; namely, a holomorphic
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line bundle with an isomorphism κ2 ' ω. The space of solutions of (9.3) is V = kerD. The
usual trick transforming (9.3) into a system of linear differential equations of order 1 is recast
as a holomorphic connection, in particular flat, ∇ on J 1(κ∨), the first jet bundle of κ∨. Then
V = ker∇ can be seen as a trivial local system on Ω, and the inclusion of sheaves V ,→J 1(κ∨)
induces an isomorphism V ⊗COΩ

∼→J 1(κ∨). The filtration of J 1(κ∨) provides an exact sequence

(9.4) 0 → κ∨⊗ω i→J 1(κ∨)
p→ κ∨ → 0,

so that detJ 1(κ∨) ' κ−2 ⊗ω'OΩ. The structure of the Schwarzian equation has the following
implications for (J 1(κ∨),∇):

(S1) ∇ induces the trivial connection on detJ 1(κ) ' OΩ. This amounts to the fact that the
Wronskian of a basis of solutions can be normalized to being one;

(S2) the OΩ-linear morphism

κ∨⊗ω i
,→J 1(κ∨)

∇→J 1(κ∨)⊗ω p
� κ∨⊗ω

is the identity.

We have thus naturally transformed the Schwarzian equation into a flat vector bundle satisfy-
ing properties (S1)–(S2).

9.1.3. Schwarzian equations: global theory. The references given in §9.1.1–9.1.2 also cover the
following discussion. We add [45, Section 5], especially for the penultimate paragraph of the
ongoing part.

We go back to our compact Riemann surface X0 of genus g ≥ 2. A projective connection on X0

consists in giving, locally on coordinate open subsets of X0, holomorphic quadratic differentials
S (z) transforming like (9.2) under changes of coordinates z = g (t). The difference between
two projective connections is a well-defined global holomorphic quadratic differential. The
obstruction to the existence of projective connections lives in H 1(X0,ω2

X0
), which vanishes for

g ≥ 2.
Given a projective connection on X0, local independent solutions of the Schwarzian equation

define a projective atlas on X0. Conversely, the Schwarzian differentials of a projective atlas
constitute a projective connection on X0. After §9.1.1–§9.1.2, both notions are equivalent. It
follows that P (X0) has a natural structure of an affine space under H 0(X0,ω2

X0
), and is thus a

complex manifold. With respect to this structure, the holonomy map (9.1) is a morphism of
complex manifolds.

Let (κ, ι : κ2 'ωX0 ) be a theta characteristic on X0. As in the local theory, a projective connec-
tion on X0 is equivalent to a differential operator D : κ∨ → κ∨⊗ω2

X0
, locally of the form (9.3), as

well as to a holomorphic connection ∇ on J 1(κ∨) satisfying the global counterparts of (S1)–(S2)
above. Moreover, if (E ,∇) is a flat vector bundle on X0, fitting into an exact sequence of the
form (9.4) and satisfying the analogues of (S1)–(S2), then (E ,∇) is isomorphic to (J 1(κ∨),∇),
compatibly with the filtrations. We will say they are gauge equivalent.

Looking at the holonomy of the connections associated to projective structures, we get a lift of
the holonomy map (9.1) to

h̃ol : P (X0) → Mir
B(X0,SL2).

Two lifts associated to two different theta characteristics differ by multiplication by some
χ : π1(X0) → {±1}, corresponding to the 2-torsion line bundle comparing the theta characteris-
tics.
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9.1.4. Relative projective structures. Cf. [60, pp. 686–687], [72, Sections 6–8], [78, Sections 3–6],
[114, Chapter 3].

Now let f : X → S be a submersion of complex manifolds whose fibers are compact Riemann
surfaces of genus g ≥ 2. Similar to the absolute setting of §9.1.1, there is a notion of holomorphic
relative projective structure for f , also called holomorphic family of projective structures. It
consists in giving a maximal atlas of relative holomorphic charts (Uα, zα) on X , whose changes
of coordinates are of the form zα = Aαβ ◦ zβ for holomorphic families Möbius transformations
Aαβ : f (Uα∩Uβ) → PSL2(C). Over a Stein base, holomorphic families of projective structures
always exist.

There exists a universal space for holomorphic relative projective structures, with the follow-
ing properties. It is a complex manifold P (X /S), equipped with a holomorphic submersion
π : P (X /S) → S which makes it an S-torsor under V( f∗ω2

X /S), the affine bundle of relative qua-
dratic differentials. On the space X ×S P (X /S) there is a holomorphic relative projective structure
over P (X /S), which is a universal object for holomorphic relative projective structures on base
changes XT → T of f . Equivalently, P (X /S) represents a functor of holomorphic relative projec-
tive structures, and in particular holomorphic relative projective structures over S correspond
to holomorphic sections of P (X /S) → S. Also, the formation of P (X /S) is compatible with
base change. Notice that over a Stein base, the existence of a holomorphic family of projective
structures is equivalent to the fact that the torsor structure of P (X /S) can be trivialized. We also
observe that for an isomorphism X ′ → X of families of curves over S, there is an induced obvious
isomorphism P (X ′/S) 'P (X /S).

The notion of a smooth family of projective structures can also be developed. For the purposes
of this article, we simply define this as a C ∞ section of P (X /S) → S. Two smooth families of
projective structures differ by a C ∞-section of f∗ω2

X /S .
There is a relative counterpart of the holonomy map (9.1). For this, assume for a moment that

S is contractible and Stein, and f has a section σ. Suppose α : S → P (X /S) is a holomorphic
relative projective structure. Fix base points 0 ∈ S and p =σ(0), and set Γ=π1(X , p) 'π1(X0, p).
Let X̃ be the universal cover of X based at p. Then there exists a holomorphic relative developing
map h : X̃ →P1

S for α. Similar to the absolute case, associated to h there is a holomorphic family
of representations ρ : Γ→PSL2(Γ(S,OS)). Changing the developing map results in conjugating ρ
by some A ∈PSL2(Γ(S,OS)). Over a general base, this discussion can be carried out locally over S,
and results in the relative holonomy map

(9.5) hol : P (X /S) → Mir
B(X /S,PSL2).

This is a morphism of complex manifolds. It has natural functoriality properties with respect to
base change and isomorphisms of relative curves X ′ → X .

There is also a relative version of the Schwarzian interpretation of projective structures of
§9.1.2–§9.1.3. We will need the formulation in terms of jet bundles. We could not find an appro-
priate reference, but it is a formal adaptation of the absolute case reviewed in §9.1.3. Suppose
that S is contractible and Stein, and f : X → S admits a section σ. We may then introduce a
relative theta characteristic (κ, ι : κ2 'ωX /S). Given a holomorphic family of projective structures,
we build a collection of local relative Schwarzian equations, with holomorphic dependence on
s ∈ S. These organize into a relative differential operator D : κ∨ → κ∨⊗ω2

X /S , equivalent to a
relative holomorphic connection ∇ : J 1(κ∨) →J 1(κ∨)⊗Ω1

X /S , satisfying the relative versions of
(S1)–(S2). As in the absolute case, (J 1(κ∨),∇) is unique with these properties, up to gauge equiv-
alence. Looking at the holonomy of such connections, we obtain a lift of the relative holonomy
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map

(9.6) h̃ol : P (X /S) → Mir
B(X /S,SL2).

Two lifts differ by a character χ : π1(X ) → {±1}, corresponding to the 2-torsion line bundle
comparing to relative theta characteristics.

Similarly, if S is contractible, Stein and f admits a section, smooth families of projective
structures can be reinterpreted as flat relative connections ∇ : J 1(κ∨) →J 1(κ∨)⊗A 1,0

X /S . This
can be seen by comparing to a holomorphic relative projective structure via a C ∞ section of
f∗ω2

X /S . The latter provides a section of End(J 1(κ∨))⊗A 1,0
X /S , which accounts for the comparison

of the associated flat relative connections.
Over a general base S, the discussion surrounding (9.6) shows that hol actually lands in the

space of (locally) liftable representations Mir
B(X /S,PSL2)` (see §6.4.1).

Remark 9.1. If S is contractible and Stein, and f admits a section σ, hol actually lifts to the
representation space Rir

B(X /S,σ,SL2). This is achieved by introducing appropriate initial con-
ditions for the solutions of the relative Schwarzian equations, which induces a rigidification of
(J 1(κ∨),∇) along σ.

9.2. Complex Chern–Simons and projective structures. Until the end of this section on projec-
tive structures, f : X → S denotes a submersion between connected complex manifolds, whose
fibers are compact Riemann surfaces of genus g ≥ 2.

9.2.1. Complex Chern–Simons line bundle. We consider the space of holomorphic relative projec-
tive structures π : P (X /S) → S and the relative holonomy map hol : P (X /S) → Mir

B(X /S,PSL2)`.
We saw in Proposition 8.19 that LCS(X /S)4 on MB(X /S,SL2) descends to Mir

B(X /S,PSL2)`, and
following Notation 8.20 we simply write LCS(X /S)4 for the descended object.

Definition 9.2. The complex Chern–Simons line bundle on P (X /S) is defined as the holomorphic
line bundle with holomorphic connection hol∗LCS(X /S)4. We denote it (KCS(X /S),∇CS), or simply
KCS(X /S).

Proposition 9.3. The formation of KCS(X /S) is functorial with respect to base change and iso-
morphisms of relative curves X ′ → X over S.

Proof. The functoriality of LCS(X /S) and P (X /S) easily entail that the formation of KCS(X /S)
is compatible with base change. See Proposition 8.4 and Proposition 8.21. The functoriality
with respect to isomorphisms X ′ → X is similarly addressed with the help of Lemma 8.5 and
Proposition 8.21. �

In practice, we will have use for an explicit construction of KCS(X /S) in terms of relative theta
characteristics. Suppose momentarily that S is contractible and Stein, and f admits a section.
We introduce a relative theta characteristic (κ, ι : κ2 ' ωX /S). Associated to this choice, as in
(9.6) there is a lift h̃ol : P (X /S) → Mir

B(X /S,SL2) of hol. By Proposition 8.19, there is a canonical
isomorphism of line bundles with connections

(9.7) ϕ : KCS(X /S)
∼−→ h̃ol∗LCS(X /S)4.

In general, relative theta characteristics as above exist locally with respect to S, and the locally
defined (9.7) patch together.
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9.2.2. Relationship to Deligne pairings.

Theorem 9.4. On P (X /S) there is a natural isomorphism of holomorphic line bundles

(9.8) KCS(X /S)
∼−→π∗〈ωX /S ,ωX /S〉,

where π : P (X /S) → S is the structure map. It is functorial in the sense of Proposition 9.3.

Proof. The proof proceeds in five steps. The background expounded in §9.1.3–§9.1.4 is relevant
here.

Step 1: local construction. We begin by localizing on S, and we suppose first that it is contractible,
Stein, and that f : X → S admits a section. We can then introduce a relative theta characteristic
(κ, ι : κ2 'ωX /S). We set S′ =P (X /S) 'V( f∗ω2

X /S), which is contractible and Stein too. We write
f ′ : X ′ → S′ for the base change of f , so that

〈ωX ′/S′ ,ωX ′/S′〉 'π∗〈ωX /S ,ωX /S〉.
The base change of the theta characteristic is still denoted by (κ, ι).

On X ′ there is a universal relative projective structure, which gives rise to a flat relative
connection ∇ : J 1(κ∨) →J 1(κ∨)⊗Ω1

X ′/S′ , with trivial determinant. The natural exact sequence
(9.4) on J 1(κ∨) induces a Whitney isomorphism

α : IC2
(
J 1(κ∨)

) ∼−→〈κ∨⊗ωX ′/S′ ,κ∨〉.
So in fact we find natural isomorphisms

(9.9) Ψ(κ, ι) :
(
hol∗LCS(X /S)4)∨ ' IC2

(
J 1(κ∨)

)4 α' 〈κ∨⊗ωX ′/S′ ,κ∨〉4 β' 〈ωX ′/S′ ,ωX ′/S′〉∨,

where β is induced by ι : κ2 'ωX /S .

In order to globalize this construction, we need to check that Ψ(κ, ι) is gauge independent, as
well as independent of (κ, ι).

Step 2: gauge independence. Recall that (J 1(κ∨),∇) with the filtration (9.4) and the relative
counterpart of properties (S1)–(S2), is unique up to gauge equivalence. We show that an auto-
morphism of the extension (9.4) induces the identity on 〈ωX ′/S′ ,ωX ′/S′〉. Such an automorphism
φ fits in a commutative diagram of exact sequences

0 // κ∨⊗ωX ′/S′ //

id
��

J 1(κ∨) //

φ
��

κ∨ //

id
��

0

0 // κ∨⊗ωX ′/S′ // J 1(κ∨) // κ∨ // 0.

By (a) in (IC1) in Theorem 3.5, this induces a commutative diagram

IC2
(
J 1(κ∨)

) α
//

IC2(φ)
��

〈κ∨⊗ωX ′/S′ ,κ∨〉
id
��

IC2
(
J 1(κ∨)

) α
// 〈κ∨⊗ωX ′/S′ ,κ∨〉,

and the expected result follows by taking the fourth power.
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Step 3: independence of ι. Let λ be an invertible holomorphic function on S. We claim that
Ψ(κ, ι) =Ψ(κ,λι). The dependence on ι is all captured by the isomorphism β in (9.9). By Proposi-
tion 3.2 (3), scaling ι to λι changes β into λδβ, with δ= degκ∨+deg(κ∨⊗ωX ′/S′) = 0. This settles
the claim, and it is thus legitimate to write Ψ(κ) instead of Ψ(κ, ι).

Step 4: independence of κ. Consider the effect of changing κ to κ⊗L, where L is a line bundle
endowed with L⊗2 ' OX . We set κ′ = κ⊗L. Then there is a natural isomorphism J 1(κ′∨) '
J 1(κ∨)⊗L∨, as filtered vector bundles with connections. The descent Proposition 8.19 together
with Proposition 3.13 imply Ψ(κ) =Ψ(κ′).

Step 5: functoriality. To prove that the previous construction is functorial, we notice that the in-
termediate isomorphisms between the several intersection bundles involved in the construction
are themselves functorial. �

Corollary 9.5. If σ : S →P (X /S) is a C ∞ (resp. holomorphic) section, then there is a canonical,
functorial isomorphism

σ∗KCS(X /S)
∼−→〈ωX /S ,ωX /S〉.

In particular, ∇CS induces a C ∞ (resp. holomorphic) connection on 〈ωX /S ,ωX /S〉.
�

We introduce the following terminology for the induced connections of the corollary.

Definition 9.6. Given a C ∞ section σ : S →P (X /S), the induced connection on 〈ωX /S ,ωX /S〉 is
called de Chern–Simons transform of σ, and is denoted by ∇σ.

Remark 9.7. (1) By the functoriality of KCS(X /S) and of the isomorphism (9.8), the Chern–
Simons transform is compatible with base change.

(2) At this stage, it is still not clear that Chern–Simons transforms are compatible connections.
The proof of this fact will be given in Proposition 9.8. Nevertheless, we already know by
Corollary 9.5 that the Chern–Simons transform preserves holomorphicity.

9.3. Properties of Chern–Simons transforms. We study in detail the structure of the Chern–
Simons transforms of Definition 9.6. Most notably, we show these are actually compatible
connections. Over the Teichmüller space, we prove that the Chern–Simons transform provides
an equivalence between smooth families of projective structures and compatible connections
on Deligne pairings. For the rudiments of Teichmüller theory needed in the current and the
forthcoming subsections, we refer the reader to Ahlfors–Bers [5], Ahlfors [6] and Bers [11, 13].
Also Wolpert’s article [117] contains a thorough account. For the relationship with projective
structures, an appropriate reference for our purposes is Loustau [89].

9.3.1. Analytic description of jet bundles. We first deliver an explicit description of the holo-
morphic structure of jet bundles of relative theta characteristics, whose relationship to relative
projective structures was described in §9.1.4 and utilized in Theorem 9.4.

Suppose that S is contractible, Stein and that f : X → S admits a section S → X . We are thus in
the setting of the proof of Theorem 9.4. In particular, we can choose a relative theta characteristic
κ. We set V := J 1(κ∨) and E := κ⊕κ∨. Since the fibers of f : X → S have genus g ≥ 2, we can
equipωX /S with the dual of the hyperbolic metric, and κ, κ∨ with the induced metrics and Chern
connections. Also, E is considered with the orthogonal sum metric.
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By Atiyah’s interpretation of connections in terms of jet bundles, the vertical projection of the
Chern connection of κ∨ provides a C ∞ splitting of the extension (9.4)

(9.10) V 'C ∞ κ∨⊗ωX /S ⊕ κ∨ ' E .

