THE NONABELIAN HODGE CORRESPONDENCE FOR BALANCED HERMITIAN METRICS OF HODGE-RIEMANN TYPE

XUEMIAO CHEN AND RICHARD A. WENTWORTH

Abstract

This paper extends the nonabelian Hodge correspondence for Kähler manifolds to a larger class of hermitian metrics on complex manifolds called balanced of Hodge-Riemann type. Essentially, it grows out of a few key observations so that the known results, especially the Donaldson-Uhlenbeck-Yau theorem and Corlette's theorem, can be applied in our setting. Though not necessarily Kähler, we show that the Sampson-Siu Theorem proving that harmonic maps are pluriharmonic remains valid for a slightly smaller class by using the known argument. Special important examples include those balanced metrics arising from multipolarizations.

1. Introduction

Let X be a compact, complex manifold of dimension n. Recall that a hermitian metric on X is called balanced if $d \omega^{n-1}=0$, where ω is the fundamental (Kähler) (1,1)-form of the metric. The balanced metrics are a more restrictive class than the Gauduchon metrics, which satisfy $\partial \bar{\partial} \omega^{n-1}=$ 0 . Nevertheless, there are many examples of balanced, non-Kähler, metrics (cf. [18, p. 292]).

In this paper we consider a further condition. We say that a balanced metric is of Hodge-Riemann type, if it admits an expression:

$$
\begin{equation*}
\frac{\omega^{n-1}}{(n-1)!}=\omega_{0} \wedge \Omega_{0} \tag{1.1}
\end{equation*}
$$

where $\omega_{0}\left(\right.$ resp. $\left.\Omega_{0}\right)$ is a real $(1,1)$ (resp. $(n-2, n-2)$), and Ω_{0} satisfies the Hodge-Riemann bilinear relations (see Definition 2.1 for the precise definition).

The condition of being balanced of Hodge-Riemann type seems very restrictive. However, many examples of non-Kähler metrics satisfying this property come from multipolarizations. Namely, let $\omega_{0}, \omega_{1}, \ldots, \omega_{n-2}$ be positive (1,1)-forms on X, and suppose

$$
\begin{equation*}
\frac{\omega^{n-1}}{(n-1)!}=\omega_{0} \wedge \cdots \wedge \omega_{n-2} \tag{1.2}
\end{equation*}
$$

such that

- $d \omega^{n-1}=0$;
- $d\left(\omega_{1} \wedge \cdots \wedge \omega_{n-2}\right)=0$

2020 Mathematics Subject Classification. Primary: 53C07, 14J60; Secondary: 58E20.
Key words and phrases. Hermitian-Einstein metric, Higgs bundle, harmonic map.
(e.g. both conditions are automatic if the ω_{i} are Kähler). Then by a result of Timorin [22], ω is of Hodge-Riemann type. Even when the ω_{i} are Kähler metrics, ω is not so in general.

In this note we show that certain properties of Hermitian-Einstein metrics and equivariant harmonic maps familiar for Kähler manifolds continue to hold for balanced metrics of Hodge-Riemann type. Namely, we prove
(1) a generalized Bogomolov-Miyaoka-Yau inequality for ω-polystable holomorphic (and Higgs) bundles (Corollary 3.4);
(2) a version of the Sampson-Siu pluriharmonicity theorem for harmonic maps to targets with nonpositive complexified sectional curvature (Theorem 4.1 and Corollary 4.3);
(3) the nonabelian Hodge correspondence relating ω-stable Higgs bundles with vanishing Chern classes to irreducible representations of the fundamental group (Theorem 5.1).

Let us remark that for the class of Gauduchon metrics, items (2) and (3) do not hold in general (see [2]), and the statement of item (1) cannot even be formulated.

