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ON THE MORGAN-SHALEN COMPACTIFICATION
OF THE SL(2,C) CHARACTER VARIETIES

OF SURFACE GROUPS

G. DASKALOPOULOS, S. DOSTOGLOU,and R. WENTWORTH

1. Introduction. Let 6 be a closed, compact, oriented surface of genusg ≥ 2
and fundamental group0. Let X(0) denote the SL(2,C) character variety of0, and
D(0) ⊂ X(0) the closed subset consisting of conjugacy classes of discrete, faithful
representations. ThenX(0) is an affine algebraic variety admitting a compactification
X(0) (due to Morgan and Shalen [MS1]), whose boundary points∂X(0) = X(0)\
X(0) correspond to elements ofPL(0), the space of projective classes of length
functions on0 with the weak topology.

Choose a metricσ on6, and letMHiggs(σ ) denote the moduli space of semistable
rank-2 Higgs pairs on6 (σ) with trivial determinant, as constructed by Hitchin [H].
ThenMHiggs(σ ) is an algebraic variety, depending on the complex structure defined
by σ (cf. [Si]). By the theorem of Donaldson [D],MHiggs(σ ) is homeomorphic to
X(0), though not complex-analytically so. Let us denote this maph : X(0)→MHiggs

(we henceforth assume the choice of base pointσ ).
We define a compactification ofMHiggsas follows: LetQD (more precisely,QD(σ ))

denote the finite-dimensional complex vector space of holomorphic quadratic differ-
entials on6. Then there is a surjective, holomorphic mapMHiggs→ QD taking the
Higgs field8 to ϕ = det8. We compose this with the map

ϕ −→ 4ϕ

1+4‖ϕ‖ ,

where‖ϕ‖ = ∫
6
|ϕ|, and obtain

d̃et :MHiggs−→ BQD= {ϕ ∈QD : ‖ϕ‖< 1} .
Let SQD= {ϕ ∈QD : ‖ϕ‖ = 1} be the space of normalized holomorphic quadratic
differentials. We then defineMHiggs=MHiggs∪SQDwith the topology given via the
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mapd̃et. The aim of this paper is to compare the two compactificationsX(0) and
MHiggs.

The points ofPL(0) may be regarded as arising from the translation lengths
of minimal, nontrivial0 actions onR-trees. Modulo isometries and scalings, this
correspondence is one-to-one, at least in the nonabelian case (cf. [CM] and our Sec-
tion 2). The boundary∂D(0) consists ofsmall actions, that is, those for which the
arc-stabilizer subgroups are all cyclic. With our choice of conformal structureσ , we
can define a continuous, surjective map

H : PL(0)−→ SQD.(1.1)

When the length function[`] is realized by the translation length function of a tree
dual to the lift of a normalized holomorphic quadratic differentialϕ, thenH([`])= ϕ;
the full map is a continuous extension of this (see Theorem 3.9) with the fibers ofH

corresponding more generally tofoldingsof dual trees.
Let PMF(0) denote the space of projective classes of measured foliations on6,

modulo isotopy and Whitehead equivalence (cf. [FLP, exposé 5]). By the theorem
of Hubbard-Masur [HM] we also have a homeomorphismHM :PMF(0)

∼−→ SQD.
It is not clear how to liftH to factor throughPMF(0) in a manner independent
of σ . However, it follows essentially by Skora’s theorem [Sk] that ifH is restricted
to PSL(0), the small actions, then it factors throughHM by a homeomorphism
PSL(0)

∼−→ PMF(0).
With this understood, we define a (set-theoretic) map

h̄ : X(0)−→MHiggs(1.2)

by extending the maph toH on the boundary. We prove the following.

Main Theorem. The maph̄ is continuous and surjective. Restricted to the com-
pactification of the discrete, faithful representationsD(0), it is a homeomorphism
onto its image.

Note that the second statement follows from the first, since∂D(0) consists of small
actions, and therefore the restricted map is injective by the above-mentioned theorem
of Skora. The full map is not bijective: For example, quadratic differentials that are
squares of holomorphic 1-forms are images of the length functions of their dual trees,
but they also appear as images of the limits of abelian representations (see Section 3).
It would be interesting to determine the fibers ofh̄ in general; this question will be
taken up elsewhere. We also remark that the SL(2,R) version of the above theorem
leads to a harmonic-maps description of the Thurston compactification of Teichmüller
space and was first proved by Wolf [W1]. Generalizing this result to SL(2,C) is one
of the motivations for this paper.

This paper is organized as follows: In Section 2 we review the Morgan-Shalen
compactification, the definition of the Higgs moduli space, and the notion of a har-
monic map to anR-tree. In Section 3, we define the boundary mapH . The key point
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is that the nonuniqueness in the correspondence between abelian length functions and
R-trees alluded to above nevertheless leads, via harmonic maps, to a well-defined geo-
metric object on6, in this case, a quadratic differential. The most important result
here is Theorem 3.7. Along the way, we give a criterion, Theorem 3.3, for uniqueness
of harmonic maps to trees, using the arguments in [W3]. The main theorem is then
proven in Section 4 as a consequence of our previous work [DDW]. In the last section,
a somewhat more concrete analysis of the behavior of high energy harmonic maps is
outlined, illustrating previous ideas.

2. Definitions. Let 0 be a hyperbolic surface group as in the introduction. We
denote byR(0) the set of representations of0 into SL(2,C), and byX(0) the
set of characters of representations. Recall that a representationρ : 0 → SL(2,C)
defines a characterχρ : 0→ C by χρ(g) = Trρ(g). Two representationsρ andρ′
are equivalentif χρ = χρ′ . It is easily seen (cf. [CS]) that equivalent irreducible
representations are conjugate. Ifρ is a reducible representation, then we can write

ρ(g)=
(
λρ(g) a(g)

0 λρ(g)
−1

)
for a representationλρ : 0→ C∗. The characterχρ determinesλρ up to the inversion
coming from the action of the Weyl group and is, in turn, completely determined by
it. It is shown in [CS] that the set of charactersX(0) has the structure of an affine
algebraic variety.