In the representation E , the vertical projection of the ∂ operator of V can be written as

(9.11)

(
∂κ β

0 ∂κ∨

)
,

where β is a relative (0,1)-form with values in Hom(κ∨,κ) 'ωX /S . The form β is ∂-closed, and
in Dolbeault cohomology it represents the relative extension class of (9.4). This class defines a
section of R1 f∗ωX /S 'OS , and corresponds to the constant function 1−g = degκ∨ (Atiyah class).
Actually, Hitchin’s discussion in [74, pp. 122–123] shows that the restriction of β to a fiber Xs can
be taken to be a fixed multiple of the Kähler form of the hyperbolic metric on Xs (it depends on
the normalization of the hyperbolic metric only).

We now observe that β extends to a closed (1,1)-form on X . It is enough to consider an
appropriate multiple of the first Chern form of ωX /S with the dual hyperbolic metric. So, we may
suppose that β is already a (1,1)-form on X .

We project β to a β̃ ∈ A0,1(X ,ωX /S). We notice that β̃ is still ∂-closed, since the projection
Ω1

X →ωX /S is holomorphic. We can then construct a ∂-operator on κ⊕κ∨, as a C ∞ bundle on X ,
by

(9.12)

(
∂κ β̃

0 ∂κ∨

)
.

It defines an extension V ′ of κ∨ by κ. By construction, the extensions V and V ′ are isomorphic on
fibers. Because S is Stein, this suffices to guarantee that V and V ′ are isomorphic as extensions
on X . Therefore, we can suppose that (9.12) is the ∂-operator of V in the C ∞ representation
given by E .

9.3.2. Linearity and compatibility of the Chern–Simons transform. Let σ1,σ2 : S →P (X /S) be
two C ∞ sections. Since P (X /S) is an affine bundle under V( f∗ω2

X /S), there exists a C ∞ section
q of f∗ω2

X /S such that σ2 =σ1 +q . We proceed to compare the Chern–Simons transforms ∇σ1

and ∇σ2 in terms of q .
Suppose momentarily that we are in the setting of §9.3.1, and adopt the notation therein.

The sections σ1 and σ2 induce flat relative connections ∇1 and ∇2 on V . There is a relationship
∇2 = ∇1 +θ(q), where θ(q) is a C ∞ section of End(V )⊗Ω1

X /S . In terms of the representation
V 'C ∞ E (see equation (9.10)), θ(q) can be expressed as a matrix:

(9.13) θ(q)!
(

0 q
0 0

)
.

Notice that this matrix is killed by the operator (9.12) if, and only if, q is holomorphic, as expected.
Now we look at the associated intersection connections on IC2(V ). We will have a comparison

∇IC2
2 =∇IC2

1 +ω(q), for some (1,0)-form ω(q) on S. The latter is given by a Chern–Simons integral.
Precisely, let ∇̃1 be a compatible extension of ∇1. Choose a lift q̃ ∈ A1,0(X ,ωX /S) of q , which exists
because sheaves of C ∞-modules have vanishing higher cohomology. We define a corresponding
C ∞ section θ(q̃) of End(V )⊗Ω1

X , by a matrix representation analogous to (9.13), with q̃ in place
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of q . Then ∇̃1 +θ(q̃) is an extension of ∇2. Therefore, ω(q) = I T (V ,∇̃1,∇̃1 +θ(q̃)), which can be
evaluated by Proposition 5.7. We claim that

(9.14) ω(q) = 1

2πi

∫
X /S

tr(F̃1 ∧θ(q̃)),

where F̃1 is the curvature of ∇̃1. The only term in Proposition 5.7 whose vanishing requires some
justification is tr(θ(q̃)∧∂θ(q̃)). But this is immediate after inspection, since the operator ∂ of V
is given by (9.12), and then θ(q̃)∧∂θ(q̃) is seen to be strictly upper triangular, hence with zero
trace. We infer from (9.14) that ω(q) is C ∞(S)-linear in q , since θ(q̃) is C ∞(S)-linear in q̃ and
the expression (9.14) is independent of the chosen extensions, by Lemma 7.1.

After these preliminaries, we are in position to establish the following proposition, whose first
part improves Corollary 9.5.

Proposition 9.8. (1) Chern–Simons transforms are compatible with the holomorphic struc-
ture of 〈ωX /S ,ωX /S〉.

(2) If q is a C ∞ section of f∗ω2
X /S , then ∇σ+q =∇σ+ϑ(q), where ϑ(q) is a (1,0)-form whose

dependence on q is C ∞(S)-linear.

Proof. We can place ourselves in the setting of §9.4.1. It is enough to establish the properties
analogous to (1)–(2) for IC2(V ) ' 〈κ∨,κ∨⊗ωX /S〉.

Instead of (1), we will establish a finer universal property. During the discussion, we write
π : S′ =P (X /S) → S and X ′ → S′ for the base change of X → S by π. We denote by π∗V the pull-
back of V to X ′. Let ∇ be the flat relative connection on V corresponding to σ. We will write π∗∇
for the pullback of ∇ to X ′. Likewise, the universal relative projective structure corresponds to a
universal flat relative connection on π∗V , say ∇un. We form the associated intersection connec-
tions ∇IC2 on IC2(V ) and (∇un)IC2 on IC2(π∗V ) 'π∗IC2(V ). We shall prove that σ∗(∇un)IC2 =∇IC2 ,
which is a compatible connection on IC2(V ) =σ∗π∗IC2(V ).

The argument goes along the same lines as the first part of the proof of Theorem 8.10. We
return to the discussion preceding the ongoing proposition, with the following changes. Instead
of X → S, we are now dealing with the family X ′ → S′. For the connection ∇2 we take ∇un. For ∇1

we take π∗∇. We write ∇un =π∗∇+θ(q), for a smooth section q of End(π∗V )⊗Ω1
X ′/S′ . Since the

restriction of ∇un along σ gives back ∇, the restriction of θ(q) along σ has to vanish. We introduce
a compatible extension ∇̃ of ∇, so that π∗∇̃ is an extension of π∗∇. We let q̃ ∈ A1,0(X ′,ωX ′/S′)
be an extension of q . For the intersection connections, we have (∇un)IC2 =π∗∇IC2 +ω(q), where
ω(q) is of the form (9.14). We have to show that σ∗ω(q) vanishes. We already know that the
restriction of θ(q) along σ vanishes, so that the restriction of θ(q̃) along σmust become a section
of End(V )⊗ f ∗A 1

S . Because the curvature of ∇̃ vanishes on fibers, we conclude that σ∗ω(q) = 0,
as desired.

The second claim of the proposition follows from the fact that (9.14) depends C ∞(S)-linearly
in q , as we already observed after that equation. �

9.3.3. Chern–Simons transform on the Teichmüller space. Let X0 be a compact Riemann surface
of genus g ≥ 2. Let T = T (X0) be the Teichmüller space of X0, and f : C → T the universal
Teichmüller curve of Bers.11 We will consider families of projective structures parametrized by
T , and the corresponding Chern–Simons transforms. A particularly relevant instance is the

11The concrete construction involves the choice of a Fuchsian uniformization of X0, which is unique up to
conjugation in PSL2(R). This is irrelevant for the purposes of this article and may henceforth be ignored.
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holomorphic section β : T →P (C /T ) provided by Bers’ simultaneous uniformizations of pairs
of Riemann surfaces (X , X 0) by quasi-Fuchsian groups. Quasi-Fuchsian uniformizations will be
dealt with in greater generality in §9.6 below. For the ongoing discussion, it will suffice to recall
the properties of β that we need and use them in a formal manner.

The holomorphic cotangent bundle of T is naturally isomorphic to f∗ω2
C /T . Thus, it is

justified to identify smooth sections of f∗ω2
C /T with (1,0)-forms on T . In particular, P (C /T )

has the structure of a torsor under V(Ω1
T

), the total space of the holomorphic cotangent bundle.
Therefore, given a smooth section σ : T →P (C /T ), there is a corresponding C ∞ trivialization
of the torsor structure P (C /T ) 'C ∞ V(Ω1

T
). The canonical symplectic form on V(Ω1

T
) can

then be transported to P (C /T ), thus defining a symplectic form denoted by ωσ. Tautologically,
σ∗ωσ = 0. The case of the Bers section deserves special consideration: the attached symplectic
form ωβ is related to the Atiyah–Bott–Goldman form, in the following manner. First, since T is
simply connected, we can compose the relative holonomy map (9.5) with the retraction to the
fiber over the point corresponding to X0:

P (C /T )
hol−→ Mir

B(C /T ,PSL2)` ' Mir
B(X0,PSL2)`×T −→ Mir

B(X0,PSL2)`.

The pullback of the Atiyah–Bott–Goldman form ωPSL2 on Mir
B(X0,PSL2)` to P (C /T ) is denoted

by ωG . Then

(9.15) ωβ =−iωG .

This is a theorem of Kawai [81], revisited by Loustau [89, Theorem 6.10] with an alternative
proof. In particular, the Bers section is Lagrangian for ωG . Also, notice that by Theorem 8.6 and
Proposition 8.21, the first Chern form of KCS(C /T ) is

(9.16) c1(KCS(C /T )) = 1

π2
ωG .

We are now ready to state and prove the main theorem of this subsection.

Theorem 9.9. Let σ : T → P (C /T ) be a C ∞ section. Then, for every smooth section q of
f∗ω2

C /T 'Ω1
T

, we have ∇σ+q =∇σ+ 2
πq.

Proof. Let us write ∇σ+q = ∇σ +ϑ(q). By Proposition 9.8, the form ϑ(q) has type (1,0) and
depends C ∞(T )-linearly on q . By the torsor structure of P (C /T ) and the linearity of ϑ(q) in q ,
we can reduce to the case σ=β. By [89, Proposition 3.3], we have the relationship

ωβ+q −ωβ =−π∗d q,

where π : P (C /T ) →T is the structure map. Therefore, if σ′ =β+q , we derive

σ′∗ωβ = d q,

because σ′∗ωσ′ = 0. Combining (9.15)–(9.16), we find for the first Chern form of σ′∗KCS(C /T )

c1(σ′∗KCS(C /T )) = i

π2
d q.

Equivalently, the curvature of ∇β+q is

Fβ+q = 2

π
d q.

If follows that

dϑ(q) = Fβ+q −Fβ =
2

π
d q.
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Because q and ϑ(q) are (1,0)-forms, this equality entails that πϑ(q)−2q is holomorphic. But
this is true for all such q . Therefore, for any C ∞(T )-function h, the form πϑ(hq)− 2hq is
holomorphic too. By the C ∞(T )-linearity of ϑ, we thus find that h(πϑ(q)−2q) is holomorphic
for every C ∞(T )-function h. It is an exercise to check that this is possible only if πϑ(q)−2q
vanishes identically. That is, ϑ(q) = 2

π
q as asserted. This concludes the proof of the theorem. �

Corollary 9.10. The Chern–Simons transform establishes a canonical, bijective, A1,0(T )-linear
correspondence between smooth families of projective structures over T and compatible connec-
tions on 〈ωC /T ,ωC /T 〉, such that holomorphic families of projective structures exactly correspond
to holomorphic connections on the Deligne pairing.

Proof. Because T is Stein, the torsor P (C /T ) → T can be holomorphically trivialized, and
hence admits a holomorphic section. By Corollary 9.5, the Chern–Simons transform of a holo-
morphic section is a holomorphic connection on the Deligne pairing. With this understood, the
statement is an immediate consequence of Theorem 9.9. �

9.4. Fuchsian uniformization. The Fuchsian uniformization of the fibers of f : X → S defines a
section σF : S →P (X /S). It is C ∞, as can be inferred, for instance, from [73]. An independent
argument will be provided shortly in §9.4.1. We denote by ∇F the Chern–Simons transform ∇σF .

The hyperbolic metric on the fibers of f defines a hermitian metric on ωX /S . There is an
associated intersection metric on the Deligne pairing. It depends on the normalization of the
hyperbolic metric only through a scaling factor.12 The corresponding Chern connection is
unambiguously defined. We shall call it the natural Chern connection.

Theorem 9.11. The natural Chern connection on 〈ωX /S ,ωX /S〉 coincides with ∇F.

The proof of the theorem requires some preparation.

9.4.1. Extension of relative uniformizing Higgs bundles. We shall need the analytic description
of jet bundles. We thus pick up the discussion §9.3.1, and we follow the setting and notation
therein.

Consider the adjoint β̃∗ of β̃, taken with respect to the hermitian structures on κ and κ∨ in-
duced by the hyperbolic metric, and extended conjugate linearly to differential form coefficients
on X . Hence, β̃∗ is a (1,0)-form on X with values in Hom(κ,κ∨). We define

Φ̃=
(

0 0
β̃∗ 0

)
∈ End(E)⊗A 1,0(X ),

so that

Φ̃∗ =
(

0 β̃

0 0

)
∈ End(E)⊗A 0,1(X ).

The restriction of (E ,Φ̃) to a fiber Xs is a uniformizing Higgs bundle as in [74, pp. 122–123]. This
motivates the introduction of a C ∞ connection on V 'C ∞ E defined by

(9.17) ∇̃ =∇ch
E + Φ̃+ Φ̃∗.

Here, ∇ch
E = ∂E +∂E is the Chern connection of E . By looking at the ∂-operator (9.12), we see that

∇̃ is a compatible connection on V . After Hitchin loc. cit., the vertical projection of ∇̃ is the flat

12It might be convenient to think of the usual curvature −1 convention, but most of the time we can ignore this
normalization.
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relative connection on V induced by the Fuchsian uniformization of the fibers and the chosen
theta characteristic. Incidentally, the family of Fuchsian projective structures σF : S →P (X /S) is
indeed C ∞. See the background on projective structures §9.1.4. Although it is not clear whether
∇̃ is a canonical extension in the sense of Section 7, it can nevertheless be used to compute
intersection connections, by Lemma 7.1.

9.4.2. Proof of Theorem 9.11. Because the statement is of local nature in S, we can argue within
the framework of §9.3.1–§9.4.1. We introduce the hermitian metric on V induced by the isomor-
phism V 'C ∞ E , and denote by ∇ch

V the associated Chern connection.
By a similar argument as in Proposition 9.8, the theorem reduces to the following. On the

one hand, associated to the exact sequence (9.4) with the chosen hermitian structures, there
is a Bott–Chern secondary class c̃2. It measures the possible lack of isometry of the Whitney
isomorphism

IC2(V ) ' 〈κ∨,κ∨⊗ωX /S〉.
See §4.2.2 (MIC3). On the other hand, by Definition 5.15, Lemma 7.1 and Definition 7.2, the
intersection connection on IC2(V ) for the Fuchsian uniformization is computed as

∇̃IC2 = (∇ch
V )IC2 + I T (V ,∇ch

V ,∇̃).

Here ∇̃ is the extension (9.17). It is enough to show that

I T (V ,∇ch
V ,∇̃) =−2∂

∫
X /S

c̃2 = 0.

By the definition of the hermitian metric on V , the isomorphism V 'C ∞ E is an isometry. In
this case, the Bott–Chern secondary form has the following expression:

c̃2 = 1

2πi
tr(β̃∗∧ β̃).

See for instance [38, Théorème 10.2] or [107, Section 4]. Recall that the restriction of β̃ to a fiber
Xs is a fixed multiple of the hyperbolic volume form of Xs . A simple explicit computation shows
that the same holds for the (1,1)-form tr(β̃∗∧ β̃). Therefore, the fiber integral of c̃2 is constant
and

(9.18) ∂

∫
X /S

c̃2 = 0.

For I T (V ,∇ch
V ,∇̃), we use the explicit expression of Proposition 5.7. Before, we notice that the

definition (9.17) can equivalently be written as

∇̃ =∇ch
V +2Φ̃

and the curvature of ∇ch
V is given by

F∇ch
V
=

(
Fκ− β̃∗∧ β̃ ∂β̃

−∂β̃∗ Fκ∨ − β̃∧ β̃∗

)
.