The simple idea behind these generalizations is well explained in [21, Lemma 1.1]. Let us focus on item (3) above. Suppose D be a complex connection on a vector bundle $E \rightarrow X$. A hermitian metric h on E gives a decomposition $D=D^{\prime \prime}+D^{\prime}$ (see 5.2). Conversely, a Higgs bundle defines an operator $D^{\prime \prime}$, and a metric allows one to complete it to a complex connection D by setting $D^{\prime}=\left(D^{\prime \prime}\right)^{*}$. Let $F_{D}=D^{2}$ be the curvature of D, and $G_{D}=\left(D^{\prime \prime}\right)^{2}$ the pseudo-curvature. Flatness of D is the equation $F_{D}=0$, whereas D arises from a Higgs bundle iff $G_{D}=0$.

Now suppose ω is a balanced metric on X, so that the degree and slope stability of holomorphic bundles can be defined. Given an ω-slope stable Higgs bundle with $\operatorname{ch}_{1}(E)=0$, one can find a metric h so that the associated connection D satisfies

$$
\begin{equation*}
F_{D} \wedge \omega_{0} \wedge \Omega_{0}=0 \tag{1.3}
\end{equation*}
$$

Similarly, given a flat connection D one can find a harmonic metric, meaning that

$$
\begin{equation*}
G_{D} \wedge \omega_{0} \wedge \Omega_{0}=0 \tag{1.4}
\end{equation*}
$$

Thus, under the assumptions, the forms F_{D} and G_{D} are "primitive", in the sense of (2.1) below.

The nonabelian Hodge correspondence follows by showing that if in addition $\operatorname{ch}_{2}(E)=0$, then (1.3) implies $F_{D}=0$, and on the other hand, (1.4) always implies $G_{D}=0$ (as pointed out in [21, p. 17], the "pseudo-Chern class" defined by G_{D} automatically vanishes by the flatness of D). Now, if we assume ω is of Hodge-Riemann type, then these conclusions hold by integrating $\operatorname{tr}\left(F_{D} \wedge F_{D}\right)$ or $\operatorname{tr}\left(G_{D} \wedge G_{D}\right)$ against Ω_{0}, and using the vanishing of the Chern classes and the Hodge-Riemann bilinear relations. Thus, we see that the Kähler condition may be relaxed.

2. Hodge-Riemann forms

In this section, we recall the notion of a Hodge-Riemann form on a polarized complex vector space, i.e. a complex space V with a constant Kähler form ω_{0}. Denote $\Lambda^{p, q}$ to be the space of constant (p, q) forms over V. We fix Ω_{0} to be any real $(n-p-q, n-p-q)$ form. On $\Lambda^{p, q}$, we can define a Hermitian form as

$$
Q(\alpha, \beta):=(\sqrt{-1})^{p-q}(-1)^{\frac{(p+q)(p+q-1)}{2}} *\left(\alpha \wedge \bar{\beta} \wedge \Omega_{0}\right)
$$

The space of primitive forms of degree (p, q) associated to $\left(\Omega_{0}, \omega_{0}\right)$ is defined as

$$
\begin{equation*}
P^{p, q}=\left\{\alpha \in \Lambda^{p, q}: \alpha \wedge \omega_{0} \wedge \Omega_{0}=0\right\} \tag{2.1}
\end{equation*}
$$

Definition 2.1. We call Ω_{0} a Hodge-Riemann form for degree (p, q) with respect to ω_{0} if
(1) there exists a Q-orthogonal decomposition

$$
\Lambda^{p, q}=\mathbb{C} \omega_{0} \oplus P^{p, q}
$$

(2) Q is positive definite on $P^{p, q}$.

Remark 2.2. It follows from the classical Hodge-Riemann relation that $\Omega_{0}=$ ω_{0}^{n-p-q} is a Hodge-Riemann form (cf. [24, Thm. 6.32]).