In [MS1], a (nonalgebraic) compactificationX(0) of X(0) is defined as follows: Let
C be the set of conjugacy classes of0, and letP(C)= P(RC) be the (real) projective
space of nonzero, positive functions onC. Define the mapϑ : X(0)→ P(C) by

ϑ(ρ)= { log
(|χρ(γ )|+2

) : γ ∈ C}
and letX(0)+ denote the 1-point compactification ofX(0) with the inclusion map
ı : X(0)→ X(0)+. Finally, X(0) is defined to be the closure of the embedded image
of X(0) in X(0)+ ×P(C) by the mapı × ϑ . It is proved in [MS1] thatX(0) is
compact and that the boundary points consist ofprojective length functionson 0
(see the definition below). Note that in its definition,ϑ(ρ) could be replaced by the
function

{
`ρ(γ )

}
γ∈C , where`ρ denotes the translation length for the action ofρ(γ )

onH3:
`ρ(γ )= inf

{
distH3(x,ρ(γ )x) : x ∈H3}

(see [Cp]).
Recall that anR-tree is a metric space(T ,dT ) such that any two pointsx,y ∈ T

are connected by asegment[x,y] (that is, a rectifiable arc isometric to a compact
(possibly degenerate) interval inR whose length realizesdT (x,y)) and that[x,y] is
the unique embedded path fromx to y. We say thatx ∈ T is anedge point(resp.,
vertex) if T \ {x} has two (resp., more than two) components. A0-tree is anR-tree
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with an action of0 by isometries, and it is calledminimal if there is no proper0-
invariant subtree. We say that0 fixes an endof T (or more simply, thatT has a fixed
end) if there is a rayR ⊂ T such that for everyγ ∈ 0, γ (R)∩R is a subray. When
the action is understood, we often refer to “trees” instead of “0-trees.”

Given anR-tree(T ,dT ), the associated length function`T : 0→R+ is defined by
`T (γ )= inf x∈T dT (x,γ x). If `T 6≡ 0, which is equivalent to0 having no fixed point
in T (cf. [MS1, Prop. II.2.15]), then the class of`T inP(C) is called a projective length
function. We denote byPL(0) the set of all projective length functions on0-trees.
A length function is calledabelian if it is given by |µ(γ )| for some homomorphism
µ : 0→R. We use the following result.

Theorem 2.1 [CM, Cor. 2.3 and Thm. 3.7]. LetT be a minimal0-tree with non-
trivial length function`T . Then`T is nonabelian if and only if0 acts without fixed
ends. Moreover, ifT ′ is any other minimal0-tree with the same nonabelian length
function, then there is a unique equivariant isometryT ' T ′.

It is a fact that abelian length functions, in general, no longer determine a unique
minimal 0-tree up to isometry (e.g., see [CM, Example 3.9]), and this presents one
of the main difficulties dealt with in this paper.

We now give a quick review of the theory of Higgs bundles on Riemann surfaces
and their relationship to representation varieties. Let6, 0 be as in the introduction.
A Higgs pair is a pair(A,8), whereA is an SU(2) connection on a rank-2 smooth
vector bundleE over6; and8 ∈ �1,0 (6,End0(E)), where End0(E) denotes the
bundle of traceless endomorphisms ofE. The Hitchin equations are

FA+[8,8∗] = 0,

D′′A8= 0.
(2.1)

The groupG of (real) gauge transformations acts on the space of Higgs pairs and pre-
serves the set of solutions to (2.1). We denote byMHiggs the set of gauge equivalence
classes of these solutions. ThenMHiggs is a complex analytic variety of dimension
6g−6 (the holomorphic structure depending upon the choiceσ on6), which admits
a holomorphic map (cf. [H])

det :MHiggs−→QD=H 0(6,K⊗2
6 ) : (A,8) 7→ det8=−Tr82.(2.2)

By associating to[(A,8)] ∈ MHiggs the character of the flat SL(2,C) connection
A+8+8∗, one obtains a homeomorphismh :MHiggs→ X(0) (cf. [D], [C]). Implicit
in the definition ofh is a0-equivariant harmonic mapu from the universal coverH2

of 6 to H3. It is easily verified that theHopf differential of u, Hopf(u) = ϕ̃ =
〈uz,uz〉dz2, descends to a holomorphic quadratic differentialϕ on6 equal to det8
(up to a universal nonzero constant).

Having introduced harmonic maps, we now give an alternative way to view the
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Morgan-Shalen compactification. First, it follows by an easy application of the
Bochner-Weitzenböck formula that a sequence of representationsρi diverges to the
boundary only if the energiesE(uρi ) of the associated equivariant harmonic maps
uρi are unbounded. Furthermore, given such a sequence, it is shown in [DDW] that
if the ρi converge to a boundary point in the sense of Morgan-Shalen, then the har-
monic mapsuρi converge (perhaps after passing to a subsequence) in the sense of
Korevaar-Schoen to a0-equivariant harmonic mapu :H2→ (T ,dT ), where(T ,dT )
is a minimal0-tree having the same projective length function as the Morgan-Shalen
limit of the ρi . As pointed out before, the tree is not necessarily uniquely defined,
and even in the case where the tree is unique, uniqueness of the harmonic map is
problematic.

Recall that a harmonic map to a tree means, by definition, an energy minimizer for
the energy functional defined in [KS1]. Given such a map, its Hopf differentialϕ̃ can
be defined almost everywhere, and by [S1, Lemma 1.1], which can be adapted to the
singular case, one can show that the harmonicity ofu implies thatϕ̃ is a holomorphic
quadratic differential. The equivariance ofu implies thatϕ̃ is the lift of a differential
on6. Note also that ifu :H2→ T is harmonic, then Hopf(u) ≡ 0 if and only if u
is constant. In the equivariant case, this in turn is equivalent to`T ≡ 0 (cf. [DDW]).
For the rest of the paper, we tacitly assume`T 6≡ 0.