In this matrix, ∂ denotes the (1,0) part of the Chern connection (on X ) of ωX /S , acting on the
corresponding piece of β̃. With this understood, using that β̃ is ∂-closed, for the first term in
Proposition 5.7, we obtain

tr(F∇ch
V
∧2Φ̃) =−2∂ tr(β̃∗∧ β̃).
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The second term tr(Φ̃∧∂Φ̃) is easily seen to be 0. We find

I T (V ,∇ch
V ,∇̃) =−2∂

∫
X /S

c̃2,

which vanishes by (9.18).
All in all, we conclude that the intersection connection ∇̃IC2 on IC2(V ), attached to the Fuch-

sian uniformization of the fibers, coincides with the Chern connection on the Deligne pairing
〈κ∨⊗ωX /S ,κ∨〉. This concludes the proof. �

9.4.3. Wolpert’s curvature formula. We fix a compact Riemann surface X0 of genus g ≥ 2 and
form T = T (X0) the Teichmüller space of X0, with C → T the universal Teichmüller curve.
Denote by ωWP the Weil–Petersson Kähler form on T . For the sake of clarity, we recall that in
local coordinates, the expression of ωWP in terms of the Weil–Petersson hermitian pairing is

ωWP = i

2

∑
j ,k

〈
∂

∂z j
,
∂

∂zk

〉
WP

d z j ∧d zk .

Ifµ,ν ∈ A−1,1(X ) are harmonic Beltrami differentials on a compact Riemann surface X , represent-
ing holomorphic tangent vectors of T at the point corresponding to X , then their Weil–Petersson
pairing is given by

〈µ,ν〉WP =
∫

X
µνd A,

where d A is the area element of the hyperbolic metric of curvature −1.
The following corollary recovers Wolpert’s curvature formula [117, Corollary 5.11]. To ease the

comparison with loc. cit., we emphasize that Wolpert works with twice the usual Kähler form as
described above.

Corollary 9.12. The curvature of the natural Chern connection on 〈ωC /T ,ωC /T 〉 is 1
π2ωWP.

Proof. By Theorem 9.11, we have to compute the curvature of σ∗
FKCS(C /T ). Thus, the setting is

as in §9.3.3. By equation (9.16), we have

c1(σ∗
FKCS(C /T )) = 1

π2
σ∗

FωG ,

where we recall that ωG is the pullback of the Atiyah–Bott–Goldman form on Mir
B(X0,PSL2)` to

P (C /T ). By Goldman’s [66, Proposition 2.5], we have σ∗
FωG =ωWP. See Loustau [89, Theorem

4.2] for a formulation in the same terms and conventions as ours. This concludes the proof. �

Remark 9.13. The line bundle 〈ωCg /Mg ,ωCg /Mg 〉 is a lift of Mumford’s first tautological class κ1.

The corollary above entails Wolpert’s result that κ1 is represented by 1
π2ωWP.

9.5. Schottky uniformization. We now study the case of the projective structures induced by
Schottky uniformizations. We refer to Bers [13, 14] for basics on the theory.

9.5.1. Chern–Simons transform on the Schottky space. Let Sg be the Schottky space of genus
g . It carries a universal curve X →Sg . By [73, Theorem 5.1], the projective structures given by
Schottky uniformizations define a holomorphic mapσS : Sg −→P (X /Sg ). Let∇S be the Chern–
Simons transform of σS. By Corollary 9.5, this is a holomorphic connection on 〈ωX /Sg ,ωX /Sg 〉.
Theorem 9.14. If g ≥ 3, then 〈ωX /Sg ,ωX /Sg 〉 has a holomorphic trivialization which is flat for

∇S. If g = 2, the same holds for the tenth power 〈ωX /Sg ,ωX /Sg 〉10.
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Proof. Let X0 be a marked13 compact Riemann surface of genus g , and T =T (X0) the Teich-
müller space of X0. The normalized Schottky uniformization of marked Riemann surfaces
defines a holomorphic map p : T → Sg . We claim that ∇S induces a flat connection on
p∗〈ωX /Sg ,ωX /Sg 〉. We form the commutative diagram

T //

p

��

P (X /Sg )×Sg T

��

// Mir
B(X /Sg ,PSL2)`×Sg T

��

// Mir
B(X0,PSL2)`

Sg
σS

// P (X /Sg ) // Mir
B(X /Sg ,PSL2)`.

At the top right corner, we used the retraction granted by the simply connected nature of T .
We consider the composition of the upper arrows α : T → Mir

B(X0,PSL2)`. By the crystalline
property of the curvature of Chern–Simons line bundles, we have the realationship

c1(p∗σ∗
SKCS(X /Sg )) =α∗c1(LCS(X0)4) = 1

π2
α∗ωPSL2 ,

By [89, Theorem 4.3], the morphism α : T → Mir
B(X0,PSL2)` lands in a Lagrangian subspace,

meaning in particular that the pullback of the holomorphic symplectic form vanishes. This
establishes the claim.

Since T is simply connected and ∇S is flat, we can find a flat holomorphic trivialization
of p∗〈ωX /Sg ,ωX /Sg 〉. Let us call it m. We need to show that m descends to Sg . Let γ ∈
Aut(T /Sg ) ' π1(Sg ). Because ∇S is already defined on Sg , pullback by γ commutes with
∇S on T . This implies that γ∗m is also a flat trivialization of p∗〈ωX /Sg ,ωX /Sg 〉, and therefore
γ∗m =χ(γ)m for some χ(γ) ∈C×. We thus obtain a character of π1(Sg ). The latter is a quotient
of the mapping class group Γg . In genus g ≥ 3, the abelianization Γab

g is trivial [100], and in this
case we deduce that χ= 1. Therefore m is invariant under the automorphism group, and must
descend. In genus 2, Γab

2 ' Z/10Z by op. cit., and similarly m10 descends. This concludes the
proof. �

9.5.2. Potential of the Weil–Petersson form on Sg . We now make use of the intersection metric
‖ ·‖ on 〈ωX /Sg ,ωX /Sg 〉, induced by the choice of the hyperbolic metric. If g ≥ 3, let τS be a flat
trivialization as in Theorem 9.14. It is unique, up to multiplication by a constant. Then, by the
definition of the first Chern form and Wolpert’s curvature formula (Corollary 9.12), we have

(9.19) dd c log‖τS‖−2 = 1

π2
ωWP.

Therefore, log‖τS‖−2 is a potential of the Weil–Petersson form on the Schottky space, which is
canonical up to the addition of a constant. In genus 2, we take instead τS to be a trivialization of
〈ωX /Sg ,ωX /Sg 〉10, and then 1

10 log‖τS‖−2 is a potential of ωWP.
A potential for the Weil–Petersson form on Schottky space was constructed by Takhtajan–

Zograf [120], by studying a suitable Lagrangian on the space of conformal metrics on a Riemann
surface (the Liouville action). Let STZ : Sg →R be the function of Takhtajan–Zograf, defined in
§1.4 and §3 of op. cit.

13A marking consists in the choice of a base point p and a system of generators α1, . . . ,αg ,β1, . . . ,βg of π1(X0, p)

with relation
∏

j [α j ,β j ] = 1, and with the associated intersection matrix

(
0 idg

− idg 0

)
in homology.
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Proposition 9.15. If g ≥ 3, we have an equality log‖τS‖ = 1
2πSTZ, up to the addition of a constant.

If g = 2, we have 1
10 log‖τS‖ = 1

2πSTZ, up to the addition of a constant.

Proof. For brevity, we only treat the case g ≥ 3. It is enough to check the equality after passing to
the Teichmüller space T . By [120, Remark 2, p. 310], the difference between the Fuchsian and
Schottky structures is σF−σS = 1

2∂STZ. By Theorem 9.9, we infer

∇F =∇S+ 1

π
∂STZ.

We apply this identity to τS, which is flat for ∇S by construction. By Theorem 9.11, we know that
∇FτS = ∂ log‖τS‖2 ⊗τS. We conclude

∂ log‖τS‖2 = 1

π
∂STZ.

The claim follows. �

Remark 9.16. Independently of the work of Takhtajan–Zograf, the very definition of τS and
Theorem 9.9 show that σF−σS =π∂ log‖τS‖ if g ≥ 3, and σF−σS = π

10∂ log‖τS‖ if g = 2.

9.6. Quasi-Fuchsian uniformization. We now provide applications to relative projective struc-
tures arising from quasi-Fuchsian uniformizations. For the theory of quasi-Fuchsian groups, we
recall our sources [5, 6, 11, 13].

9.6.1. Chern–Simons transform on quasi-Fuchsian space. Fix a reference compact Riemann
surface X0 of genus g ≥ 2, with a base point p, and set Γ = π1(X0, p). We take T = T (X0) the
Teichmüller space of X0. The Teichmüller space of X 0 is naturally isomorphic to the complex
conjugate of T : T (X 0) 'T . We henceforth identify them. For later use, we recall that T and
T share the same underlying C ∞ manifold, but their almost complex structures differ by a sign.

We define the quasi-Fuchsian space of X0 as Q =T ×T . Given a point in Q represented by a
couple of Riemann surfaces (X ,Y ), the Bers simultaneous uniformization of (X ,Y ) produces a
faithful representation ρ : Γ→PSL2(C), unique up to conjugation, realizingΓ as a quasi-Fuchsian
subgroup Γ′ ⊂ PSL2(C). The group Γ′ acts on P1(C), and its limit set Λ is a Jordan curve. The
complementΩ=P1(C) \Λ is a disjoint union of two domains Ω+ and Ω− biholomorphic to open
disks, with X 'Ω+/Γ′ and Y 'Ω−/Γ′. The subspace T × {X 0} ⊂ Q is called the Bers slice. On
Q there are two universal curves X ± → Q, whose fibers are of the form Ω±/Γ′ as above, with
Γ′ ⊂PSL2(C) a holomorphic family of quasi-Fuchsian groups, parametrized by Q. The restriction
of X + to the Bers slice is the universal Teichmüller curve over T , previously denoted by C →T .

The Bers uniformization of the fibers of X +tX − →Q gives rise to sections

(9.20) σ+
QF : Q →P (X +/Q), σ−

QF : Q →P (X −/Q).

These are holomorphic, since the uniformizing quasi-Fuchsian groups Γ′ ⊂PSL2(C) of the fibers
depend holomorphically on parameters. See also [112, Lemma 4.6] for an essentially equivalent
justification.

We introduce the Chern–Simons transforms of σ±
QF. These are holomorphic connections ∇QF,±

on the Deligne pairings 〈ωX ±/Q ,ωX ±/Q〉. To lighten notation, below we write

(9.21) N ± = 〈ωX ±/Q ,ωX ±/Q〉
and

(9.22) N = 〈ωX +/Q ,ωX +/Q〉⊗〈ωX −/Q ,ωX −/Q〉.
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The latter is equipped with the tensor product connection ∇QF.

9.6.2. The complex metric. Because Q is simply connected, we can proceed as in the proof of
Corollary 9.12 and Theorem 9.14, and obtain holomorphic maps

(9.23) ϕ+ : Q → Mir
B(X0,PSL2)`, ϕ− : Q → Mir

B(X 0,PSL2)`.

The Betti spaces in (9.23) are equal to Mir(Γ,PSL2)` and the morphisms ϕ± agree, for they both
send a point (X ,Y ) to the class of the corresponding quasi-Fuchsian representation Γ→PSL2(C).
Thus, from now on we shall write ϕ=ϕ+ =ϕ−. With this understood, we have for the first Chern
forms

c1(N ±,∇QF,±) =± 1

π2
ϕ∗ωPSL2 , c1(N ,∇QF) = 0,

so that (N ,∇QF) is flat. Since Q is simply connected, there exists a holomorphic horizontal
trivialization of N , unique up to scaling.

Definition 9.17. A holomorphic horizontal trivialization of (N ,∇QF) as above is called a complex
metric on N . We introduce the notation τQF for these complex metrics.

Remark 9.18. In the particular case that g ≥ 3, we can invoke the crystalline property of Corollary
8.8 and Proposition 8.21. We deduce that there are canonical isomorphisms of line bundles with
connections

N + ∼−→ϕ∗LCS(X0)4, N − ∼−→ϕ∗LCS(X 0)4,

and
N

∼−→ϕ∗(LCS(X0)4 ⊗LCS(X 0)4).

The complex metric of LCS(X0)4 on Mir
B(X0,PSL2)` can be pulled back to N , thus providing a

complex metric in the sense of Definition 9.17.

For the next statement, we introduce j : T ,→Q the totally real embedding sending a point
represented by X to the couple (X , X ) of conjugate Riemann surfaces. Notice that the quasi-
Fuchsian group uniformizing X and X is actually Fuchsian. The image j (T ) is thus called the
Fuchsian locus. Recall that the pairing 〈ωC /T ,ωC /T 〉 carries an intersection metric induced by
the choice of a hyperbolic metric, whose Chern connection is ∇F by Theorem 9.11. We denote by

∇F
the associated connection on the conjugate line bundle 〈ωC /T ,ωC /T 〉, defined by imposing

∇F
v =∇Fv for a local section v of 〈ωC /T ,ωC /T 〉. Below, we interpret the metric on the Deligne

pairing as providing a C ∞ trivialization of 〈ωC /T ,ωC /T 〉⊗〈ωC /T ,ωC /T 〉.
Theorem 9.19. Let the assumptions be as above.

(1) There are unique isomorphisms of C ∞ complex line bundles with connections on T

j∗(N +,∇QF,+) ' (〈ωC /T ,ωC /T 〉,∇F), j∗(N −,∇QF,−) ' (〈ωC /T ,ωC /T 〉,∇F
),

restricting to the identity at X0 and X 0, respectively.
(2) For the hyperbolic intersection metrics, the isomorphisms of the first point are also com-

patible with the Chern connections, and isometric.
(3) Let τQF be a complex metric on N . Then, via the isomorphisms of the first point, j∗τQF

is identified with a constant multiple of the trivialization associated to the hyperbolic
intersection metric on 〈ωC /T ,ωC /T 〉.

(4) For the hyperbolic intersection metrics, the norm of τQF is constant along the Fuchsian
locus.
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Proof. We begin with a local version of the first point, say for N +. Let p1 : Q → T be the
projection to the first factor, and denote by C̃ →Q the base change of C →T by p1. Because
C →T is a local universal family of Riemann surfaces, the curves X + and C̃ are isomorphic
locally with respect to Q. We can thus cover the Fuchsian locus by open subsets of the form
V =U ×U , so that the restricted curves X +

V →V and C̃V →V are isomorphic over V . For such
V , we look at the commutative diagram

P (X +
V /V )

��

p̃1
// P (CU /U )

��

U
j

//

id

44V
p1

//

σ+
QF

FF

U ,

σF

EE

where the square is cartesian with p̃1 defined as the composition

P (X +
V /V ) 'P (C̃V /V ) 'P (CU /U )×U V →P (CU /U ).