In general, the Hodge-Riemann property of a form is difficult to verify. However, we have the following result, which has been used to get the mixed Hodge-Riemann relation (see [8]).
Proposition 2.3 ([22, Main Theorem], see also [12]). For any constant positive $(1,1)$ forms $\omega_{1}, \cdots, \omega_{k}$ on $\left(V, \omega_{0}\right), \omega_{1} \wedge \cdots \wedge \omega_{n-k}$ is a Hodge-Riemann form with respect to ω_{0} for any degrees (p, q) satisfying $p+q=k$.

As a special case, this gives
Corollary 2.4. For any constant positive $(1,1)$ forms $\omega_{1}, \cdots, \omega_{n-2}$ on $\left(V, \omega_{0}\right)$
(1) $\omega_{0} \wedge \cdots \wedge \omega_{n-2}$ is a strictly positive $(n-1, n-1)$ form. In particular, there exists a positive $(1,1)$ form ω so that

$$
\frac{\omega^{n-1}}{(n-1)!}=\omega_{0} \wedge \cdots \wedge \omega_{n-2}
$$

(cf. [18, p. 279], and also [23]).
(2) $\omega_{1} \wedge \cdots \wedge \omega_{n-2}$ is a Hodge-Riemann form for degrees (p, q) satisfying $p+q=2$ with respect to ω_{0}.
This combined with [20, Cor. 8.5] implies the following
Proposition 2.5. For any constant Kähler forms ω_{1}, ω_{2} on $\left(V, \omega_{0}\right)$, the form

$$
\omega_{1}^{n-2}+\omega_{1} \wedge \omega_{2}^{n-3}+\cdots \omega_{2}^{n-2}
$$

is a Hodge-Riemann form for degree (p, q) with $p+q=2$ with respect to ω_{0}.
Remark 2.6. It is known that the Hodge-Riemann property is not invariant under convex linear combinations. For example, fix any two Kähler forms ω_{1} and ω_{2} on $\mathbb{C}^{4}, \omega_{1}^{2}+a \omega_{2}^{2}$ is not a Hodge-Riemann form for degree $(1,1)$ for certain positive values of a (see [20, Rem. 9.3] and also [22, Rem. 3] for other examples).

Timorin's result motivates the following:
Definition 2.7. A hermitian metric ω on a complex manifold X is said to be balanced of Hodge-Riemann type if the following hold:
(1) we have an expression

$$
\frac{\omega^{n-1}}{(n-1)!}=\omega_{0} \wedge \Omega_{0}
$$

where ω_{0} is a strongly positive real $(1,1)$ form on X and Ω_{0} is a real ($n-2, n-2$);
(2) at every point Ω_{0} is a Hodge-Riemann form for $(p, q), p+q=2$;
(3) Ω_{0} and $\omega_{0} \wedge \Omega_{0}$ are closed.

Note that (3) is equivalent to ω being balanced and Ω_{0} being closed.

3. Bogomolov-Miyaoka-Yau inequality

Below we show how the Donaldson-Uhlenbeck-Yau (resp. Hitchin-Simpson) theorem relating stability of holomorphic (resp. Higgs) bundles to the existence of Hermitian-Einstein type metrics results in a Chern class inequality. The main result is Corollary 3.4 In this section, assume (X, ω) is a compact complex Hermitian manifold that satisfies items (1) and (3) of Definition 2.7, as well as the Hodge-Riemann condition (2) for the case $(p, q)=(1,1)$.

Recall that associated to every coherent analytic sheaf $\mathcal{E} \rightarrow X$ is a holomorphic line bundle $\operatorname{det} \mathcal{E}$. The first Chern class of \mathcal{E} is by definition $c_{1}(\mathcal{E}):=c_{1}(\operatorname{det} \mathcal{E}) \in H^{2}(X, \mathbb{Z}) \cap H_{\bar{\partial}}^{1,1}(X)$. We define the ω-degree of \mathcal{E} by:

$$
\operatorname{deg} \mathcal{E}:=\int_{X} c_{1}(\mathcal{E}) \wedge \frac{\omega^{n-1}}{(n-1)!}=\int_{X} c_{1}(\mathcal{E}) \wedge \omega_{0} \wedge \Omega_{0}
$$