A particular example is the following: Consider a nonzero holomorphic quadratic
differential ϕ, and denote bỹϕ its lift to H2. Locally away from the zeros,̃ϕ may
be written asdz2 with respect to a local conformal coordinatez = ξ + iη. The lines
ξ = const (the vertical leaf space) and transverse measure|dξ | give the structure of
a metric spaceTϕ̃ , which is independent of the choice of coordinatez and naturally
extends past the zeros. According to [MS2] (and using the correspondence between
measured foliations and geodesic laminations),Tϕ̃ is anR-tree with an action of0,
and the projectionπ : H2→ Tϕ̃ is a 0-equivariant continuous map. We note two
important facts: (1) The vertices ofTϕ̃ are precisely the image byπ of the zeros of̃ϕ.
(2) Since the action of0 on Tϕ̃ is small,Tϕ̃ has no fixed ends (cf. [MO]).

Proposition 2.2. The mapπ :H2→ Tϕ̃ is harmonic with Hopf differential̃ϕ.

Proof. Since Tϕ̃ has no fixed ends, the existence of a harmonic map follows
from [KS2, Cor. 2.3.2]. The fact thatπ is itself an energy minimizer seems to be
well known. See, for example, [W2] and the introduction to [GS]: Although the
definition of harmonic map in [W2] is a priori different from the notion of an energy
minimizer, a proof follows easily. Indeed, for fixedϕ 6= 0 and positive real numbers
ti→∞, we can find a sequence of hyperbolic metricsσi on6 such that the unique
harmonic maps6(σ) → 6(σi) homotopic to the identity have Hopf differentials
tiϕ (cf. [W1] and [Wan]). Uniformizing theσi , we obtain a sequenceρi of discrete
faithful SL(2,R) ⊂ SL(2,C) representations andρi-equivariant harmonic mapsui :
H2→H2 with Hopf differentialsti ϕ̃. Let di denote the pullback distance functions
onH2 by theui , and letd∞ denote the pseudometric obtained by pulling back the
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metric onTϕ̃ by the projectionπ . Extend all of these to pseudometrics, also denoted
di andd∞, on the spaceH2∞ constructed in [KS2]. Then the natural projectionH2→
H2∞/d∞ ' Tϕ̃ coincides with the mapπ . On the other hand, by [W2, Section 4.2],
di→ d∞ pointwise, locally uniformly. Therefore, by [KS2, Thm. 3.9],π is an energy
minimizer.

Next, we consider0-trees that are not necessarily of the formTϕ̃ . We need the
following.

Definition 2.3. A morphismof R-trees is a mapf : T → T ′ such that every
nondegenerate segment[x,y] has a nondegenerate subsegment[x,w] such thatf
restricted to[x,w] is an isometry onto its image. The morphismf is said tofold at
a pointx ∈ T if there are nondegenerate segments[x,y1] and[x,y2] with [x,y1]∩
[x,y2] = {x} such thatf maps each segment[x,yi] isometrically onto a common
segment inT ′.

It is a fact that a morphismf : T → T ′ is an isometric embedding unless it folds at
some point (cf. [MO, Lemma I.1.1]). We also note that, in general, foldingsT → T ′
may take vertices to edge points. Conversely, vertices inT ′ need not lie in the image
of the vertex set ofT .

Proposition 2.4 (cf. [FW]). LetT be anR-tree with0 action, and letu :H2→
T be an equivariant harmonic map with Hopf differentialϕ̃. Thenu factors asu =
f ◦π , whereπ :H2→ Tϕ̃ is as in Proposition 2.2 andf : Tϕ̃→ T is an equivariant
morphism.

Proof. Considerf = u ◦π−1 : Tϕ̃ → T . We first show thatf is well defined:
Indeed, assumez1,z2 ∈ π−1(w). Thenz1 andz2 may be connected by a vertical leaf
e of the foliation ofϕ̃. Now, by the argument in [W3, p. 117],u must collapsee to
a point, and sou(z1) = u(z2). In order to show thatf is a morphism, consider a
segment[x,z] ∈ Tϕ̃ . We may liftx to a pointx̃ away from the zeros of̃ϕ. Moreover,
we may choose a small horizontal arcẽ from x̃ to someỹ projecting to[x,y] ⊂ [x,z],
still bounded away from the zeros. The analysis in [W3] again shows that this must
map byu isometrically onto a segment inT .

Remark. It is easily shown (cf. [DDW]) that images of equivariant harmonic maps
to trees are always minimal subtrees; hence, throughout this paper we assume, without
loss of generality, that our trees are minimal. Thus, for example, the factorization
f : Tϕ̃→ T above either folds at some point or is an equivariant isometry.

3. The mapH . The Hopf differential for a harmonic map to a given tree is
uniquely determined, as shown by the following statement.

Proposition 3.1. Let T be a minimalR-tree with a nontrivial0 action. If u,v
are equivariant harmonic mapsH2→ T , thenHopf(u)= Hopf(v).
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Proof. This is proven in [KS1], where in fact the full pullback “metric tensor”
is considered. In our situation, the result can also be seen as a direct consequence
of the leaf structure of the Hopf differential. First, by [KS1, p. 633], the function
z 7→ d2

T (u(z),v(z)) is subharmonic; hence, by the equivariance it must be equal
to a constantc. We assumec 6= 0, since otherwise there is nothing to prove. Set
ϕ̃ = Hopf(u), ψ̃ = Hopf(v). Suppose thatp ∈H2 is a zero ofϕ̃, and let1 be a small
neighborhood ofp containing no other zeros of̃ϕ and no zeros of̃ψ , except perhaps
p itself. Then by Proposition 2.4 it follows thatu is constant and equal tou(p) on
every arce ⊂ 1 of the vertical foliation ofϕ̃ with endpointp. On the other hand,
v(e) is a connected set satisfyingdT (u(p),v(z)) = c for all z ∈ e. Since spheres are
discrete in trees,v is constant and equal tov(p) on e as well. Referring again to
Proposition 2.4, this implies thate must be contained in a vertical leaf ofψ̃ . In this
way, one sees that the zeros ofϕ̃ andψ̃ coincide with multiplicity inH2. Thus, the
same is true forϕ andψ on6. Since the quadratic differentials are both normalized,
they must be equal.