We have the relationship p̃1σ
+
QF j = σF, which translates the tautological fact that the quasi-

Fuchsian uniformization agrees with the Fuchsian uniformization along the Fuchsian locus. By
the functoriality of complex Chern–Simons line bundles, we have an isomorphism

KCS(X +
V /V ) ' p̃∗

1 KCS(CU /U )

of holomorphic line bundles with connections. We derive a string of isomorphisms of C ∞
bundles with connections

j∗(N +,∇QF,+)|U ' j∗(σ+
QF)∗KCS(X +

V /V )

' j∗(σ+
QF)∗p̃∗

1 KCS(CU /U )

'σ∗
FKCS(CU /U ) ' (〈ωC /T ,ωC /T 〉,∇F)|U ,

(9.24)

where we applied Theorem 9.4 in the last isomorphism.
Next, consider an open cover {Ui }i of T , such that the previous argument applies to each

Vi = Ui ×U i . We may suppose that the intersections Ui ∩U j are connected. We denote the
corresponding isomorphisms of the form (9.24) by ϕi . On overlaps Ui j =Ui ∩U j , we can write
ϕi = ci jϕ j , for some invertible functions ci j ∈C ∞(Ui j ). Since the isomorphisms ϕi and ϕ j are
compatible with the same connections ∇QF,+ and ∇F, the functions ci j are necessarily constant.
These constants constitute a 1-cocyle with values inC×. Because T is contractible, H 1(T ,C×) = 0
and the cocycle {ci j }i j is a coboundary. Therefore, after possibly scaling the isomorphisms ϕi

by constants, we can suppose that ϕi =ϕ j on Ui j , and hence glue them together into a global
isomorphism of line bundles over T . The latter still preserves the connections, since the scaling
involves only constants. Such an isomorphism preserving the connections is unique up to a
constant, and can be normalized to restrict to the identity at the origin X0 of T . This is the
sought canonical isomorphism of the statement. By the same token, if j : T ,→Q sends X to
(X , X ), then there is a canonical isomorphism

(9.25) j
∗

(N −,∇QF,−) ' (〈ω
C /T ,ω

C /T 〉,∇̃F),

where ∇̃F is the natural Chern connection on 〈ω
C /T ,ω

C /T 〉. The underlying C ∞ manifolds of

T and T are equal, and in this interpretation the C ∞ morphisms j and j are just the diagonal
embedding. Therefore, the C ∞ bundle j

∗
N − is the same as j∗N −. It remains to justify that
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〈ω
C /T ,ω

C /T 〉 is naturally isomorphic to the conjugate of 〈ωC /T ,ωC /T 〉, and ∇̃F corresponds to

∇F
. Below, we address these facts in sequence.
Consider a local holomorphic trivialization 〈s, t〉 of 〈ωC /T ,ωC /T 〉, where s and t are mero-

morphic sections of ωC /T (after possibly replacing T by an open subset). We denote by 〈s, t〉
the same section seen in 〈ωC /T ,ωC /T 〉. The complex conjugates s and t make sense as rel-
ative meromorphic forms on C , and the symbol 〈s, t〉 is a local holomorphic trivialization of
〈ω

C /T ,ω
C /T 〉. We claim that sending 〈s, t〉 to 〈s, t〉 for any such symbols, induces a C ∞ isomor-

phism of complex line bundles. It is enough to show that the relations defining the Deligne
pairing are preserved, compatibly with the action of the sheaf C ∞

T
on these line bundles. For

instance, let us change s by a meromorphic function f , such that the symbol 〈 f s, t〉 is still defined.
On the one hand,

〈 f s, t〉 = Ndiv t/T ( f ) 〈s, t〉 = Ndiv t/T ( f ) 〈s, t〉.
On the other hand, by the very definition of the action of C ∞

T
on 〈ωC /T ,ωC /T 〉, we have

Ndiv t/T ( f ) 〈s, t〉 = Ndiv t/T ( f )〈s, t〉 = 〈 f s, t〉.
The symmetric argument is valid for the second entry of the Deligne pairing. This settles the
claim. In particular, the Chern connection ∇̃F can be seen as acting on 〈ωC /T ,ωC /T 〉.

The action of the Chern connections on local sections are made explicit as follows. If 〈s, t〉 is a
symbol as above, then

∇F〈s, t〉 = ∂ log‖〈s, t〉‖2 ⊗〈s, t〉.
Since the ∂ operator on T is the ∂ operator on T , we similarly have

∇̃F 〈s, t〉 = ∂ log‖〈s, t〉‖2 ⊗〈s, t〉.
We notice that the norms of 〈s, t〉 and 〈s, t〉 coincide. Extending the actions of C ∞

T
on 〈ωC /T ,ωC /T 〉

and 〈ωC /T ,ωC /T 〉 to the algebra of complex differential forms in the usual manner, we conclude

(9.26) ∇̃F 〈s, t〉 =∇F〈s, t〉.
Namely, ∇̃F =∇F

by definition of the latter. This completes the proof of the first point.
For the second claim of the statement, the Fuchsian uniformization of the fibers of the curves

X ± →Q induces C ∞ sections σ±
F : Q →P (X ±/Q). These satisfy σ±

F j =σ±
QF j , since the quasi-

Fuchsian uniformization agrees with the Fuchsian uniformization along the Fuchsian locus.
We know by Theorem 9.11 that the Chern–Simons transforms of the σ±

F are the natural Chern
connections on N ±, denoted by ∇F,±. Therefore we find

j∗(N ±,∇QF,±) = j∗(σ±
QF)∗KCS(X ±/Q)

= j∗(σ±
F )∗KCS(X ±/Q) = j∗(N ±,∇F,±).

Thus, the isomorphisms of the first point are also compatible with the Chern connections ∇F,±

on N ±, and necessarily isometric, up to constants. The normalization condition at X0 and X 0

ensures they are actually isometric everywhere.
Now for the third point. The trivialization j∗τQF is flat for the connection j∗∇QF, which is the

tensor product connection of j∗∇QF,+ and j∗∇QF,−. For simplicity of notation, let us identify these
objects with the corresponding ones via the isomorphisms of the first point. In particular, the

connections are identified with the connections ∇F and ∇F
. We write the flatness condition of

105



the dual trivialization j∗τ∨QF in terms of its action on 〈ωC /T ,ωC /T 〉⊗〈ωC /T ,ωC /T 〉. If u ⊗ v is a
local section of the latter, we find

(9.27) j∗τ∨QF(∇Fu ⊗ v)+ j∗τ∨QF(u ⊗∇Fv) = d( j∗τ∨QF(u ⊗ v)),

where we used that ∇F
v =∇Fv by definition of ∇F

. The differential equation (9.27) is the same as
the one expressing that ∇F is unitary for the hermitian metric on the Deligne pairing. Since two
flat trivializations of a line bundle differ by a constant, we conclude that j∗τ∨QF and the metric
are proportional as in the statement.

The last assertion is a direct consequence of the second and third points of the theorem. �

Remark 9.20. (1) Theorem 9.19 can be loosely restated by saying that the hermitian metric
on the Deligne pairing uniquely extends to a holomorphic trivialization of N . This
justifies the terminology "complex metric".

(2) The proof of the theorem overcomes the fact that the embedding j : T → Q is not
holomorphic, and hence the base change functoriality of intersection bundles does not
apply. Furthermore, the base changes of the Bers’ curves by j are not holomorphic or
anti-holomorphic families, but only C ∞. We will encounter similar complications later
in §10.5. See also the next remark.

(3) It is possible to establish a variant of the theorem, where the Bers’ curves X ± are replaced
by the base changes to Q of the curves C → T and C → T . The corresponding state-
ments are then easier to justify. However, it is unnatural to work with these families of
curves.

9.6.3. Potential of the Weil–Petersson form on the quasi-Fuchsian space. Since the line bundle
N is the product of Deligne pairings in (9.22), we can also equip it with the hermitian metric
associated to a hyperbolic metric on the fibers of X ± →Q. For any complex metric τQF on N ,
the function log‖τQF‖−2 is then a potential of the Weil–Petersson form on Q. By Theorem 9.19,
the function log‖τQF‖−2 is constant along the Fuchsian locus. It is also real analytic, since the
Weil–Petersson metric is real analytic. Finally, it is easily seen to be invariant by the natural anti-
holomorphic involution of Q, sending a point (X ,Y ) to (Y , X ). These are the same conditions
satisfied by the Liouville action of Takhtajan–Teo [112]. See also McIntyre–Teo [94, Section 2.6].
In Corollary 10.17 below, we will prove that both potentials actually agree, up to the addition
of a constant. The proof is based on holomorphic factorization formulas for determinants of
Laplacians. An alternative method, along the lines of the proof of Proposition 9.15, relies on an
extension of Theorem 9.9 to the quasi-Fuchsian space. A more general setting is considered in
the forthcoming subsection, where this argument is sketched.

9.7. Comparison to the work of Guillarmou–Moroianu. In the previous subsections, we fo-
cused on spaces of Schottky and quasi-Fuchsian groups. These are particular instances of
Kleinian groups, uniformizing convex cocompact hyperbolic 3-manifolds. In [70], Guillarmou–
Moroianu developed a theory of complex Chern–Simons line bundles on the Teichmüller spaces
of such groups. Taking §9.3–§9.6 as a guide, we propose an analogous construction from our
perspective, and outline the comparison between both approaches.

We follow the exposition by Loustau [89, Section 2.3] regarding convex cocompact hyperbolic
manifolds, and the references therein. Let M be an oriented complete hyperbolic 3-manifold,
isometric to a quotient H3/Γ, where H3 is the hyperbolic 3-space and π1(M) ' Γ ⊂ PSL2(C)
is a Kleinian group. We suppose that M admits a compactificaiton by adding a conformal

106



boundary ∂M , consisting of a finite number of compact Riemann surfaces of genus at least 2.
The boundary can be uniformized as Ω/Γ, where Ω⊂ P1(C) is the domain of discontinuity of
Γ. Let us decompose ∂M = X1 t . . .t Xn , where the X j are connected Riemann surfaces. We
consider the associated Teichmüller space T :=T (∂M) =T (X1)× . . .×T (Xn), with universal
curves X j →T , for j = 1, . . . ,n. We write P (∂M) =P (X1/T )× . . .×P (Xn/T ). This is the space
of all the complex projective structures on ∂M , seen as an oriented topological surface. We
define the complex Chern–Simons line bundle on P (∂M) as the product

KCS(∂M) =⊗
j

p∗
j KCS(X j /T ),

where p j is the projection to the j -th component. If π : P (∂M) →T (∂M) is the structure map,
then Theorem 9.4 provides a canonical isomorphism

KCS(∂M) '⊗
j
π∗〈ωX j /T ,ωX j /T 〉.

We will look at two particular sections of π : P (∂M) →T (∂M), and the corresponding induced
connections on ⊗ j 〈ωX j /T ,ωX j /T 〉.

The first one is a holomorphic sectionβ, obtained by varying the convex cocompact hyperbolic
structure on M . This is a generalization of Bers’ simultaneous uniformization. We refer to Loustau
loc. cit., and more precisely Theorem 2.1, Proposition 2.2. By his Theorem 4.3, and proceeding as
in §9.6 above for the quasi-Fuchsian case, the connection on β∗KCS(∂M) is flat. By the simple
connectivity of T (∂M), we can find a flat trivialization τK, unique up to constant.

The second one is the Fuchsian section σF, obtained as in §9.4. By Theorem 9.11, the con-
nection on σ∗

FKCS(∂M) is identified with the product of the natural Chern connections on the
Deligne pairings, denoted by ∇F. The curvature is given in terms of the Weil–Petersson form on
T (∂M), by Corollary 9.12. A potential of the latter is then log‖τK‖−2, where ‖ ·‖ is the metric on
the product of Deligne pairings, associated to the choice of the hyperbolic metric on the fibers of
the curves X j →T .

Now we review the main constructions of Guillarmou–Moroianu [70], and adopt their notation
for an easier comparison. The authors define a Chern–Simons line bundle L on T . It is a
holomorphic line bundle endowed with a hermitian metric, whose curvature is also expressed in
terms of the Weil–Petersson form [70, Theorem 2]. The Chern connection is denoted by ∇L . They
consider as well the pullback of (L ,∇L ) to (the total space of) the cotangent bundle T ∗T , where
they modify the connection ∇L by adding a suitable multiple of the (1,0) part of the Liouville
form. This produces a new compatible connection ∇µ. By means of a renormalized complex
Chern–Simons action, they also exhibit an explicit holomorphic section of L on T , denoted by
e2πiCSPSL2(C)

. Up to a constant, it is characterized by being flat for σ∗∇µ, where σ : T → T ∗T is a
section described in terms of hyperbolic funnels.

To compare both constructions, we need to identify T ∗T and P (∂M). For this, we use the
C ∞ section σF and the affine bundle structure of P (∂M). Under this identification, we can see
KCS(∂M) as living on T ∗T . We will now compare the curvatures of KCS(∂M) and ∇µ. For this,
a slight generalization of [89, Corollary 6.13] to T (∂M) is needed. The proof follows the same
lines as loc. cit., by applying [89, Theorem, bottom of p. 1769] and a straightforward extension of
Proposition 3.3 in op. cit.. One can then deduce that the curvature of KCS(∂M) is minus twice
the curvature of ∇µ. Because T is simply connected, we infer that there is an isomorphism
of line bundles with connections ψ : KCS(∂M) ' (L ,∇µ)⊗(−2) on T ∗T , unique up to constant.
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This isomorphism is necessarily holomorphic, for the holomorphic structures of the involved
bundles.

Via the identification P (∂M) ' T ∗T above, the Fuchsian section σF corresponds to the zero
section. Pulling back KCS(∂M) and (L ,∇µ) by this section, ψ induces an isomorphism of line
bundles with connections

ψ0 :
(
⊗ j 〈ωX j /T ,ωX j /T 〉,∇F

) ∼−→ (L ,∇L )⊗(−2).

We deduce that this isomorphism is holomorphic and isometric, up to a constant.
It remains to compare the holomorphic sections τK and e2πiCSPSL2(C)

. It suffices to compare
their norms. For this purpose, one first establishes a direct extension of Theorem 9.9 to sec-
tions of P (∂M) → T (∂M), formally with the same argument. Then one can argue as in the
proof of Proposition 9.15, but invoking Takhtajan–Teo [112, Theorem 6.10] in order to express
σF−β = 1

2∂STT, where STT is their potential for the Weil–Petersson form in the Kleinian case.
This entails that log‖τK‖ = 1

2πSTT up to the addition of a constant, or ‖τK‖ = exp( 1
2πSTT) up to

scaling. The latter equals the norm of (e2πiCSPSL2(C)
)−2, up to scaling. This is a consequence of

the very construction [70, Proposition 1] and the fundamental relationship between STT and the
renormalized volume of convex cocompact hyperbolic 3-manifolds [112, Theorem 5.3]. We thus
conclude that τK and (e2πiCSPSL2(C)

)−2 correspond via ψ0, up to scaling.
As an application of their work, Guillarmou–Moroianu establish an explicit isomorphism

between the Chern–Simons line bundle on the Schottky space and the determinant bundle [70,
Theorem 5]. We postpone an approach in our terms to Remark 10.9 (2) in §10.4.2.

10. APPLICATIONS TO ANALYTIC TORSIONS

In this section, the theory of Section 8 and Section 9 is applied to the Deligne–Riemann–Roch
isomorphism. For the universal object of a moduli space of flat vector bundles on a Riemann
surface, our study of the complex Chern–Simons line bundle provides complex metrics on the
intersection bundles involved in Deligne’s isomorphism. The question is whether there is a
counterpart for the determinant of cohomology, which admits a spectral description as in the
theory of the Quillen metric. A candidate is the holomorphic Cappell–Miller torsion of flat vector
bundles [32]. In the introduction of op. cit., the authors conjectured that their torsion element
indeed satisfies properties akin to those of the Quillen metric in the work of Bismut and coworkers.
For flat line bundles on Riemann surfaces, this was settled by Freixas–Wentworth [56], stating
that the Cappell–Miller torsion and the complex metrics correspond via Deligne’s isomorphism.
The results of Section 8 are the key to the extension to arbitrary rank. A similar program can be
envisioned on spaces of projective structures on Riemann surfaces, in connection with Chern–
Simons transforms and complex metrics for Deligne pairings of canonical bundles. Notably,
we consider Bergman and quasi-Fuchsian structures, and we show that our theory subsumes
the holomorphic factorization theorems for determinants of Laplacians proven by Kim [82] and
McIntyre–Teo [94]. This leads to the proof of a conjecture of Bertola–Korotkin–Norton [15] on
the comparison between Bergman and quasi-Fuchsian projective structures, in terms of Kim’s
holomorphic extension of the determinant of the Laplacian.

10.1. Deligne–Riemann–Roch and holomorphic analytic torsion. Let f : X → S be a proper
submersion of complex manifolds, whose fibers are Riemann surfaces of genus g ≥ 2. Let E
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be a holomorphic vector bundle on X . Recall from Theorem 3.21 the Deligne–Riemann–Roch
isomorphism

DRR(X /S,E) : λ(E)12 ' 〈ωX /S ,ωX /S〉rkE ⊗〈detE ,detE ⊗ω−1
X /S〉6 ⊗ IC2(E)−12,

which commutes with base change and is functorial in E . Suppose that we are given a hermitian
metric on ωX /S , and a hermitian metric on a holomorphic vector bundle E on X . We equip the
intersection bundles on the right hand side of DRR(X /S,E ) with the corresponding intersection
metrics. On the determinant of the cohomology, we consider the Quillen metric, that we will
shortly review for completeness. As a consequence of the work of Deligne [38], Bismut–Freed
[17, 18] Bismut–Gillet–Soulé [19, 20, 21] and Bismut-Lebeau [22], Deligne’s isomorphism is an
isometry up to an explicit topological constant, depending only on the genus of the fibers of
f and the rank of E . The precise value of the constant can be extracted from the arithmetic
Grothendieck–Riemann–Roch theorem of Gillet–Soulé [65, Theorem 7], but we will not need it in
this article.

Let us briefly recall the construction of the Quillen metric. It is enough to discuss the case
when S is a point, and thus X is a compact Riemann surface. First, we introduce the Dolbeault
complex

A0,0(X ,E)
∂E−→ A0,1(X ,E).