Because of the balanced condition, this is well-defined on the class of $c_{1}(\mathcal{E})$. The slope of a (nonzero) torsion-free sheaf is

$$
\mu(\mathcal{E})=\frac{\operatorname{deg} \mathcal{E}}{\operatorname{rank} \mathcal{E}}
$$

Then we say a holomorphic bundle $\mathcal{E} \rightarrow X$ is ω-stable if $\mu(\mathcal{S})<\mu(\mathcal{E})$ for every coherent subsheaf $\mathcal{S} \subset \mathcal{E}$ with $0<\operatorname{rank} \mathcal{S}<\operatorname{rank} \mathcal{E}$.

A Higgs bundle on X is a pair (\mathcal{E}, θ), where $\mathcal{E} \rightarrow X$ is a holomorphic bundle, θ is a holomorphic 1-form with values in End \mathcal{E}, and $\theta \wedge \theta=0$. We say that a Higgs bundle is ω-stable if $\mu(\mathcal{S})<\mu(\mathcal{E})$ for every coherent subsheaf $\mathcal{S} \subset \mathcal{E}$ with $0<\operatorname{rank} \mathcal{S}<\operatorname{rank} \mathcal{E}$ and $\theta(\mathcal{S}) \subset \mathcal{S} \otimes \Omega_{X}^{1}$, where Ω_{X}^{1} is the holomorphic cotangent sheaf of X. Thus, stable vector bundles are a special case of stable Higgs bundles, where $\theta \equiv 0$. Finally, we say that (\mathcal{E}, θ) is ω-polystable if (\mathcal{E}, θ) splits as a direct sum of Higgs subbundles, all with the same slope.

Given a hermitian metric h on \mathcal{E}, let $\bar{\partial}_{E}+\partial_{E}$ denote the Chern connection of $(\mathcal{E}, h), \theta^{*}$ the hermitian adjoint of θ with respect to h. Thus, θ^{*} is a $(0,1)$-form with values in End E, satisfying $\partial_{E} \theta^{*}=0$. We will consider the complex connection

$$
D=\bar{\partial}_{E}+\partial_{E}+\theta+\theta^{*}
$$

and its curvature F_{D}. To be explicit, we will write: $D=(\mathcal{E}, \theta, h)$.

Definition 3.1. Fix a Higgs bundle (\mathcal{E}, θ) on X. A hermitian metric h on \mathcal{E} is called Hermitian-Einstein (HE) if

$$
\begin{equation*}
\sqrt{-1} F_{(\mathcal{E}, \theta, h)} \wedge \omega_{0} \wedge \Omega_{0}=\lambda \cdot \operatorname{Id} \cdot \omega_{0}^{2} \wedge \Omega_{0} \tag{3.1}
\end{equation*}
$$

for some constant λ.
Now we have the following generalized Donaldson-Uhlenbeck-Yau, HitchinSimpson theorem.

Theorem 3.2. (\mathcal{E}, θ) is ω-polystable if and only if it admits a HE metric. Moreover, if (\mathcal{E}, θ) is ω-stable, such a metric is unique up to scaling.

We will use the key fact that for balanced metrics, the Kähler identities hold for $(1,0)$ and $(0,1)$ forms ([10, Prop. 1]; see also [16, Lemma 7.1.1]).