We also need the following restriction on the kinds of foldings that arise from
harmonic maps.

Lemma 3.2. Let Tϕ̃→ T arise from a harmonic map as in Proposition 2.4. Then
folding occurs only at vertices, that is, the images of zeros ofϕ̃. At the zeros of̃ϕ,
adjacent edges may not be folded. In particular, folding cannot occur at simple zeros.

Proof. The argument is similar to that in [W2, p. 587]. Supposep ∈ H2 is a
zero at which a folding occurs, and choose a neighborhood1 of p contained in a
fundamental domain and containing no other zeros. We can find distinct segments
e,e′ of the horizontal foliation of̃ϕ with a common endpointp that map to segments
of Tϕ̃ . We may further assume that the foldingTϕ̃ → T carries each ofe and e′
isometrically onto a segmentē of T . Suppose thate ande′ are adjacent. Then there is
a small disk1′ ⊂H2 that, under the projectionπ :H2→ Tϕ̃ , maps toπ(e)∪π(e′)
and whose center maps toπ(p) (see Figure 1). Then the harmonic mapu :H2→ T

maps1′ onto the segment̄e with the center mapping to an endpoint. Letq denote
the other endpoint of̄e. The functionz 7→ (dT (u(z),q))

2 is subharmonic on1′ with
an interior maximum. It therefore must be constant, which contradictsϕ 6≡ 0. For the
last statement, recall that the horizontal foliation is trivalent at a simple zero, so that
any two edges are adjacent.

Though the following is not important in this paper, we find it interesting that a
uniqueness result for equivariant harmonic maps to trees follows from these consid-
erations, in certain cases.

Theorem 3.3. Let u : H2 → T be an equivariant harmonic map with̃ϕ =
Hopf(u). Suppose there is some vertexx of Tϕ̃ such that the mapf : Tϕ̃ → T

from Proposition 2.4 does not fold atx. Thenu is the unique equivariant harmonic
map toT .
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Proof. Let p be a zero of̃ϕ projecting viaπ to x, and letv be another equivariant
harmonic map toT . Choose a neighborhood1 of p as in the proof of Proposition 3.1,
and again suppose that the constantc = dT (u(z),v(z)) 6= 0. Recall thatx is a vertex of
Tϕ̃ . By the assumption of no folding atx, there must be a segmente of the vertical foli-
ation ofϕ̃ in1, with one endpoint beingp, having the following property: For anyz 6=
p in e there is a neighborhood1′ ⊂1 of z such thatu(1′)∩[u(p),v(p)] = {u(p)}.
By Proposition 3.1 and Lemma 3.2, we see that for such1′, v(1′) 6⊂ [u(p),v(p)].
Thus, there is aq ∈ 1 such thatu(q) 6∈ [u(p),v(p)] andv(q) 6∈ [u(p),v(p)]. But
thendT (u(q),v(q)) > dT (u(p),v(p))= c, a contradiction.

Corollary 3.4. Let ϕ 6≡ 0 be a holomorphic quadratic differential on6. Then
the mapπ :H2→ Tϕ̃ in Proposition 2.2 is the unique equivariant harmonic map to
Tϕ̃ . If u :H2→ T is an equivariant harmonic map andHopf(u) has a zero of odd
order, thenu is unique.

Proof. The first statement is clear from Theorem 3.3. For the second statement,
notice that ifp is a zero of odd order, we can still find a neighborhood1′ as in the
proof of Theorem 3.3.

Proposition 3.1 allows us to associate a uniqueϕ ∈ SQDto any nonabelian length
function.

Proposition 3.5. Let [`] ∈ PL(0) be nonabelian. Then there is a unique choice
ϕ ∈ SQD with the following property: IfT is any minimalR-tree with length func-
tion ` in the class[`], and u : H2 → T is a 0-equivariant harmonic map, then
Hopf(u)= ϕ.

Proof. Let ` ∈ [`]. By Theorem 2.1, there is a unique minimal treeT , up to isom-
etry, with length functioǹ and no fixed ends. By Proposition 3.1, any two harmonic
mapsu,v : H2 → T have the same normalized Hopf differential. Furthermore, if
T ′ is isometric toT and u′ is a harmonic map toT ′, then, composing with the
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isometry, we see thatu′ has the same Hopf differential as any harmonic map toT . If
the length functioǹ is scaled, then the normalized Hopf differential remains invari-
ant. Finally, sinceT has no fixed ends, it follows from [KS2, Cor. 2.3.2] that there
exists an equivariant harmonic mapu :H2→ T ; so we setϕ = Hopf(u).

We now turn our attention to the abelian length functions. These no longer deter-
mine a uniqueR-tree in general; nevertheless, we see that there is still a uniquely
defined quadratic differential associated to them.

Proposition 3.6. Let ` be an abelian length function, and let0 act onR with
translation length function equal tò. Then there is an equivariant harmonic function
u :H2→ R, unique up to translations ofR, with Hopf differentialϕ̃ = (ω̃)2, where
ω̃ is the lift toH2 of an abelian differentialω on6. Moreover,̀ is determined by the
periods ofRe(ω).

Proof. The uniqueness statement is clear. By harmonic theory, there is a unique
holomorphic one-formω on6 such that the real parts of its periods correspond to
the homomorphism

µ : π1(6)−→H1(6,Z)−→R.

Choosing any base point∗ of H2, the desired equivariant harmonic function is
the real part of the holomorphic functionf (z) = ∫ z

∗ ω̃. The Hopf differential is
(f ′(z))2= (ω̃)2.

It is generally true that harmonic maps to trees with abelian length functions have
Hopf differentials with even-order vanishing and that the length functions are re-
covered from the periods of the associated abelian differential, as the next result
demonstrates.

Theorem 3.7. Let u : H2→ T be an equivariant harmonic map to a minimal
R-tree with nontrivial abelian length functioǹ. ThenHopf(u) = (ω̃)2, whereω̃ is
the lift to H2 of an abelian differentialω on 6. Moreover,` is determined by the
periods ofRe(ω).