Depending on the hermitian metrics on TX and E , the spaces A0,p (X ,E ) carry L2 hermitian prod-

ucts. Let ∂
∗
E be the formal adjoint of ∂E for the L2-product. There are canonical isomorphisms

H 0(X ,E) ' ker∂E ⊂ A0,0(X ,E), H 1(X ,E) ' ker∂
∗
E ⊂ A0,1(X ,E).

The cohomology spaces inherit the L2 hermitian products, and we denote by hL2 the induced

metric on λ(E). Finally, let ∆
∂E

= ∂E∂
∗
E be the Dolbeault Laplacian acting on A0,1(X ,E). It is an

elliptic differential operator of order 2, which is self-adjoint and positive. Let {λk }k≥1 be the
strictly positive eigenvalues of ∆

∂E
, repeated according to multiplicities. Then the associated

spectral zeta function

ζ
∂E

(s) =∑
k

1

λs
k

, Re(s) > 1,

is absolutely, and locally uniformly convergent, thus defining a holomorphic function on the
half-plane Re(s) > 1. By the theory of the heat operator, it is shown that ζ

∂E
(s) has a meromorphic

continuation to C, which is holomorphic at s = 0. The zeta regularized determinant of ∆
∂E

is
then defined as

det′∆
∂E

= exp
(
−ζ′

∂E
(0)

)
,

and the Quillen metric is

hQ = (det′∆
∂E

)−1hL2 .

A last word regarding the normalization of the L2-metric on A0,p (X ,E ). In the work of Bismut–
Gillet–Soulé, it is taken to be 1

2π times the usual L2-pairing in Hodge theory. This distinction is
irrelevant for our purposes, but must be borne in mind if one is willing to evaluate the norm of
DRR(X /S,E) exactly, and not only up to a topological constant.
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10.2. The Cappell–Miller torsion. We review the construction of the Cappell–Miller torsion of
holomorphic vector bundles with connections of type (1,1) on Riemann surfaces. We mostly
follow their original paper [32]. Further details can be found in Liu–Yu [88], Huang [77] and Su
[110].

10.2.1. Non-self-adjoint Laplacians. Let X be a compact Riemann surface and E a C ∞ complex
vector bundle on X . Let ∇ be a C ∞ connection on E . We suppose that the curvature of E has
type (1,1). Then the (0,1) part (resp. (1,0) part) of ∇ defines a holomorphic structure (resp.
anti-holomorphic structure) on E . Notice that an anti-holomorphic structure on E is the same
thing as a holomorphic structure for E seen as a vector bundle on X . We write ∂E and ∂E for ∇0,1

and ∇1,0.
We fix a hermitian structure on X , and let ∗ be the corresponding Hodge star operator on

differential forms, which is conjugate linear. Complex conjugation acts on differential forms, and
it makes sense to conjugate ∗. The resulting operator ∗̂ is complex linear. This can be coupled to
idE , and produces a complex linear map

∗̂ : Ap,q (X ,E) −→ A1−q,1−p (X ,E).

We then define

∂
\

E =−∗̂∂E ∗̂ : Ap,q (X ,E) → Aq,p−1(X ,E),

and

∆
\

∂E
= (∂E +∂\E )2 : Ap,q (X ,E) → Ap,q (X ,E).

If we introduce an auxiliary hermitian metric on E , then we can also take the formal adjoint ∂
∗
E

of ∂E and the usual Dolbeault Laplacian ∆
∂E

= (∂E +∂∗E )2. We may then compare

∂
\

E = ∂E +ϕ, ∆
\

∂E
=∆

∂E
+D,

where ϕ ∈ A0(X ,EndE) and D = ∂Eϕ+ϕ∂E is a first order differential operator. We thus see
that ∆\

∂E
is an elliptic differential operator of order 2, with the same principal symbol as ∆

∂E
.

Contrary to the Dolbeault Laplacian, ∆\
∂E

is in general non-self-adjoint. Nevertheless, for the

purpose of constructing the Cappell–Miller torsion, it has as good spectral properties as ∆
∂E

for the construction of the Quillen metric [32, Section 4 & 11]. See also Müller [95, Section 2]
for a compendium of the relevant spectral theory, and Shubin [104, Chapter 2] for a thorough
treatment.

Remark 10.1. Suppose that (F,h) is a holomorphic hermitian vector bundle on X , with Chern
connection ∂F +∂F . For later use, we clarify a point regarding the structure of the holomorphic
vector bundle (F∨,∂F ) on X .

Denote by F the complex conjugate vector bundle on X .14 For a local holomorphic section
f of F , there is a corresponding holomorphic section f of F , and the correspondence f 7→ f
is conjugate linear. From the condition of Chern connection, it is readily checked that the
assignment f 7→ h( · , f ) establishes an isomorphism F ' F∨ of holomorphic vector bundles on
X , where F∨ is equipped with the holomorphic structure induced by ∂F .

14This is not to be confused with the notation in Section 4 for hermitian vector bundles.
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10.2.2. Construction of the Cappell–Miller torsion. For (E ,∇) as above, the Cappell–Miller torsion
is a non-trivial element τ(E ,∇) of the product of determinant lines det H•

∂E
(X ,E )⊗det H•

∂E
(X ,E∨).

When ∇ is the Chern connection of a hermitian metric on E , τ(E ,∇) is identified with the Quillen
metric, seen as an element of the product of conjugate lines det H•

∂E
(X ,E)⊗det H•

∂E
(X ,E) (see

Remark 10.1). We list the main steps of the construction of τ(E ,∇).
For the discussion below, recall the notion of determinant of a complex of vector bundles

in §3.1.3. Let b ∈ R>0 be such that no generalized eigenvalue of ∆\
∂E

has real part equal to b.

We denote by A0,p
<b (X ,E) the finite dimensional subspace of A0,p (X ,E) spanned by generalized

eigenvectors, whose eigenvalues λ have Reλ< b. The Dolbeault complex restricts to

A0,0
<b(X ,E)

∂E−→ A0,1
<b(X ,E).

One can prove that the inclusion (A0,•
<b(X ,E),∂E ) into the full Dolbeault complex is a quasi-

isomorphism [32, p. 151]. Hence, we infer from (3.10) that

(10.1) det(A0,•
<b(X ,E),∂E ) ' det H•

∂E
(X ,E).

Similarly, the operator ∂
\

E provides a homological complex (going in the opposite direction)

A0,1
<b(X ,E)

∂
\

E−→ A0,0
<b(X ,E).

By the definition of the determinant of a complex in (3.9), we trivially have

(10.2) det(A0,•
<b(X ,E),∂

\

E ) ' det(A0,•
<b(X ,E),∂E )∨.

We will now observe that by construction, (A0,•
<b(X ,E ),∂

]

E ) is isomorphic to a restricted Dolbeault

complex for F := E ⊗ωX on X . Before, let us stress that (p, q) forms on X are seen as (q, p) forms

on X . With this understood, we have a commutative diagram

A0,1
<b(X ,E)

∂
\

E
//

∗̂ o
��

A0,0
<b(X ,E)

−∗̂ o
��

A0,1
<b(X ,E)

∂E
// A1,1

<b(X ,E)

A0,0
<b(X ,F )

∂F
// A0,1

<b(X ,F ).

We infer

(10.3) det(A0,•
<b(X ,E),∂

\

E ) ' det H•
∂F

(X ,F ) ' det H•
∂E

(X ,E∨),

where the rightmost isomorphism is Serre’s duality on X . Concatenating (10.1)–(10.3), we arrive
at an isomorphism

det H•
∂E

(X ,E) ' det H•
∂E

(X ,E∨)∨.

Equivalently, we have found a non-trivial element τ<b(E ,∇) ∈ det H•
∂E

(X ,E)⊗det H•
∂E

(X ,E∨).
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The previous construction depends on the choice of the cut b. After introducing an Agmon
angle for the definition of the complex powers of ∆\

∂E
, one has a well-defined spectral zeta

function
ζ>b(s) = tr

(
Π>b(∆\

∂E
)−s

)
, Re s > 1,

where Π>b = 1−Π<b is the spectral projector to the space of generalized eigenfunctions, whose
generalized eigenvalues are λ with Reλ> b. By Lidskii’s theorem, the zeta function has the form

ζ>b(s) =∑
k

1

λs
k

,

where theλk are the generalized eigenvalues with Reλk > b, counted with algebraic multiplicities.
The zeta function converges absolutely and locally uniformly for Re s > 1, and has a meromorphic
continuation to C, which is holomorphic in a neighborhood of s = 0. We define

(10.4) det∆\
∂E , >b

= exp(−ζ′>b(0)) ∈C×,

which is seen to be independent of the choice of Agmon angle. Finally, define

τ(E ,∇) :=
(
det∆]

∂E , >b

)−1
τ<b(E ,∇) ∈ det H•

∂E
(X ,E)⊗det H•

∂E
(X ,E∨).

This element does not depend on the choice of b, and we call it the Cappell–Miller (holomorphic)
torsion.

10.3. Cappell–Miller torsion and Deligne–Riemann–Roch. We will now establish the compati-
bility of the Cappell–Miller torsion and the complex metrics on intersection bundles, through
Deligne’s isomorphism.

The setting is as follows. Let X be a compact Riemann surface of genus g ≥ 2 and p ∈ X a base
point. Set Γ=π1(X , p). We let X = X ×Rir(Γ,r ) → Rir(Γ,r ) be the universal curve. We also write
E = E un

B for the universal vector bundle. We will make no notational distinction between vector
bundles on X and their pullbacks to X . For instance, ωX is abusively identified with ωX /Rir(Γ,r ).
We fix a holomorphic vector bundle F of rank f on X , and we form Deligne’s isomorphism
DRR(X /Rir(Γ,r ),E ⊗F ):

(10.5) D : λ(E ⊗F )12 ' 〈ωX ,ωX 〉r · f ⊗〈det(E ⊗F ),det(E ⊗F )⊗ω−1
X 〉6 ⊗ IC2(E ⊗F )−12.

We consider corresponding objects for the conjugate Riemann surface X . Recall that the
complex structure of Rir(Γ,r ) does not depend on the complex structure of X . We will use the
notation X c = X ×Rir(Γ,r ) → Rir(Γ,r ), and E c for the dual of the universal object. Hence, the
C ∞ vector bundles underlying E∨ and E c are the same, as are their flat relative connections, but
the holomorphic structures are different. We also take F the complex conjugate to F . Deligne’s
isomorphism for E c ⊗F can then be written as

(10.6) Dc : λ(E c ⊗F )12 ' 〈ωX ,ωX 〉r · f ⊗〈det(E c ⊗F ),det(E c ⊗F )⊗ω−1
X
〉6 ⊗ IC2(E c ⊗F )−12.

10.3.1. Holomorphic regularity of the Cappell–Miller torsion. We first study the left hand side of
the isomorphism D⊗Dc =(10.5)⊗(10.6). Introduce hermitian metrics on X and F . The Chern
connection of F decomposes as ∂F +∂F . We identify F∨ and F by means of the hermitian metric
as in Remark 10.1. With this identification, the holomorphic structure of F corresponds to the
holomorphic structure induced by ∂F on F∨, as in the Cappell–Miller construction. Therefore we
can use the Cappell–Miller torsion to obtain a pointwise trivialization of λ(E ⊗F )⊗λ(E c ⊗F ) on
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Rir(Γ,r ). The input datum here is the chosen hermitian metric on X , the universal connection
on E and the Chern connection on F . If ρ ∈ Rir(Γ,r ) is a given representation, we denote the
associated Cappell–Miller element

τCM(ρ) ∈λ(Eρ⊗F )⊗λ(E c
ρ ⊗F ).

We establish that ρ 7→ τCM(ρ) is holomorphic, with respect to the natural holomorphic structure
of the determinant line bundles of Knudsen–Mumford [85], briefly described in §3.1.3.

Theorem 10.2. With the assumptions as above, the pointwise Cappell–Miller torsion τCM defines
a holomorphic trivialization of λ(E ⊗F )⊗λ(E c ⊗F ) on Rir(Γ,r ).

Proof. If E has rank one and F is trivial, we already established the holomorphicity property in
[56, Section 5.1]. The proof in the general case follows the same lines. The introduction of F
does not pose any particular difficulty. Only the analogue of Lemma 5.1 (i) in op. cit. requires an
explanation. Namely, we need to justify that the non-self-adjoint Laplacians ∆\ρ associated to
Eρ⊗F in the Cappell–Miller construction, constitute a holomorphic family of closed operators
of type (A) in the sense of Kato [80, Chapter VII, Section 2]. We now address this point. The
approach is similar to the starting point of Fay’s [48, proof of Theorem 4.8], in the unitary setting.

We need a local holomorphic parametrization of Rir(Γ,r ). For this, we can rely on the local
parametrization of Mir

dR(X ,r ) by the Hodge slices, introduced by Collier–Wentworth [34, Section
3]. Alternatively, we can also use de Rham slices as in Ho–Wilkin–Wu [76, Section 2]. Both
approaches provide the following description. Fix a representation ρ0 ∈ Rir(Γ,r ), which corre-
sponds to the rigidified flat vector bundle Eρ0 on X , with connection D. We write E for the
C ∞ vector bundle underlying Eρ0 . Then there exists a finite dimensional complex submani-
fold U ⊂ A1(X ,EndE), containing the origin, such that for every µ ∈ U , the C ∞ connection
D +µ on E is flat. In particular, D +µ defines a new holomorphic structure on E . We can then
take the point corresponding to (E ,D +µ) in Mir

dR(X ,r ). Possibly shrinking U around ρ0, this
assignment defines a holomorphic open immersion U → Mir

dR(X ,r ), which parametrizes an open
neighborhood of (E ,D).

Let X̃ be the universal cover of X based at p, and p̃ ∈ X a lift of p. By definition, Eρ0 = X̃ ×ΓCr ,
where the action of Γ on Cr is via the representation ρ0 : Γ→ GLr (C). On X̃ , the connection
D +µ becomes an operator d + µ̃ on vectors of ρ0-equivariant functions, where µ̃ is now a matrix
of holomorphic differential forms with Adρ0 multiplier. Because the integrability condition
d µ̃+ µ̃∧ µ̃= 0 is fulfilled, by flatness of both D and D +µ, we can uniquely solve the following
differential equation in the variable z ∈ X̃ :

A(µ, z)−1dz A(µ, z) =−µ̃, A(µ, p̃) = idr .

The matrix A(µ, z) depends holomorphically on µ ∈U . It satisfies a transformation law of the
form

A(µ,γz) = ρ(µ)(γ)A(µ, z)ρ(µ)(γ)−1,

with ρ(µ) : Γ→ GLr (C) a holomorphic family of representations parametrized by µ ∈ U , and
ρ(0) = ρ0. For this family, the classifying morphism U → Mir(Γ,r ) is a holomorphic open embed-
ding, corresponding to the above U → Mir

dR(X ,r ), under the Riemann–Hilbert correspondence.
For simplicity, let us identify U with its image in Mir(Γ,r ). Since the ρ(µ) are actual representa-
tions and not just conjugacy classes, we even have a holomorphic map U → Rir(Γ,r ), and hence
a local section of the quotient map π : Rir(Γ,r ) → Mir(Γ,r ). Since this morphism has the structure
of a PSLr (C)-torsor, we conclude that π−1(U ) 'U ×PSLr (C), where the action of PSLr (C) on U
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is by conjugation on the representations ρ(µ). Because the projection SLr (C) →PSLr (C) is étale,
we can actually use U ×SLr (C) as a local parametrization of Rir(Γ,r ). Given B ∈ SLr (C), we shall
write ρ(µ,B) = Bρ(µ)B−1.

We now examine the Laplacian ∆\
ρ(µ,B) acting on A0,p (X ,Eρ(µ,B) ⊗F ). We lift it to the universal

cover. If we denote by F̃ the pullback of F to X̃ , then∆\
ρ(µ,B) lifts to an operator on A0,p (X̃ ,Cr ⊗ F̃ ).

From the very construction, it is seen to coincide with the Dolbeault Laplacian of F̃⊕r =Cr ⊗ F̃ ,
associated to the pulled back hermitian metrics on TX̃ and F̃ . The latter does not depend on
ρ(µ,B), and we denote it by ∆̃. We now conjugate ∆̃ by the function B A(µ,•) constructed in the
previous paragraph. We obtain a new non-self-adjoint Laplacian ∆̃(µ,B) = (B A(µ,•))−1∆̃ B A(µ,•).
Let us summarize the situation:

∆̃æ A0,p (X̃ ,Cr ⊗ F̃ ) −→ A0,p (X̃ ,Cr ⊗ F̃ ) å ∆̃(µ,B)

g 7−→ (B A(µ,•))−1g .