Lemma 3.3. Given an n-dimensional hermitian manifold (X, ω) with $d \omega^{n-1}=$ 0 , the following hold:

$$
\bar{\partial}^{*} \alpha^{0,1}=-\sqrt{-1} \Lambda \partial \alpha^{0,1} \quad, \quad \partial^{*} \alpha^{1,0}=\sqrt{-1} \Lambda \bar{\partial} \alpha^{1,0}
$$

for any $(0,1)$-form $\alpha^{0,1}$, and any (1,0)-form $\alpha^{1,0}$.
Proof of Theorem 3.2. That the existence of a HE metric implies polystability is well-known. For the converse, it suffices to assume (\mathcal{E}, θ) is ω-stable. Since ω is balanced, it is in particular Gauduchon, and so by the result of Li-Yau [15], generalized to Higgs bundles by Lübke-Teleman [17], there is a metric \widetilde{h} such that

$$
\sqrt{-1} F_{(\mathcal{E}, \theta, \widetilde{h})} \wedge \frac{\omega^{n-1}}{(n-1)!}=\widetilde{\lambda} \cdot \operatorname{Id} \cdot \frac{\omega^{n}}{n!}
$$

where $\tilde{\lambda}=2 \pi \mu(\mathcal{E}) / \operatorname{vol}(X, \omega)$. Now there is a positive function f such that

$$
\omega_{0} \wedge \frac{\omega^{n-1}}{(n-1)!}=f \cdot \frac{\omega^{n}}{n!}
$$

Choose λ such that

$$
\begin{equation*}
\lambda \int_{X} f \cdot \frac{\omega^{n}}{n!}=\tilde{\lambda} \operatorname{vol}(X, \omega)=2 \pi \mu(\mathcal{E}) \tag{3.2}
\end{equation*}
$$

Then we can find a function φ satisfying: $\Delta_{\omega} \varphi=2(\lambda f-\widetilde{\lambda})$. Let $h=e^{\varphi} \widetilde{h}$. Then

$$
F_{(\mathcal{E}, \theta, h)}=F_{(\mathcal{E}, \theta, \widetilde{n})}-\partial \bar{\partial} \varphi \cdot \mathrm{Id}
$$

By Lemma 3.3, the Hodge and Dolbeault laplacians on functions are related: $\Delta_{\omega}=2 \Delta_{\bar{\partial}}$. Hence,

$$
-i \partial \bar{\partial} \varphi \wedge \frac{\omega^{n-1}}{(n-1)!}=\frac{1}{2} \Delta \varphi \frac{\omega^{n}}{n!}=\lambda \omega_{0} \wedge \frac{\omega^{n-1}}{(n-1)!}-\widetilde{\lambda} \frac{\omega^{n}}{n!}
$$

The result follows.
As a direct corollary of this, we have the following generalized Bogomolov-Miyaoka-Yau inequality

Corollary 3.4. For any ω-polystable rank $r \operatorname{Higgs}$ bundle (\mathcal{E}, θ), the following inequality holds:

$$
\int_{X}\left(2 r c_{2}(\mathcal{E})-(r-1) c_{1}(\mathcal{E})^{2}\right) \wedge \Omega_{0} \geq 0
$$

where the equality holds if and only if \mathcal{E} is projectively flat.
Proof. Eq. (3.1) implies

$$
F_{(\mathcal{E}, \theta, h)}-\frac{1}{r} \operatorname{tr}\left(F_{(\mathcal{E}, \theta, h)}\right) \cdot \mathrm{Id} \cdot \omega_{0}
$$

is primitive. Now use the Hodge-Riemann property of Ω_{0}.

For emphasis, we state the following version of the Donaldson-UhlenbeckYau theorem for the slope stability condition defined by multipolarizations (cf. [11]).

Theorem 3.5. Suppose X is a compact Kähler manifold with $(n-1)$ Kähler forms $\omega_{0}, \cdots, \omega_{n-2}$. Given a holomorphic vector bundle \mathcal{E} that is slope stable with respect to $\left[\omega_{0}\right] \cup \cdots \cup\left[\omega_{n-2}\right]$, there exists a Hermitian-Einstein metric h on \mathcal{E}, i.e.

$$
\sqrt{-1} F_{(\mathcal{E}, h)} \wedge \omega_{0} \wedge \cdots \wedge \omega_{n-2}=\lambda \cdot \operatorname{Id} \cdot \omega_{0}^{2} \wedge \omega_{1} \wedge \cdots \wedge \omega_{n-2}
$$

for some constant λ. Moreover, such a metric is unique up to constant rescalings.