Proof. We first prove that the Hopf differential̃ϕ = Hopf(u) must be a square. It
suffices to prove that the zeros ofϕ̃ are all of even order. Letp be such a zero, and
choose a neighborhood1 of p as above. SinceT has an abelian length function, the
action of0 must fix an endE of T . Then, applying the construction of Section 5 of
[DDW], we find a continuous family of equivariant harmonic mapsuε obtained by
“pushing” the image ofu a distanceε in the direction of the fixed end. On the other
hand, ifϕ̃ had a zero of odd order, this would violate Corollary 3.4.

We may therefore express̃ϕ = (ω̃)2 for some abelian differential̃ω on H2. A
priori, we can only conclude that̃ω descends to an abelian differentialω̂ on an
unramified double cover̂6 of 6 determined by an index-2 subgroup̂0 ⊂ 0. Let L
be a complete noncritical leaf of the horizontal foliation ofϕ̃. Choose a pointx0 ∈ L
and letx̄0 = u(x0). We assume that we have chosenx0 so thatx̄0 is an edge point.
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Then there is a unique raȳR with end pointx̄0 leading out to the fixed endE. LetR
denote the half-leaf ofL starting atx0 and such that a small neighborhood ofx0 in R
maps isometrically onto a small subsegment ofR̄.

We claim thatR itself maps isometrically ontōR. For suppose to the contrary that
there is a pointy ∈ R such that the portion[x0,y] of R from x to y maps isometrically
onto a subsegment of̄R, but that this is not true for anyy′ ∈ R \[x0,y]. Clearly, the
image ofy by u must be a vertex ofT . Recall the factorizationf : Tϕ̃ → T from
Proposition 2.4. Sincef is a surjective morphism of trees, the vertices ofT are either
images byf of vertices ofTϕ̃ and, hence, images byu of zeros ofϕ̃, or they are
vertices created by a folding off . Thus, there are two cases to consider: (1) There
is a pointq such thaty and q lie on the same vertical leaf andq is a zero ofϕ̃.
Moreover, there is a critical horizontal leafR′ with one end point equal toq, a small
subsegment of which maps isometrically onto a subsegment ofR̄ with end point
q̄ = u(q) (see Figure 2). (2) There is a pointq such thaty andq lie on the same
vertical leaf,q is connected by a horizontal leaf to a zerop of ϕ̃, and the mapf folds
at π(p), identifying the segment[p,q] with a portion[p,q ′] of another horizontal
leaf R′. Moreover,[p,q ′] maps isometrically onto a subsegment of the unique ray
from p̄ = u(p) to the endE (see Figure 3).

Consider case (1): As indicated in Figure 2, we can find a small neighborhood1

of y and portions of horizontal leavese ande′ meeting atq that map isometrically
onto segments ofT intersecting the imagēR′ = u(R′) only in q̄. Now, as above, by
pushing the image ofu in the direction ofE and possibly choosing1 smaller, we
can find a harmonic mapuε that maps1 onto a segment with end pointq̄ and maps
y to the opposite end point—a contradiction. The argument for case (2) is similar:
We may find a disk1 centered aty that maps to the union of segments[p̄, q̄] and
[r̄ , q̄], with y being mapped tōq. Then, pushing the map in the direction ofE as
above again leads to a contradiction (see Figure 3).

Next, we claim that for anyg ∈ 0̂, `(g) is given by the period of Re(ω̂) around a
curve representing the class[g]. First, by definition of a fixed end, the intersection
R̄∩g(R̄) contains a subray of̄R, and for allx̄ in this subray,̀ (g)= dT (x̄,g(x̄)) (cf.
[CM, Thm. 2.2]). For simplicity then, we assumeg(R̄) ⊂ R̄. Choose a lift ofx̄ to
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x ∈ R. Thenu(g(x)) = g(x̄) ∈ R̄. Supposeg(x) is connected by a (possibly empty)
vertical leaf to a pointx′ on R. Then the curveγ̃ consisting of the portion[x,x′]
of R from x to x′ followed by the vertical leaf tog(x) projects to a curveγ on6
representingg. Moreover, sinceR maps isometrically ontōR, `(g) is the length of
[x,x′] with respect to the transverse measure determined byϕ̃. SinceR contains no
zeros ofϕ̃, the latter is simply the absolute value of

∫
[x,x′]Re(ω̃). Futhermore, since

the vertical direction lies in the kernel of Re(ω̂), we also have

`(g)=
∣∣∣∣∫
γ̃

Re(ω̃)

∣∣∣∣= ∣∣∣∣∫
γ

Re(ω̂)

∣∣∣∣
as desired.

Now consider the possibility thatg(x) ∈ g(R) is not connected toR by a vertical
leaf. Sinceg(x̄) ∈ R̄, it follows from Proposition 2.4 and the fact thatR maps ontoR̄
that there is an intervening folding of a subray ofg(R) ontoR. Let y ∈ R project to
the vertex inTϕ̃ at which this occurs. The simplest case is wherey is connected by a
vertical leaf to a pointw ∈ g(R), and the folding identifies the subray ofR starting
at y isometrically with the subray ofg(R) starting atw. The same analysis as above
then produces the closed curveγ .

A more complicated situation arises when there are intervening vertices (see Fig-
ure 4(a)): For example, there may be zerosp,q of ϕ̃, a pointw′ ∈ g(R), and segments
e,e′, ande′′ of the vertical, horizontal, and vertical foliations, respectively, with end-
points{y,p}, {p,q}, and{q,w′}, respectively. Moreover, the mapu folds e′ onto a
subsegmentf of R with endpointsy andy′, and then it identifies the subray ofR
starting aty′ isometrically with the subray ofg(R) starting atw′. In this way, we see
that a subsegmentf ′ of g(R) with endpointsw′ andw gets identified withf ande′;
in particular, the transverse measures of these three segments are all equal. (Strictly
speaking,y′ need not lie onR as we choose it, but this does not affect the argument.)