ρ(µ,B)-equivariant 7−→ ρ0-equivariant.

The operators ∆̃(µ,B) acting on ρ0-equivariant elements in A0,p (X̃ ,Cr ⊗ F̃ ) are closed and share
the same domain. They are obtained by conjugating the fixed operator ∆̃ by B A(µ,•), whose
dependence on the parameters (µ,B) ∈ U ×SLr (C) is holomorphic. These are the conditions
required for a holomorphic family of closed operators of type (A).

For the convenience of the reader, we briefly review the remaining steps of the proof. With the
notation as in §10.2.2, Kato’s condition (A) ensures that the restricted Dolbeault complexes of
the form A0,p

<b (X ,Eρ⊗F ) organize into holomorphic vector bundles, for small perturbations of
ρ in Rir(Γ,r ). One then needs to check that the corresponding isomorphisms (10.1) and (10.3)
are holomorphic, where the determinants of Dolbeault cohomologies are equipped with the
holomorphic structure coming from the Knudsen–Mumford construction. The compatibility of
both holomorphic structures is easily established after the description of the latter offered by
Bismut–Gillet–Soulé [21, p. 346]. For our purpose, the key point is that in the family X ×Rir(Γ,r ) →
Rir(Γ,r ), the complex structure of the fibers is kept constant. The argument in rank one and
trivial F is elaborated in [56, Proposition 5.3], and the general case is formally the same. To
conclude, it remains to justify that the determinants det∆\

ρ, >b as in (10.4) are holomorphic in ρ,

under small deformations of ρ. This is a consequence of Greiner’s parametrix construction and
asymptotic expansions for heat equations of elliptic operators [67, Section 1]. Alternatively, one
can directly invoke Kontsevich–Vishik [86, Corollary 4.2]. �

10.3.2. Compatibility with the complex metrics. We maintain the setting of §10.3.1 and exclude
the case g = r = 2. We now look at the right hand side of D⊗Dc . We first apply Proposition 3.15
to expand the IC2 terms. After this manipulation, on the right hand side of the isomorphism we
find products of intersection bundles of the following form:

• 〈L, M〉⊗ 〈L, M〉, where L and M are fixed line bundles on X endowed with hermitian
metrics, and L, M are their conjugates on X . The hermitian metric is interpreted as a
trivialization of the tensor product. Notice here there is no variation in the horizontal
(i.e. Rir(Γ,r )) directions, so that the trivialization is constant (hence holomorphic) in the
family.

• 〈L,detE 〉⊗〈L,detE c〉, where L is fixed on X and has a hermitian metric. For such prod-
ucts we defined complex metrics in [56, Section 4]. These will provide holomorphic
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trivializations over Rir(Γ,r ), recovering the hermitian metric on the Deligne pairings at
unitary representations. This complex metric depends on the rigidification of detE ,
induced by the rigidification of E . But it actually does not depend on the metric on L.

• 〈detE ,detE 〉⊗ 〈detE c ,detE c〉, which also carries a complex metric by [56, Section 4],
recovering the natural hermitian metric at unitary representations. It does not depend
on the rigidification.

• IC2(F )⊗ IC2(F ), where F is endowed with a hermitian metric and the intersection metric
on the IC2 is seen as a trivialization of IC2(F )⊗ IC2(F ). Here there is no variation in the
horizontal directions.

• IC2(E )⊗ IC2(E c ), which is naturally isomorphic to IC2(E )⊗ IC2(E c ∨), and thus carries
the holomorphic trivialization obtained by pulling back to Rir(Γ,r ) the complex metric
on the dual of LCS(X )⊗LCS(X ) on Mir(Γ,r ) (Theorem 8.15). By construction, it recovers
the hermitian metric along the unitary locus.

Combining all these, we obtain a holomorphic trivialization of the right hand side of D ⊗Dc ,
defined over Rir(Γ,r ).

Theorem 10.3. Excluding the case g = r = 2, the isomorphism D ⊗Dc on Rir(Γ,r ) sends the
Cappell–Miller torsion to the complex metric on the combination of intersection bundles, up to an
explicit topological constant derived from the arithmetic Riemann–Roch theorem of Gillet–Soulé.

Proof. We already know that the trivializations of D⊗Dc considered on both sides are holomor-
phic on Rir(Γ,r ) and, along unitary representations, recover the Quillen metric and the natural
metric on the intersection bundles. For these, Deligne’s isomorphism is an isometry, up to an
explicit topological constant determined by the arithmetic Riemann–Roch theorem of Gillet–
Soulé. The locus of unitary representations in Rir(Γ,r ) is the preimage of the unitary locus in
Mir(Γ,r ) by the quotient map Rir(Γ,r ) → Mir(Γ,r ). The unitary locus in Mir(Γ,r ) is a totally real
submanifold, and the quotient map is a holomorphic submersion. This is enough to ensure that
the Cappell–Miller torsion and the complex metric have to correspond everywhere via Deligne’s
isomorphism, up to the same explicit topological constant as in the hermitian case. �

Remark 10.4. (1) For the proof of the theorem, it is fundamental that the complex structure
on Rir(Γ,r ) does not depend on the complex structure of X . This is why we need to work
with representation spaces instead of de Rham spaces.

(2) Because R(Γ,r ) is a normal irreducible space, the Cappell–Miller torsion on Rir(Γ,r )
uniquely extends to the whole of R(Γ,r ). This we already knew for the complex metrics
on intersection bundles. The isomorphism D⊗Dc on R(Γ,r ) will necessarily establish a
correspondence between these extensions. The meaning of this on the reducible locus
is not clear. For instance, we do not know if the trivialization defined by extending the
Cappell–Miller torsion to the reducible locus, coincides with the Cappell–Miller torsion
itself (whose definition does not require any irreducibility assumption).

(3) In consideration of the explicit expressions in [56, Section 3 & 4] for the complex metrics
on Deligne pairings, one can see that Theorem 10.3 is compatible with the anomaly
formula for the holomorphic Cappell–Miller torsion of Liu–Yu [88, Theorem 2.5]. Simi-
larly, our theorem is compatible with the asymptotic expansion established by Su [110,
Theorem 5.5].

The following variant of the theorem may suffice for some applications, e.g. §10.5.5 below.
The proof is similar, and we leave the details to the reader.
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Theorem 10.5. Except for g = r = 2, via the isomorphism

IC2(E ⊗F )⊗ IC2(E c ⊗F ) 'λ(E ⊗F )−1 ⊗λ(E c ⊗F )−1

⊗λ(det(E ⊗F ))⊗λ(det(E c ⊗F ))⊗λ(OX )r · f −1 ⊗λ(OX )r · f −1

deduced from (3.35), the complex metric on the left hand side corresponds to the combination of
Cappell–Miller torsions on the right hand side.

�
Notice that the previous theorems entail corresponding versions on Rir(Γ,SLr ), by restricting

through the closed immersion Rir(Γ,SLr ) ,→ Rir(Γ,r ).

Corollary 10.6. In the SLr case, and except for g = r = 2, the line bundle λ(E ⊗F )⊗λ(E c ⊗F )
together with the Cappell–Miller torsion descend to Mir(Γ,SLr ).

Proof. This is a simple consequence of Theorem 10.5, Proposition 6.10 and the fact that the
complex metric on IC2(E )⊗ IC2(E c ) descends by construction, see §8.3. �

10.3.3. Example: explicit formulas in rank 2. This is a continuation of the example §8.3.2. We
place ourselves in the setting therein, and adopt the same notation. Furthermore, we assume
that g ≥ 3 and instead of working on Rir(Γ,2), we restrict to Rir(Γ,SL2).

By Theorem 10.5 and the SL2 assumption, the natural isomorphism

IC2(E ⊗ω2
X0

)⊗ IC2(E c ⊗ω2
X 0

) 'λ(E ⊗ω2
X0

)−1 ⊗λ(E c ⊗ω2
X 0

)−1

⊗λ(ω4
X0

)⊗λ(ω4
X 0

)⊗λ(OX0 )⊗λ(OX 0
)

sends the complex metric on the IC2 bundles to a combination of Cappell–Miller torsions. The
determinant bundles in the second line of the isomorphism are constant C-vector spaces of
dimension one, endowed with Quillen metrics. Hence, upon choosing a basis of those, the
Cappell–Miller torsion of λ(E ⊗ω2

X0
)⊗λ(E c ⊗ω2

X 0
) can be identified with the inverse of the

complex metric on the IC2 bundles, up to a constant. In the vicinity of the unitary locus, the
latter is determined by the explicit construction (8.5).

10.4. Deligne–Riemann–Roch and Bergman projective structures. In Section 9 we considered
classical families of projective structures on Riemann surfaces. Yet, the relevant case of Bergman
projective structures was omitted. We are now in position to study the latter, from the point of
view of Chern–Simons transforms and Deligne’s isomorphism. This will be important in §10.5.4
below, where we address a conjecture of Bertola–Korotkin–Norton.

10.4.1. Relative Bergman projective structures and Chern–Simons transforms. Let X be a marked
compact Riemann surface. The marking induces a canonical basis {A j ,B j } j of the first homology
H1(X ,Z). Following Hawley–Schiffer [71, p. 202–203], there is an associated projective structure
on X , extracted from a meromorphic differential on X ×X characterized by: i) being symmetric
with a double pole along the diagonal; ii) having biresidue 1; and iii) having vanishing A-periods
in any of the two variables. Locally around a point p in the diagonal, the coordinate expression
of this meromorphic form is(

1

(x − y)2
+ 1

6
SB(p)+higher order terms

)
d x ⊗d y.
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The term SB(p) is seen to provide the local expression of a projective connection on X . The
construction can be carried out in holomorphic families of marked Riemann surfaces, giving rise
to holomorphic relative projective structures. See for instance Hejhal [73, Section 3]. We refer to
the projective structures so obtained as Bergman projective structures.

Let X0 be a marked compact Riemann surface of genus g ≥ 2. Introduce the Teichmüller
space T =T (X0) and the universal curve f : C →T . The fibers of f inherit a marking from X0,
and thus we can form the relative Bergman projective connection. This defines a holomorphic
section σB : T →P (C /T ), whose Chern–Simons transform we denote by ∇B. We proceed to
characterize the latter in terms of the determinant of the cohomology and the normalized abelian
differentials.

Consider the Hodge bundle λ(OC ) ' det f∗ωC /T on T . It has a holomorphic trivialization,
depending on the A-cycles only, of the form ω1 ∧ . . .∧ωg , where {ω j } j is the basis of relative
holomorphic differentials with normalized A-periods:∫

A j

ωk = δ j k .

Let τB be the trivialization of the Deligne pairing corresponding to (ω1 ∧ . . .∧ωg )⊗12 via Deligne’s
isomorphism λ(OC )12 ' 〈ωC /T ,ωC /T 〉.
Theorem 10.7. The connection ∇B is the unique connection on the Deligne pairing such that
∇BτB = 0. In particular, ∇B is flat.

Proof. During the proof, we denote by ∇B,λ the connection on λ(OC ) deduced by transporting ∇B

through Deligne’s isomorphism. It is enough to show that ∇B,λω1 ∧ . . .∧ωg = 0. First of all, recall
from §9.4 the connection ∇F on the Deligne pairing, arising from the Fuchsian uniformization.
By Theorem 9.11, it coincides with the Chern connection associated to the hyperbolic metric on
ωC /T . We transport it to the Hodge bundle via Deligne’s isomorphism. By the isometry property
of Deligne’s isomorphism, the resulting connection is the Chern connection of the Quillen metric
on λ(OC ), denoted by ∇Q. The connection form of the latter is given by

(10.7)
∇Qω1 ∧ . . .∧ωg

ω1 ∧ . . .∧ωg
= ∂ log‖ω1 ∧ . . .∧ωg‖2

Q = ∂ log
detImΩ

Z ′(1)
.

In this expression, Ω is the matrix of B-periods (
∫

B j
ωk ), and Z ′(1) is the smooth function on T

which, to a point represented by a Riemann surface X , associates the derivative at one of the
Selberg zeta function of X . See [54, Proposition 6.4] for the statement of the Riemann–Roch
isometry in terms of the Selberg zeta function. Secondly, a result of Takhtajan–Zograf [121, Proof
of Theorem 2] describes the difference between the Bergman and Fuchsian connections:

σB−σF = 6π∂ log
Z ′(1)

detImΩ
.

After Theorem 9.9, this relationship is equivalent to

(10.8) ∇B−∇F = 12∂ log
Z ′(1)

detImΩ
.

For the connections induced on λ(OC ) via Deligne’s isomorphism, the last equality yields

∇B,λ =∇Q+∂ log
Z ′(1)

detImΩ
.
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Notice here that the factor 12 in equation (10.8) compensates with the power 12 in Deligne’s
isomorphism. Finally, evaluating the last equality on ω1 ∧ . . .∧ωg and combining with equation
(10.7), we conclude with the desired property: ∇B,λω1 ∧ . . .∧ωg = 0. �

10.4.2. Relative Bergman projective structure on the Schottky space. Let us maintain the previous
setting. The Schottky space Sg is a quotient of T , in a way that the fibers of the universal curve
X → Sg still inherit well-defined A-cycles from the marking of X0. Therefore, the bases of
relative abelian differentials and the Bergman connection descend to Sg . Below, we will use
the same notation as in §10.4.1 for the descended objects. Our aim now is to compare ∇B and
∇S, where we recall that ∇S is the Chern–Simons transform of the relative Schottky projective
structure §9.5.1. To that end, we will combine our understanding of the Bergman projective
structures with the results of §9.5 on the Schottky space.

Before proceeding, we introduce Zograf’s F -function. We follow McIntyre–Takhtajan [93,
Section 2.1 & 5.2], to which we refer for details. For a Schottky group Γ⊂PSL2(C) and γ ∈ Γ\ {1},
let qγ be the multiplier of γ. It is a complex number with 0 < |qγ| < 1, and it only depends on the
conjugacy class of γ. We form the infinite double product

F (Γ) =∏
[γ]

∞∏
k=1

(1−qk
γ ),

where the first index runs over the primitve conjugacy classes in Γ, distinct from the identity.
This product may not absolutely converge, but it does for Schottky groups with exponent of con-
vergence δ< 1. These constitute a non-empty open subset of Sg . The function F is holomorphic
on this subset.

Proposition 10.8. On the region of absolute convergence of Zograf ’s F -function, we have ∇B−∇S =
12∂ logF . Consequently, σB−σS = 6π∂ logF .

Proof. The proof is a variant of Theorem 10.7. As in the proof of loc. cit., we let ∇B,λ and ∇S,λ be
the connections on λ(OX ) deduced from ∇B and ∇S via Deligne’s isomorphism. The first claim
reduces to showing ∇B,λ−∇S,λ = ∂ logF . On the one hand, by the proof of Proposition 9.15 and
Deligne’s isomorphism, we know that

(10.9) ∇Q−∇S,λ = 1

12π
STZ,

where ∇Q is the Chern connection of the Quillen metric on λ(OX ), for the hyperbolic metric. On
the other hand, by the very definition of the Quillen metric and Theorem 10.7, we have

(10.10) ∇Q−∇B,λ = ∂ log
‖ω1 ∧ . . .∧ωg‖2

L2

det′∆hyp

.

In this equation, det′∆hyp is the smooth function on Sg which, to a Schottky group Γ, associates
the determinant of the hyperbolic Laplacian on the corresponding Riemann surface.15 The first
assertion is then a result of combining (10.9)–(10.10) and Zograf’s holomorphic factorization
formula [93, Theorem 1]:

det′∆hyp

‖ω1 ∧ . . .∧ωg‖2
L2

=C exp

(
− 1

12π
STZ

)
|F |2,

15The Quillen metric is defined in terms of the determinant of the Laplacian on (0,1)-forms, but this in turn
equals the determinant of the Laplacian on functions.
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for some constant C .
The second claim follows from Theorem 9.9. �

Remark 10.9. (1) The conclusion of the proposition regarding the comparison of projec-
tive structures was stated in [15, Proposition 5.3], but the details of the proof were not
provided.