Remark 3.6. We emphasize here that the Chern connection of (\mathcal{E}, h) is not a Yang-Mills connection in general.

By Corollary 3.4 and Proposition 2.3, we have the following generalization of the Bogomolov-Gieseker inequality for multipolarizations, proven in the projective case by Miyaoka [19, Cor. 4.7].

Corollary 3.7. Suppose X is a compact Kähler manifold with ($n-1$) Kähler forms $\omega_{0}, \cdots, \omega_{n-2}$, and \mathcal{E} is a slope stable holomorphic vector bundle over X with respect to $\left[\omega_{0}\right] \cup \cdots \cup\left[\omega_{n-2}\right]$. Then the following holds:

$$
\int_{X}\left(2 r c_{2}(\mathcal{E})-(r-1) c_{1}^{2}(\mathcal{E})\right) \wedge \Omega_{j} \geq 0
$$

for any $j=0, \ldots, n-2$. Here, $\Omega_{j}=\omega_{0} \wedge \cdots \wedge \omega_{j-1} \wedge \omega_{j+1} \cdots \wedge \omega_{n-2}$. Moreover, the equality holds for some j if and only if \mathcal{E} is projectively flat.

Remark 3.8. The gauge theoretic side of the HE connections defined via multipolarizations is studied in (4).

4. The Sampson-Siu theorem

In this section, we prove
Theorem 4.1. Let X be a compact complex manifold with a balanced metric of Hodge-Riemann type, and assume Ω_{0} is strongly positive. If N is a Riemannian manifold with nonpositive complexified sectional curvature, then every harmonic map $u: X \rightarrow N$ is pluriharmonic.

In the statement of the theorem, ω satisfies the condition of Definition 2.7, but we make the additional assumption that Ω_{0} is a strongly positive ($n-2, n-2$)-form in the sense of [7, Ch. III, Def. 1.1].

Proof of Theorem 4.1. Let ∇ denote the Levi-Cività connection on N. This induces a connection on $u^{*} T N$. The harmonic map equation is: $d_{\nabla}^{*} d u=0$. Since ω is balanced, Lemma 3.3 implies that u is harmonic if and only if

$$
\begin{equation*}
d_{\nabla} d^{c} u \wedge \omega^{n-1}=0 \tag{4.1}
\end{equation*}
$$

Next, we follow the argument in [1, pp. 73-75]. Since Ω_{0} is closed,

$$
d\left\langle d_{\nabla} d^{c} u \wedge d^{c} u\right\rangle \wedge \Omega_{0}=\left\langle R_{N}\left(d^{c} u\right) \wedge d^{c} u\right\rangle \wedge \Omega_{0}+\left\langle d_{\nabla} d^{c} u \wedge d_{\nabla} d^{c} u\right\rangle \wedge \Omega_{0}
$$

and so,

$$
0=\int_{X}\left\{\left\langle R_{N}\left(d^{c} u\right) \wedge d^{c} u\right\rangle \wedge \Omega_{0}+\left\langle d_{\nabla} d^{c} u \wedge d_{\nabla} d^{c} u\right\rangle \wedge \Omega_{0}\right\}
$$

By (4.1) and the Hodge-Riemann property, the second term is nonpositive. We claim that also

$$
\left\langle R_{N}\left(d^{c} u\right) \wedge d^{c} u\right\rangle \wedge \Omega_{0} \leq 0
$$