Now consider the prongs at the zerop, for example. These project to distinct
segments inTϕ̃ , which are then either projected to segments inT intersectingR̄ only
in ȳ; or alternatively there may be a folding identifying them with subsegments of
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R̄. Let us label the prongs with a+ sign if there is a folding onto a subsegment of
[ȳ,E), with a− sign if there is a folding onto a subsegment of[x̄, ȳ], and with a 0 if
no folding occurs or if the edge is folded along some other segment (see Figure 4(b)).
Sincep is connected by the vertical leafe to R, we label the adjacent horizontal
segments with+ and− accordingly. Working our way aroundp in the clockwise
direction, and repeatedly using the “pushing” argument from Section 5 of [DDW],
we find that every second prong must be labeled+ while the intervening prongs may
get either− or 0 (recall Lemma 3.2). Therefore, there must be an odd number of
prongs betweene′ and the one adjacent toe, which is identified in the leaf space with
a portion off . A similar argument applies toq, e′′, andf ′.

Let γ̃ ′ be the path fromy′ to w obtained by followingf,e,e′,e′′, and thenf ′.
Because of the odd sign to the folding of the prongs atp and q, one may easily
verify that

∣∣∫
γ̃ ′Re(ω̃)

∣∣ is the just the transverse measure of the segmentf . Indeed,
supposeϕ̃ has a zero of order 2n at some pointp, and choose a local conformal
coordinatez such thatϕ̃(z)= z2ndz2. Then the foliation is determined by the leaves
of ξ = zn+1/n+ 1. If ζ is a primitive 2n+ 2 root of unity, thenz 7→ ζ kz takes
one radial prong to another, withk−1 prongs in between (in the counterclockwise
direction). The outward integrals of Re

√
ϕ̃ along these prongs to a fixed radius differ

by (−1)k. Our analysis implies thatk−1 is odd, sok is even, and we have the correct
cancellation. If we extend̃γ ′ along the horizontal leavesR andg(R) to a pathγ̃ from
x to g(x), then

∣∣∫
γ̃

Re(ω̃)
∣∣= dT (x̄,g(x̄)) as required. In general, there are additional

intervening zeros, and the procedure above applies to each of these with no further
complication.

Thus,` restricted tô0 is given by the periods of Re(ω̂). Since the real parts of the
periods of an abelian differential determine the differential uniquely,ω̂ must agree
with the pullback tô6 of the form in Proposition 3.6; in particular, it descends to6.
This completes the proof of Theorem 3.7.

We immediately have the following.
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Corollary 3.8. Fix an abelian length functioǹ. Then for any treeT with length
function ` and any equivariant harmonic mapv : H2 → T , we haveHopf(v) =
Hopf(u) whereu is the equivariant harmonic function from Proposition 3.6 corre-
sponding tò .

We are now prepared to define the map (1.1). Take a representative` of [`] ∈
PL(0). There are two cases: If̀ is nonabelian, use Proposition 3.5 to define
H([`]) = ϕ. If ` is abelian, use Proposition 3.6. The main result of this section
is the following.

Theorem 3.9. The mapH : PL(0)→ SQD defined above is continuous.

Proof. Suppose[`i] → [`], and assume, to the contrary, that there is a subse-
quence, which we take to be the sequence itself, such thatH([`i])→ ϕ 6= H([`]).
Choose representatives`i → `. If there is a subsequence{i′} consisting entirely of
abelian length functions, theǹitself must be abelian, and from the construction of
Proposition 3.6,H(`i′)→ H(`), a contradiction. Thus, we may assume all the`i ’s
are nonabelian. There existR-treesTi , unique up to isometry, and equivariant har-
monic mapsui :H2→ Ti . We claim that theui have uniform modulus of continuity
(cf. [KS2, Prop. 3.7]). Indeed, by [GS, Thm. 2.4], it suffices to show thatE(ui) is
uniformly bounded. IfE(ui)→∞, then the same argument as in [DDW, proof of
Thm. 3.1] would give a contradiction. It follows by [KS2, Prop. 3.7] that there is
a subsequence{i′} (which we assume is the sequence itself) such thatui converges
in the pullback sense to an equivariant harmonic mapu : H2 → T , whereT is a
minimalR-tree with length function equal tò. In addition, by [KS2, Theorem 3.9],
Hopf(ui)→ Hopf(u). If ` is nonabelian, we have a contradiction by Proposition 3.1;
if ` is abelian, we have a contradiction by Corollary 3.8.

4. Proof of the main theorem. We show how the results of the previous section,
combined with those in [KS2] and [DDW], give a proof of the main theorem. We first
reduce the proof of the continuity ofh̄ to the following.

Claim. If [ρi] ∈ X(0) is a sequence of representations converging to[`] ∈
PL(0), thenh([ρi])→H([`]).

Suppose the claim holds and̄h is not continuous. Then we may find a sequence
xi ∈ PL(0)∪X(0) such thatxi → x but h̄(xi)→ y 6= h̄(x). If x ∈ PL(0) so that
h̄(x)=H(x), the claim rules out the possibility that there is a subsequence of{xi} in
X(0). In this case then, there must be a subsequence inPL(0). But this contradicts
the continuity ofH , by Theorem 3.9. Thus,x must be inX(0). But then we may
assume that{xi} ⊂ X(0), so thath̄= h on{xi}. The continuity of the homeomorphism
h : X(0)→MHiggs then provides the contradiction.

It remains to prove the claim. Again suppose to the contrary that[ρi] → [`] but
h([ρi])→ ϕ 6= H([`]) for ϕ ∈ SQD. First, suppose that there is a subsequence[ρi′ ]
with reducible representative representationsρi′ : 0→ SL(2,C). Up to conjugation,
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which amounts to changing the choice of representative, we may assume eachρi′ fixes
a given vector 06= v ∈ C2, and that the action on the 1-dimensional line spanned byv

is determined by a characterχi′ : 0→ C∗. The associated translation length functions
`i′ are therefore all abelian, and so[`] must be abelian. We may assume there is a
representativè such that̀ i′ → `. By Proposition 3.6 there are harmonic functions

u,ui′ :H2−→R' C∗/U(1) ↪→H3,

equivariant for the induced action of0 onC∗ by χ andχi′ , respectively. These con-
verge (after rescaling) to a harmonic functionu :H→R, equivariant with respect to
an action onRwith translation length functioǹ. Since the length functions converge,
it follows from the construction in Proposition 3.6 that Hopf(ui′)→ Hopf(u), and so
by the definition ofH , h([ρi′ ])→H([`]), a contradiction.