(2) Proposition 10.8 is equivalent to the following explicit description of Deligne’s isomor-
phism for the Hodge bundle. We assume for simplicity that g ≥ 3. Recall from §9.5.2 the
flat trivialization τS of 〈ωX /Sg ,ωX /Sg 〉, for the connection ∇S. Then we have

DRR(X /Sg ,OX ) : λ(OX )12 ∼−→〈ωX /Sg ,ωX /Sg 〉
(F ·ω1 ∧ . . .∧ωg )12 7−→ τS,

after possibly scaling τS by a constant. In [70, Theorem 5], Guillarmou–Moroianu built a
similar isometric isomorphism by hand, but the relation to Deligne’s isomorphism was
not addressed. Since both their theory and ours can be compared according to §9.6.3, we
conclude that the power −2 of the isomorphism of Guillarmou–Moroianu coincides with
Deligne’s isomorphism, up to a constant.

10.5. Deligne–Riemann–Roch on quasi-Fuchsian space. We place ourselves in the setting of
§9.6, and we adopt the same notation. In particular, X0 is a fixed compact Riemann surface
of genus g ≥ 2, and Q = T (X0)×T (X 0) is the associated quasi-Fuchsian space. We recall
the various Bers’ curves C → T , f ± : X ± → Q, and the notation N ± and N for the Deligne
pairings in (9.21)–(9.22). Also, we use the terminology “Fuchsian locus” for the Teichmüller space
diagonally embedded in Q, denoted by j : T ,→Q.

Let k ≥ 1 be an integer. The Deligne–Riemann–Roch isomorphism applied to ωk
X ±/Q

provides
isomorphisms

(10.11) D±
k : λ(ωk

X ±/Q)12 ' (N ±)6k2−6k+1.

In a similar vein as in Theorem 10.3, we wish to produce natural holomorphic trivializations
of both sides of D+

k ⊗D−
k , which correspond under this isomorphism. For the product of the

Deligne pairings N , we have the complex metrics considered in §9.6.2, generally denoted by
τQF. See in particular Definition 9.17, Theorem 9.19 and Remark 9.20. Henceforth we tackle
λ(ωk

X +/Q)⊗λ(ωk
X −/Q).

We will make use of hermitian metrics on Deligne pairings, and L2 and Quillen metrics on
determinant bundles. All these will be associated to the hyperbolic metric. For simplicity of
language, the Chern connection of the Quillen metric will be called the Quillen connection,
generally denoted ∇Q or simple variants thereof. We will also need the isometry property of
Deligne’s isomorphism.

10.5.1. Restriction along the Fuchsian locus. We study the restriction of the isomorphisms (10.11)
along the Fuchsian locus. We begin by considering the determinant of the cohomology, and we
furnish an analogue of the first part of Theorem 9.19.

Proposition 10.10. For every k ≥ 1, there exist unique isomorphisms of C ∞ line bundles with
connections on T

j∗(λ(ωk
X +/Q),∇Q) ' (λ(ωk

C /T ),∇Q), j∗(λ(ωk
X −/Q),∇Q

) ' (λ(ωk
C /T ),∇Q

),
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with the property of coinciding with the identity at X0, resp. X 0. Furthermore, they are isometric
for the L2 and Quillen metrics.

Proof. We just give the outline of the argument, since it proceeds along the same lines as the
first part of the proof of Theorem 9.19. We place ourselves in the same situation, and adopt the
notation therein. We first treat the case of X + →Q. The isomorphism of relative curves X +

V ' C̃V

is isometric for the fiberwise hyperbolic metrics. Therefore, there are induced isometries for the
L2 and Quillen metrics

λ(ωk
X +/Q)|V 'λ(ωk

C̃ /Q
)|V ' p∗

1 (λ(ωk
C /T )|U ).

In particular, such isomorphisms preserve the Quillen connections. Pulling back by j , we obtain
isomorphisms

(10.12) ( j∗λ(ωk
X +/Q))|U 'λ(ωk

C /T )|U ,

preserving the metrics and the Quillen connection. Accordingly, on the open subsets of a suitable
cover {Ui }i of T , we have isomorphisms ψi of the form (10.12), which differ by constants on
overlaps Ui ∩U j . These constants have modulus one, since the isomorphisms preserve the
metrics. Reasoning as in Theorem 9.19, because H 1(T ,S1) = {1}, after possibly scaling the
isomorphisms by constants of modulus one, we can suppose they glue together. The resulting
global isomorphism still preserves the metrics and the connection, since the scaling involves
only constants of modulus one. Further scaling by a constant of modulus one, we can suppose it
to be the identity at X0. This is the desired isomorphism. For X − →Q we proceed analogously,
but we first find an isometry

j∗(λ(ωk
X −/Q),∇Q) ' (λ(ωk

C /T
),∇̃Q),

where ∇̃Q is the Quillen connection on λ(ωk
C /T

). Proceeding as in the proof of Theorem 9.19, the

right hand side of the latter is naturally identified with (λ(ωk
C /T ),∇Q

), compatibly with the L2

and Quillen metrics. The details are left as an exercice to the reader. �

Corollary 10.11. Via the isomorphisms of Theorem 9.19 and Proposition 10.10, the restriction of
D+

k along the Fuchsian locus its identified with the Deligne isomorphism

(10.13) λ(ωk
C /T )12 ' 〈ωC /T ,ωC /T 〉6k2−6k+1.

Likewise, the restriction of D−
k along the Fuchsian locus is identified with the conjugate of (10.13).

Proof. We just treat the case of D+
k , because D−

k is dealt with similarly. By the isomorphisms of
Theorem 9.19 and Proposition 10.10, the pullback of D+

k by j yields an isomorphism of C ∞ line
bundles of the form (10.13). Via this isomorphism, the Quillen connection is sent to the Chern
connection of the hyperbolic intersection metric on the Deligne pairing. Deligne’s isomorphism
has this property too, because it is an isometry of hermitian holomorphic line bundles, up to
a constant. We deduce that both isomorphisms coincide up to a constant. The normalization
condition at X0 ensures they actually agree everywhere. �

Remark 10.12. The proof of the corollary is based on the fact that two C ∞ isomorphisms of line
bundles with connections (L1,∇1) â (L2,∇2) differ by a constant. This is no longer true for
isometries instead of horizontal isomorphisms. Consequently, since we only know that the j∗D±

k
are C ∞ isomorphisms, the proof can not resort to the isometry statements in Theorem 9.19 and
Proposition 10.10.
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10.5.2. Trivializations ofλ(ωX +/Q)⊗λ(ωX −/Q). The trivialization we ultimately seek is a complex
metric version of the Quillen metric. Our approach is based on the existence and properties of
the complex metrics τQF and the previous developments on Deligne’s isomorphisms. We obtain
a new conceptual proof of Kim’s theorem [82, Theorem 2.8] on the existence of a holomorphic
extension of the determinant of the hyperbolic Laplacian, from the Teichmüller space to the
quasi-Fuchsian space.

Proposition 10.13. There exists a unique isomorphism of holomorphic line bundles

τL2 : λ(ωX +/Q)⊗λ(ωX −/Q)
∼−→OQ ,

which coincides with the L2-metric along the Fuchsian locus.

Proof. First of all, we notice that R1 f ±∗ ωX ±/Q is canonically isomorphic to the trivial line bundle.
Via this trivialization, the L2-metric on the Fuchsian locus is a constant multiple of the trivial
metric. The proportionality factor is given by the hyperbolic volume of the fibers. Therefore, we
reduce to constructing an extension of the L2-metric on det f +∗ ωX +/Q ⊗det f −∗ ωX −/Q .

Let (X ,Y ) be a couple of Riemann surfaces, corresponding to a point of Q. Let ω+
1 , . . . ,ω+

g be a

basis of H 0(X ,ωX ). Via the Hodge filtration H 0(X ,ωX ) ⊆ H 1(X ,C), we obtain cohomology classes
in the latter. Because the local system R1 f +∗ C is trivial with fiber H 1(X0,C), we can view the ω+

j

as in H 1(X0,C), and we will abusively use the same notation for these classes. We argue similarly
for a basis ω−

1 , . . . ,ω−
g of H 0(Y ,ωY ), from which we obtain classes in H 1(X 0,C) = H 1(X0,C). If ∪ is

the cohomological cup-product on H 1, the assignment

(10.14) ω+
1 ∧ . . .∧ω+

g ⊗ω−
1 ∧ . . .∧ω−

g 7→ det

(
i

2

∫
X0

ω+
j ∪ω−

k

)
j k

∈C

is well-defined. Notice that the integral depends on the orientation of X0 determined by its
complex structure. Let us consider the effect of a small variation of (X ,Y ) in Q and holomorphic
deformations of the bases {ω+

j } j and {ω−
j } j . The latter exist since the f ±∗ ωX ±/Q are locally free.

The corresponding cohomology classes in H 1(X0,C) vary holomorphically, since the Hodge
filtrations f ±∗ ωX ±/Q ⊂ (R1 f ±∗ C)⊗OQ are holomorphic on Q, and the local systems R1 f ±∗ C are
trivial with fiber H 1(X0,C) = H 1(X 0,C). We infer that (10.14) varies holomorphically as well.
Equivalently, we have constructed a morphism of holomorphic line bundles

det f +
∗ ωX +/Q ⊗det f −

∗ ωX −/Q −→OQ .

By construction, along the Fuchsian locus it reproduces the L2-metric. Since the Fuchsian locus
is totally real in Q, such an extension is unique.

It remains to prove that τL2 is an isomorphism. Introduce a marking of X0, which induces a
canonical homology basis {A j ,B j } j of X0, and {A j ,−B j } j of X 0. Let (X ,Y ) be a point of Q. The

surfaces X ,Y inherit canonical homology bases from X0 and X 0. We take {ω+
j } j and {ω−

j } j the

bases of normalized abelian differentials for X and Y , respectively. We denote by Ω+ and Ω− the
corresponding matrices of B-periods. We compute

(10.15)

(
i

2

∫
X0

ω+
j ∪ω−

k

)
j k

= 1

2i
(Ω++Ω−).

Since the Ω± are symmetric with positive definite imaginary part, so is Ω++Ω−. Thus, it is
invertible. The proof is complete.
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Theorem 10.14. (1) There exists a unique invertible holomorphic function d̃et ∆hyp : Q →C

whose restriction to the Fuchsian locus agrees with the determinant of the hyperbolic
Laplacian, with the zero eigenvalue removed.

(2) The expression τQ := (d̃et ∆hyp)−1τL2 induces a holomorphic trivialization of λ(ωX +/Q)⊗
λ(ωX −/Q), such that τ12

Q corresponds to a complex metric τQF on N , via Deligne’s isomor-
phism.

In particular, τQ coincides with the Quillen metric along the Fuchsian locus.

Proof. We will establish all the statements simultaneously. Let τQF be a complex metric on
N . Recall that j∗τQF is identified with the intersection metric under the isomorphisms of
Theorem 9.19, up to a constant. We transport τQF to a holomorphic trivialization of λ(ωX +/Q)12⊗
λ(ωX −/Q)12, via Deligne’s isomorphism. Since Q is contractible and Stein, we can write this
trivialization in the form τ12

Q , for a holomorphic trivialization τQ of λ(ωX +/Q)⊗λ(ωX −/Q). Notice
that τQ is well defined up to a 12-th root of unity, which is irrelevant for our purposes. In the
sequel, we will see τQ as an isomorphism λ(ωX +/Q)⊗λ(ωX −/Q) →OQ .

Define a nowhere vanishing holomorphic function h : Q →C by the relationship τQ = h−1 ·τL2 .
We claim that h is a holomorphic extension of the determinant of the hyperbolic Laplacian on
the Fuchsian locus, up to a constant. Notice that the uniqueness property of the extension is
guaranteed by the fact that j is a totally real embedding.

Let us examine j∗τQ. We identify it with a trivialization of λ(ωC /T )⊗λ(ωC /T ) via the iso-
morphism of Proposition 10.10. Let us see that, up to a constant, j∗τQ is identified with the
trivialization furnished by the Quillen metric. Indeed, τ12

Q corresponds to τQF via Deligne’s iso-
morphism, and by Theorem 9.19 the section j∗τQF is identified with the trivialization associated
to the hyperbolic intersection metric on 〈ωC /T ,ωC /T 〉, up to a constant. Via Deligne’s isomor-
phism again, this corresponds to the section provided by the Quillen metric on λ(ωC /T )12, up to
a constant. By Corollary 10.11, this is exactly the section that j∗τ12

Q identifies with. This confirms
our expectation. By scaling by a constant, we can thus suppose that j∗τQ corresponds to the
Quillen metric.

For the trivialization j∗τL2 , we readily derive from Proposition 10.10 and Proposition 10.13
that it corresponds to the L2 metric on λ(ωC /T ).

To conclude the proof, we now write j∗τQ = j∗h−1 · j∗τL2 . We saw that j∗τQ and j∗τL2 corre-
spond to the Quillen and L2 metrics on λ(ωC /T ). By definition of the Quillen metric, we infer
that j∗h equals the determinant of the hyperbolic Laplacian, as was to be shown. �

10.5.3. Trivializations of λ(ωk
X +/Q)⊗λ(ωk

X −/Q), for k ≥ 2. We begin with a brief reformulation of

results of McIntyre–Teo [94, Section 5], providing a trivialization of λ(ωk
X +/Q)⊗λ(ωk

X −/Q) which
extends the L2-metric. We refer to loc. cit. for the details of the construction.

Let (X ,Y ) be a couple of Riemann surfaces representing a point in Q. Let θ+1 , . . . ,θ+r be a basis
of H 0(X ,ωk

X ). Then, after Bers [12], there is an associated basis θ−1 , . . . ,θ−r of H 0(Y ,ωk
Y ). This basis

is obtained from {θ+j } by applying an integral operator denoted by K− in [94, Section 5]. It is an
essential feature of K− that, for a small variation of (X ,Y ) in Q, and holomorphically varying
{θ+j } j , the corresponding {θ−j } j also vary holomorphically. Furthermore, for couples (X , X ), the

{θ−j } j are conjugate to the {θ+j } j . In general, the construction is such that the expression θ+1 ∧ . . .∧
θ+r ⊗θ−1 ∧. . .∧θ−r does not depend on the choice of the {θ+j } j . It defines a holomorphic trivialization
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of λ(ωk
X +/Q)⊗λ(ωk

X −/Q) on Q. Along the Fuchsian locus, the L2-norm of this trivialization is 1.
We conclude that the L2-metric can be extended to a holomorphic trivialization:

Proposition 10.15. There exists an isomorphism of holomorphic line bundles

τL2,k : λ(ωk
X +/Q)⊗λ(ωk

X −/Q)
∼−→OQ ,

which coincides with the L2-metric along the Fuchsian locus.

�
Following [94, Section 4], we introduce a quasi-Fuchsian version of the Selberg zeta function

at s = k. For a quasi-Fuchsian group Γ, set

F (k,Γ) =∏
[γ]

∞∏
n=0

(1−qn+k
γ ).

Here, the first product runs over the conjugacy classes of primitive elements in Γ\ {1}, and qγ is
the notation for the multiplier of γ. Since k ≥ 2, this product converges absolutely and defines a
holomorphic function on Q, denoted by F (k). If Γ is a Fuchsian group, then F (k,Γ) coincides
with Z (k,Γ), the value at s = k of the Selberg zeta function of Γ. We refer to loc. cit. for details.
We recall that in the Fuchsian case, Z (k,Γ) coincides with the determinant of the hyperbolic
Laplacian acting on forms of order k, up to an explicit constant depending only on k and g . See
[55, Proposition 6.2].

Proposition 10.16. The expression τQ,k := F (k)−1τL2,k induces a holomorphic trivialization of
λ(ωk

X +/Q)⊗λ(ωk
X −/Q), which coincides with the Quillen metric along the Fuchsian locus and such

that τ12
Q,k corresponds to the complex metric τ6k2−6k+1

QF on N 6k2−6k+1 via Deligne’s isomorphism,
up to scaling by a constant.

Proof. The proof is an easy variant of the argument of Theorem 10.14, and is left to the reader. �

Recall now the potential of the Weil–Petersson form on Q, constructed in §9.6.3. If we intro-
duce the hyperbolic intersection metric on the product of Deligne pairings N , the potential
is defined as log‖τQF‖−2. Let STT : Q → R be the Liouville action of Takhtajan–Teo [112]. The
relationship between both potentials is described by the following corollary.

Corollary 10.17. The function log‖τQF‖ coincides with 1
2πSTT, up to the addition of a constant.

Proof. Introduce the product of Quillen metrics on λ(ω2
X +/Q)⊗λ(ω2

X −/Q). Up to a constant
depending only on the genus, the norms of τ12

Q,2 and τ13
QF coincide, because these sections corre-

spond via Deligne’s isomorphism, by Proposition 10.16. Comparing the content of this equality
to the main theorem of McIntyre–Teo [94, Section 6, Theorem], it is readily seen that log‖τQF‖
coincides with 1

2πSTT, up to the addition of a constant depending only on the genus. �

Remark 10.18. (1) The proof of the corollary works more generally with any τQ,k , k ≥ 2.
(2) In §9.7 we sketched an alternative proof of the corollary. Taking this for granted, we can

reverse the argument provided above and derive the holomorphic factorization formula
of McIntyre–Teo from Proposition 10.16.
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10.5.4. On a conjecture of Bertola–Korotkin–Norton. As an application of our results on Chern–
Simons transforms and complex metrics, we will now settle a conjecture of Bertola–Korotkin–
Norton [15, Conjectutre 1.1] on the comparison between Bergman and quasi-Fuchsian projective
structures.

The setting is as follows. We consider the quasi-Fuchsian sectionσ+
QF : Q →P (X +/Q) defined

in (9.20), and restrict it to the Bers slice T (X0)× {X 0}. This gives a holomorphic section T →
P (C /T ), where we recall that C →T is the universal Teichmüller curve. This restricted section
is denoted by σBers. After fixing a marking for X0, we also have σB, the section defined by the
Bergman projective structures and studied in §10.4. We wish to compare σBers and σB.

Recall the invertible holomorphic function d̃et ∆hyp of Theorem 10.14, and restrict it to the
Bers slice. We still use the same notation for the restriction. Let ω±

1 , . . . ,ω±
g be the holomorphic

trivializations of f ±∗ ωX ±/Q of normalized abelian differentials, with respect to the given marking.
Restricting to the Bers slice, the ω+

j induce a basis of normalized abelian differentials of f∗ωC /T .

Similarly, the ω−
j restrict to a basis of the C-vector space H 0(X 0,Ω1

X 0
). Again, we maintain the

notation for these restrictions. Evaluating the complex L2-metric provided by Proposition 10.13
(see in particular (10.14)–(10.15)), we have

τL2 (ω+
1 ∧ . . .∧ω+

g ⊗ω−
1 ∧ . . .∧ω−

g ) = det

(
i

2

∫
X0

ω+
j ∪ω−

k

)
j k

= det

(
1

2i
(Ω−Ω0)

)
,

where Ω is the matrix of B-periods of the fibers of C →T , and Ω0 is the matrix of B-periods of
X0. Notice here that −Ω0 is the matrix of B-periods of X 0. The function det(Ω−Ω0) is nowhere
vanishing, as we saw that τL2 is an isomorphism. Thus,

d̃et ∆hyp

det(Ω−Ω0)

is a well-defined, nowhere vanishing holomorphic function on T .
The following statement confirms the conjecture of Bertola–Korotkin–Norton [15, Conjecture

1.1].

Theorem 10.19. The difference of the Bergman and Bers projective connections on T is given by

σB−σBers = 6π∂ log

(
d̃et ∆hyp

det(Ω−Ω0)

)
.

Proof. By Theorem 9.9, we have to establish an analogous formula for the Chern–Simons trans-
forms ∇B and ∇Bers on 〈ωC /T ,ωC /T 〉. We transport these connections to the Hodge bundle
λ(OC ) via Deligne’s isomorphism. As usual in this subsection, the resulting connections are
denoted by ∇B,λ and ∇Bers,λ. By Theorem 10.7, we already know that ∇B,λω+

1 ∧ . . .∧ω+
g = 0. To

determine the connection ∇Bers,λ, we first argue with ∇QF on the whole quasi-Fuchsian space
Q. See the discussion around (9.22) for the definition of ∇QF. The connection ∇QF is such that
the complex metric τQF is flat for ∇QF. Therefore, by Theorem 10.14, ∇QF,λ is the connection
on λ(ωX +/Q)⊗λ(ωX −/Q) for which τQ is flat. Now, the trivialization of this product of Hodge
bundles corresponding to τQ is

(10.16) τ−1
Q (1) = d̃et ∆hyp

det
( 1

2i (Ω++Ω−)
)ω+

1 ∧ . . .∧ω+
g ⊗ω−

1 ∧ . . .∧ω−
g ,
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with Ω± denoting the matrices of B-periods of the fibers of X ± →Q. Hence, this trivialization
is flat for ∇QF,λ. But the connection ∇Bers is basically the restriction of ∇QF to the Bers slice; they
just differ by the trivial connection on the constant line bundle with fiber 〈ωX 0

,ωX 0
〉. Then,

restricting (10.16) to the Bers slice, we deduce that the trivialization of λ(OC ) given by

d̃et ∆hyp

det(Ω−Ω0)
ω+

1 ∧ . . .∧ω+
g

is flat for ∇Bers,λ on T . Equivalently,

∇Bers,λω+
1 ∧ . . .∧ω+

g

ω+
1 ∧ . . .∧ω+

g
=−∂ log

(
d̃et ∆hyp

det(Ω−Ω0)

)
.

All in all, we conclude

∇B,λ−∇Bers,λ = ∂ log

(
d̃et ∆hyp

det(Ω−Ω0)

)
.

We finally transport this connection back to the Deligne pairing, taking care of the 12 power, and
achieving our goal. �

10.5.5. Cappell–Miller torsion of quasi-Fuchsian representations. The Cappell–Miller torsion is
difficult to determine, since it is a vector of a generally non-trivial complex line, rather than a
complex number. We now propose a reinterpretation in the case of flat vector bundles arising
from quasi-Fuchsian representations, which to our knowledge is the first non-trivial example of
computation of the Cappell–Miller torsion. We maintain the setting and notation of §9.6. We
further suppose that the reference Riemann surface X0 has genus g ≥ 3. We endow it with the
hyperbolic metric of constant curvature −1.

We begin with the commutative diagram

Mir(Γ,SL2)

��

Q
ϕ
//

ϕ̃
99

Mir(Γ,PSL2)`,

where Γ=π1(X0, p) and ϕ is the composition of the relative holonomy map and the retraction.
The lift ϕ̃ exists for topological reasons: Q is simply connected and, since g ≥ 3, the space
Mir(Γ,SL2) is necessarily the universal cover of Mir(Γ,PSL2)`. Alternatively, the Riemann divisor
provides a global choice of theta characteristic depending on the choice of homology basis. By
Corollary 10.6, the line bundle λ(E )⊗λ(E c ) and the Cappell–Miller torsion on Rir(Γ,SL2) descend
to Mir(Γ,SL2). We use the same notation for the descended objects, and we pull them back by ϕ̃.
By Proposition 6.10, we have a natural isomorphism

ϕ̃∗(λ(E )⊗λ(E c )) ' ϕ̃∗(IC2(E )⊗ IC2(E c ))−1 ⊗ (λ(OX0 )⊗λ(OX 0
))2

which, after Theorem 10.5, is compatible with the Cappell–Miller torsions and the complex
metric on the IC2 bundles. We will now take the fourth power of this isomorphism. Before, recall
from Proposition 8.19 that LCS(X0)4 descends to Mir(Γ,PSL2)`, with the same notation for the
descended object. Similarly for X 0. The complex metric descends as well, by Proposition 8.21.
We find

(10.17) ϕ̃∗(λ(E )⊗λ(E c ))4 'ϕ∗(LCS(X0)4 ⊗LCS(X 0)4)⊗ (λ(OX0 )⊗λ(OX 0
))8,
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compatibly with the Cappell–Miller torsions and the complex metrics. Incidentally, we realize
that the left hand side of the isomorphism, together with the Cappell–Miller torsion, does not
depend on the lift ϕ̃. As in Remark 9.18, by the crystalline property of Chern–Simons line bundles,
we can rewrite (10.17) as

(10.18) ϕ̃∗(λ(E )⊗λ(E c ))4 'N ⊗ (λ(OX0 )⊗λ(OX 0
))8.

The complex metric on LCS(X0)4 induces a complex metric on N which, by Theorem 9.19,
coincides with the holomorphic extension of the metric on the Deligne pairing, up to a universal
constant. This constant depends only on the normalization of the hyperbolic metric. Next, we
take the 6k2−6k +1 power of (10.18) and then apply Theorem 10.14 if k = 1, or Proposition 10.16
if k ≥ 2. We find a natural isomorphism

(10.19) ϕ̃∗(λ(E )⊗λ(E c ))24k2−24k+4 ' (λ(ωk
X +/Q)⊗λ(ωk

X −/Q))12 ⊗ (λ(OX0 )⊗λ(OX 0
))48k2−48k+8,

relating the Cappell–Miller torsion to τQ,k and the Quillen metric on λ(OX0 ), with the convention
τQ,1 = τQ, and up to a universal constant. Since the Quillen metric on λ(OX0 ) is constant on Q,
we conclude that the content of the Cappell–Miller torsion of quasi-Fuchsian representations is
essentially equivalent to the complex metrics τQ,k .

To conclude, notice that an isomorphism such as (10.19), relating the Cappell–Miller torsion
and the complex Quillen metric, exists for trivial reasons: all the involved line bundles are trivial.
The point of the discussion above is that (10.19) can be obtained as a succession of natural
explicit isomorphisms, and in particular the crystalline property of complex Chern–Simons line
bundles.

APPENDIX

Proof of Proposition 6.2. For the first claim, notice that the morphisms RdR(X /S,r ) → S and
MdR(X /S,r ) → S are quasi-projective, and S is an algebraic variety. Therefore, we can apply [4,
Exposé XII, Proposition 3.1], and it is enough to check that the morphisms Ran

dR(X /S,r ) → San

and Man
dR(X /S,r ) → San are flat. By the Riemann–Hilbert correspondence, we may equivalently

reason for Ran
B (X /S,r ) → San and Man

B (X /S,r ) → San. These are locally trivial fibrations over San,
hence automatically flat. The smoothness over S of the loci of irreductible representations is
established in a similar manner.

For the second claim, we only need to justify the integrality property. Because integrality is pre-
served by GIT quotients, it is enough to treat RdR(X /S,r ). We already know that is RdR(X /S,r ) → S
is flat. Furthermore, the fibers over closed points in S are irreducible, and necessarily so does
the fiber over the generic point (see [109, Lemma 37.25.1]; closed points are dense in S, which
is also irreducible). From [68, Corollaire 2.3.5 (iii)], we deduce that RdR(X /S,r ) is irreducible.
To prove that it is reduced, by [4, Exposé XII, Proposition 3.1] we may equivalently proceed
for Ran

dR(X /S,r ) ' Ran
B (X /S,r ). The latter is locally trivial over San. Now, San is reduced, and for a

compact marked Riemann surface (X , p), RB(X , p,r ) is reduced as well. The product of reduced
spaces is reduced, thus concluding the proof of the second claim.

The third property has a similar treatment as the second one. In this case, the argument is that
because RB(X , p,r ) and San are normal, then RB(X , p,r )×San is normal as well by [4, Exposé XII,
Proposition 2.1] and [69, Proposition 11.3.13].

The determinant one case is proven along the same lines.
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Proof of Proposition 6.3. We begin by proving that R(X /S,r ) is irreducible. It is enough to prove
that Rµ(X /S,r ) is irreducible. Indeed, Rµ(X /S,r ) is dense in R(X /S,r ), since this is already the
case for the closed fibers over S. Consider Rµ

dR(X /S,r ) the open subscheme of slope stable vector
bundles and morphism Rµ

dR(X /S,r ) → Rµ(X /S,r ) of forgetting the connection, introduced in
6.1.1. Because Rµ

dR(X /S,r ) is irreducible (Proposition 6.2), we just need to show that the forgetful
morphism is surjective. Since our schemes are of finite type over C, surjectivity can be checked
at the level of C-points. But a C-point x ∈ Rµ(X /S,r )(C) corresponds to a stable vector bundle
on the complex projective curve X f (x); the associated Riemann surface admits a holomorphic
(automatically algebraizable) flat unitary connection by the theorem of Narasimhan–Seshadri
[99, Theorem 2]. Thus, x is in the image of Rµ

dR(X /S,r )(C). The irreducibility of R(X /S,r ) entails
the irreducibility of M(X /S,r ), since the latter is a GIT quotient of the former.

Assume for the rest of the proof that S is geometrically unibranch (resp. normal). We will show
that the morphism R(X /S,r ) → S is smooth. Taking this for granted, by the local étale structure
of smooth morphisms, it follows that R(X /S,r ) is integral (resp. integral and normal), because
it is already irreducible and S is integral (resp. normal). Similarly, R(X /S,r ) is geometrically
unibranch [69, Lemme 14.4.1.1]. Then M(X /S,r ) is integral (resp. integral and normal) as well, as
it is a GIT quotient of R(X /S,r ). We will later comment on the geometrically unibranch property
of M(X /S,r ).

Towards the smoothness of R(X /S,r ) → S, first we claim that it is universally open. Because S
is geometrically unibranch, by Chevalley’s criterion [69, Corollaire 14.4.4] we are lead to check
that the morphism is equidimensional in the sense of [69, Definition 13.3.2]. This definition
applies here since R(X /S,r ) is irreducible. We know that the fibers over closed points are smooth
irreducible, of constant dimension e ≥ 1. Because closed points are dense in schemes of finite
type over C, we derive from [69, Théorème 13.1.3] that all the fibers have constant and pure
dimension, as required. Next, the fibers of R(X /S,r ) → S over closed points are smooth, hence
geometrically reduced, and we can apply [69, Corollaire 15.2.3] to conclude that R(X /S,r ) → S is
flat at closed points (here we use that S is reduced). In our context, flatness is an open condition
on the source [69, Proposition 11.3.1], and closed points are dense. We infer that the morphism
R(X /S,r ) → S is flat everywhere. Under the flatness condition, we can apply [69, Théorème
12.1.6] to see that the smoothness of fibers over closed points implies the smoothness of all the
fibers. Hence, R(X /S,r ) → S is smooth, as was to be shown.

We now address the flatness of M(X /S,r ) → S and the statement on its fibers, simultaneously.
Because S is reduced, by [69, Corollaire 15.2.3] flatness follows if we can verify that M(X /S,r ) → S
is universally open and that the fibers are geometrically reduced. The latter can be verified
at closed points in S. First, the morphism is universally open, because the GIT quotient map
R(X /S,r ) → M(X /S,r ) is surjective and we already know that R(X /S,r ) → S is universally open
[69, Proposition 14.3.4]. Next, we assert that for a closed point s ∈ S(C), we have M(X /S,r )s =
M(Xs ,r ). Since the latter is integral, hence geometrically reduced, this will prove the second
requirement of the criterion. To set the assertion, write R(X /S,r ) → M(X /S,r ) → S locally at
the level of C-algebras as B → AG → A, where SpecB is an open neighborhood of s in S and
G = GLr (C). Let E be the Reynolds operator on A [96, Chapter 1, §1 and §2]. If m ⊂ B is the
maximal ideal of s, an application of [96, page 28, fact (1)] shows that the natural map AG /mAG →
(A/mA)G is an isomorphism. Indeed, with the notation therein, if we take R0 = AG ⊆ A = R, and
S0 = AG /mAG , the conclusion is that S0 is the ring of invariants in R ⊗R0 S0. But R ⊗R0 S0 = A/mA,
and its ring of invariants is (A/mA)G . Now Spec(A/mA) is the fiber of Spec A over s, and Spec A
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is an affine open of R(X /S,r ), and the latter commutes with base change. This is enough to
conclude.

We can now justify that M(X /S,r ) is geometrically unibranch. We check the criterion [69,
Corollaire 11.3.14], namely that the morphism M(X /S,r ) → S is normal. Because the morphism
is already flat, and closed points are dense in M(X /S,r ), by [69, Théorème 12.1.6] we just need to
observe that the fibers over closed points are normal. The fiber over a closed point s is M(Xs ,r ),
and we already know this is normal.

Finally, the smoothness of Mµ(X /S,r ) → S follows from (4). Indeed, it suffices to notice that
the fiber of Mµ(X /S,r ) over a closed point s is Mµ(Xs ,r ), as follows from the construction of the
relative moduli space (see [105, Theorem 1.21 (4) & Lemma 1.13]). And the scheme Mµ(Xs ,r ) is
known to be non-singular (see [105, Theorem 1.21 (5)] and [103, Proposition 23]).

The determinant one case is tackled along the same lines.
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