Second, suppose that there is a subsequence[ρi′ ] of irreducibles. Then by the main
result of [DDW] we can find a further subsequence (which we take to be the sequence
itself) of ρi′-equivariant harmonic mapsui′ : H2→ H3 converging in the sense of
Korevaar-Schoen to a harmonic mapu : H2 → T , whereT is a minimalR-tree
with an action of0 by isometries and length functioǹin the class[`]. As above,
Hopf(ui′)→ Hopf(u), so by the definition ofH , h([ρi′ ])→H([`]), a contradiction.
Since we have accounted for both possible cases, this proves the claim.

5. Convergence of length functions. In this final section we briefly sketch an
alternative argument for the convergence to the boundary in the main theorem, based
on a direct analysis of length functions, more in the spirit of [W1]. The generalization
of estimates for equivariant harmonic maps with targetH2 to maps with targetH3

has largely been carried out by Minsky [M]. We discuss this point of view, however,
since it reveals how and why the folding of the dual treeTϕ̃ occurs.

The first step is to analyze the behavior of the induced metric for a harmonic map
u : H2→ H3 of high energy (at the points whereu is an immersion). As usual we
denote byϕ̃ the Hopf differential for the mapu. Because of equivariance,ϕ̃ is the
lift of a holomorphic quadratic differentialϕ on 6. Recall the norm‖ϕ‖ from the
introduction, and letZ(ϕ) ⊂ 6 denote the zero set ofϕ. We also setµ to be the
Beltrami differential associated to the pullback metricu∗ds2

H3.

Lemma 5.1. Fix δ,T > 0. Then there are constantsB,α > 0 such that for allu,µ,
andϕ as above,‖ϕ‖ ≥ T , and allp ∈6 satisfyingdistσ (p,Z(ϕ))≥ δ, we have

log

(
1

|µ|
)
(p) < Be−α‖ϕ‖ .

Proof. This result is proven in [M, Lemma 3.4]. One needs only a statement
concerning the uniformity of the constants appearing there. However, by using the
compactness ofSQD, one easily shows the following: Forδ > 0 there is a constant
c(δ) > 0 such that, for allϕ ∈ SQD and allp ∈ 6 such that distσ (p,Z(ϕ)) ≥ δ,
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the diskU of radius c̃(δ) (with respect to the singular flat metric|ϕ|) aroundp
is embedded in6 and contains no zeros ofϕ. Then the result cited above applies.

This estimate is all that is needed to prove convergence in the case where there
cannot be a folding of the dual treeTϕ̃ such that the composition of projection toTϕ̃
with the folding is harmonic. From Lemma 3.2, this is guaranteed, for example, ifϕ

has only simple zeros. For simplicity, in this section we assume all representations
are irreducible.

Theorem 5.2. Given an unbounded sequenceρj of representations with Morgan-
Shalen limit[`], let uj :H2→H3 be the associatedρj -equivariant harmonic maps.
Suppose that for̃ϕj = Hopf(uj ) we haveϕj/‖ϕj‖ → ϕ ∈ SQD, whereϕ has only
simple zeros. Then[`] = [`T ], whereT = Tϕ̃ .

Proof. We prove the convergence of length functions in two steps. First, we com-
pare the length of closed curvesγ in the free isotopy class[γ ] with respect to the
induced metric fromuj to the length with respect to the transverse measure. Second,
we compare the length of the image byuj of a lift γ̃ to H2 of γ to the translation
length inH3 of the conjugacy class that[γ ] represents. The basic idea is that the
image ofγ̃ very nearly approximates a segment of the hyperbolic axis forρj ([γ ]).

For ϕ and[γ ] as above, let̀ϕ([γ ]) denote the infimum over all representativesγ
of [γ ] of the length ofγ with respect to the vertical measured foliation defined byϕ.
If u :H2→H3 is a differentiable equivariant map, we define`u([γ ]) as follows: For
each representativeγ of [γ ], where[γ ] corresponds to the conjugacy class ofg ∈ 0,
lift γ to a curveγ̃ at a pointx ∈ H2, terminating atgx. We then take the infimum
over all suchγ̃ of the length ofu(γ̃ ). This is`u([γ ]), and by the equivariance ofu
it is independent of the choice ofx. Finally, recall that the translation length`ρ([γ ])
for a representationρ : 0→ SL(2,C) is defined in Section 2.

Given ε > 0, let QDε ⊂ QD\{0} denote the subset consisting of holomorphic
quadratic differentialsϕ having only simple zeros, and such that the zeros are pairwise
at least aσ -distanceε apart. Notice that fort 6= 0, tQDε =QDε. The next result is a
consequence of Lemma 5.1.

Proposition 5.3. For all classes[γ ] and differentialsϕ ∈ QDε, there exist con-
stantsk andη depending on‖ϕ‖, [γ ], andε, so that

k `ϕ([γ ])+η ≥ `u([γ ])≥ `ϕ([γ ])

wherek→ 1 andη‖ϕ‖−1/2→ 0 as‖ϕ‖→∞ in QDε.

Sketch of proof. We first need to choose an appropriate representative for the class
of [γ ]. Such a choice was explained in [W1]. Namely, forδ > 0 and a givenϕ, we can
find a representativeγ consisting of alternating vertical and horizontal segments and
having the transverse measure of the class[γ ]. Moreover, because the zeros ofϕ are
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simple, for sufficiently smallδ we can also guarantee thatγ avoid aδ neighborhood of
the zeros. Now the proof follows as in [W1, Lemma 4.6]. Note that along aharmonic
maps ray(that is, a sequenceui such that Hopf(ui) is of the formtiϕ for a fixedϕ and
an increasing unbounded sequenceti), we no longer necessarily have monotonicity
of the norm of the Beltrami differentials|µ(ti)|. The argument for the estimate still
applies, however, since the representativesγ are uniformly supported away from the
zeros. There, we apply the estimate Lemma 5.1. The details are omitted.

Next, we comparèu with the translation length inH3.

Proposition 5.4. Let ρ : 0→ SL(2,C) andu :H2→H3 be theρ-equivariant
harmonic map withϕ̃ = Hopf(u). Supposeϕ ∈ QDε. For all classes[γ ] there exist
constantsm andζ depending on‖ϕ‖, [γ ], andε, so that

m`ρ([γ ])+ζ ≥ `u([γ ])≥ `ρ([γ ]),

wherem→ 1 andζ‖ϕ‖−1/2→ 0 as‖ϕ‖→∞ in QDε.

Combining Propositions 5.3 and 5.4 proves Theorem 5.2.

Sketch of proof of Proposition 5.4.One observes that away from the zeros, the im-
ages of the horizontal leaves of the foliation ofϕ̃ closely approximate (long) geodesics
in H3, while by Lemma 5.1 the images of vertical leaves collapse. More precisely,
the following is proven in [M, Thm. 3.5].

Lemma 5.5. Fix δ > 0, a representationρ : 0 → SL(2,C), and letu : H2 →
H3 be theρ-equivariant harmonic map with Hopf differentialϕ̃. Let β̃ be a seg-
ment of the horizontal foliation of̃ϕ from x to y and suppose that, for all̃p ∈ β̃,
distσ (p,Z(ϕ))≥ δ. Then there is anε, exponentially decaying in‖ϕ‖, such that the
following hold:

(1) u(β̃) is uniformly withinε of the geodesic inH3 fromu(x) to u(y).
(2) The length ofu(β̃) is within ε of distH3(u(x),u(y)).

The following is a key result.

Lemma 5.6. Given g ∈ SL(2,C), let `(g) denote the translation length for the
action ofg onH3. Suppose thats ⊂ H3 is a curve that isg invariant and satisfies
the following property: For any two pointsx,y ∈ s, the segment ofs from x to y is
uniformly within a distance1 of the geodesic inH3 joining x andy. Then there is a
universal constantC such that

inf
x∈sdistH3

(
x,g(x)

)≤ `(g)+C.
Proof. The intuition is clear; such ans must be an “approximate axis” forg. The

proof proceeds as follows: Choosex ∈ s, and letc denote the geodesic inH3 fromx to
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g(x). By [Cp, Lemma 2.4] there exists a universal constantD and a subgeodesic̃c of c
with the property that|length(c̃)−`(g)| ≤D. Leta andb be the endpoints of̃c closest
to x andg(x), respectively. By the construction ofc̃ in the reference cited above, it
follows that distH3(b,g(a)) ≤ D; hence, distH3(b,g(b)) ≤ `(g)+2D. Now by the
assumption onc, there is a pointy ∈ s close tob, so that distH3(y,g(y))≤ `(g)+C,
whereC = 2(D+1).

Proceeding with the proof of Proposition 5.4, choose the representativeγ as dis-
cussed in Proposition 5.3. We may then lift toγ̃ ⊂ H2 so thatγ̃ is invariant under
the action ofg. Now γ̃ is written as a union of horizontal and vertical segments
of the foliation of ϕ̃. Let s = u(γ̃ ).Then Lemmas 5.1 and 5.5 imply thats satisfies
the hypothesis of Lemma 5.6. Moreover, using Lemma 5.5 again, along with some
elementary hyperbolic geometry, one can show that infx∈s distH3(x,g(x)) is approx-
imated by the length of a segment ofu(γ̃ ) from a pointu(x) to u(gx). We leave the
precise estimates to the reader.

From Lemma 3.2, we see that foldings can only arise when the Hopf differentials
converge inSQD to differentials with multiplicity at the zeros. From the point of
view taken here, this corresponds to the fact that the representatives for closed curves
γ chosen above may be forced to run into zeros of the Hopf differential where the
estimate Lemma 5.1 fails. These may cause nontrivial angles to form in the image
u(γ̃ ) which, in the limit, may fold the dual tree.

Consider again the situation along a harmonic maps ray with differentialϕ. Given
[γ ] corresponding to the conjugacy class of an elementg ∈ 0, representativesγ
still may be chosen as in the proof of Proposition 5.3 so that the horizontal segments
remain bounded away from the zeros. However, it may happen that a vertical segment
passes through a zero of order two or greater. For simplicity, assume this happens
once. Divideγ into curvesγ1, γ2, andγv, whereγv is the offending vertical segment,
and lift to segments̃γ1, γ̃2, andγ̃v in H2. Note that one end point of each of theγ̃i ’s
corresponds to either end point ofγ̃v, and the other end points of thẽγi ’s are related
by g. By the Lipschitz estimate for harmonic maps to nonpositively curved spaces,
we have a bound on the distance inH3 between the end points ofu(γ̃v) in terms
of the length ofγv and the energyE(u)1/2 (cf. [S2]). Thus, the rescaled length is
small; in fact, since the length ofγv is arbitrary, the distance converges to zero. On
the other hand, the previous argument applies to the segmentsu(γ̃1) andu(γ̃2), which
are connected byu(γ̃v). Adding the geodesic inH3 joining the other end points of
u(γ̃1) andu(γ̃2) forms an approximate geodesic quadrilateral, which, in the rescaled
limit, converges either to an edge| (no folding) or a possibly degenerate tripoda
(folding). In both cases, there is an edge that, by the same argument as in the proof
of Proposition 5.4, approximates the axis ofρj (g) for large j . At the same time,
the rescaled length of this segment is approximated by the translation length of the
elementg acting on a folding ofTϕ̃ at the zero.

An interesting question is whether this approach may be used to determine precisely
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the fibers of the map̄h in the main theorem. While the essential ideas are outlined here,
a complete description is not yet available. We will return to this issue in a future work.
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