Given this, it follows that $d_{\nabla} d^{c} u=0$; hence, the pluriharmonicity. The claim follows from the assumption on Ω_{0} and the nonpositivity of the complexified sectional curvature of N. We work at a point x. By definition, we know that

$$
\Omega_{0}=\sum_{i} \mu_{i} \sqrt{-1} \alpha_{1}^{i} \wedge \overline{\alpha_{1}^{i}} \wedge \cdots \wedge \sqrt{-1} \alpha_{n-2}^{i} \wedge \overline{\alpha_{n-2}^{i}}
$$

where $\mu_{i} \geq 0$, and $\left\{\alpha_{1}^{i}, \cdots, \alpha_{n-2}^{i}\right\}$ are linearly independent $(1,0)$ forms. Denote by P_{i} the complex two dimensional subspace of $T M$ where $\left.\alpha_{j}^{i}\right|_{P_{i}}=0$ for $j=1, \cdots, n-2$. Fix X_{i}, Y_{i} so that $\left\{X_{i}, Y_{i}, J X_{i}, J Y_{i}\right\}$ form an orthogonal basis for P_{i}. Then

$$
\left\langle R_{N}\left(d^{c} u\right) \wedge d^{c} u\right\rangle \wedge \Omega_{0}=\sum_{i} \mu_{i}^{\prime}\left\langle R_{N}\left(d^{c} u\right) \wedge d^{c} u\right\rangle\left(X_{i}, Y_{i}, J X_{i}, J Y_{i}\right) \mathrm{d} \operatorname{Vol}
$$

for some $\mu_{i}^{\prime} \geq 0$. Now as in [1, p. 75], we know

$$
\left\langle R_{N}\left(d^{c} u\right) \wedge d^{c} u\right\rangle\left(X_{i}, Y_{i}, J X_{i}, J Y_{i}\right)=R_{N}\left(Z_{i}, W_{i}, \overline{W_{i}}, \overline{Z_{i}}\right) \leq 0
$$

where $Z_{i}=d u\left(X_{i}-J X_{i}\right)$ and $W_{i}=d u\left(W_{i}-J W_{i}\right)$. The claim follows.
Remark 4.2. If \widetilde{X} is the universal cover of X, then Theorem 4.1 remains valid for harmonic maps $u: \widetilde{X} \rightarrow N$ that are equivariant with respect to a representation $\rho: \pi_{1}(X) \rightarrow \operatorname{Iso}(N)$. These play a role in the next section. The existence of equivariant harmonic maps to nonpositively curved targets N is guaranteed if ρ is reductive (or semisimple) (see [5, 9, 14, 13]).

Theorem4.1, combined with [7, Prop. III.1.11] implies
Corollary 4.3. Suppose X is a compact complex manifold with a balanced metric ω of the form (1.2), where ω_{i} are positive $(1,1)$-forms and

$$
d\left(\omega_{1} \wedge \cdots \wedge \omega_{n-2}\right)=0
$$

If N is a Riemannian manifold with nonpositive complexified sectional curvature, then every harmonic map $u: X \rightarrow N$ is pluriharmonic.

5. The nonabelian Hodge correspondence

The goal of this section is to prove the following generalization of [21, Cor. 1.3].

Theorem 5.1. Suppose X is a compact complex manifold and ω is a balanced metric of Hodge-Riemann type on X. Then the nonabelian Hodge correspondence holds over (X, ω). More precisely, we have a 1-1 correspondence between
(1) semisimple flat bundles on X, and
(2) isomorphism classes of ω-polystable Higgs bundles (\mathcal{E}, θ) with $\operatorname{ch}_{1}(\mathcal{E}) \cup$ $\left[\omega^{n-1}\right]=0$ and $\operatorname{ch}_{2}(\mathcal{E}) \cup\left[\Omega_{0}\right]=0$.

Remark 5.2. - When $\omega_{0}=\omega, \Omega_{0}=\omega^{n-2} /(n-1)$!, then by our assumptions (X, ω) is Kähler. Then Theorem 5.1 reduces to the well known nonabelian Hodge correspondence for compact Kähler manifolds.

- There exist many examples where ω is not a Kähler metric, even when the underlying manifold X is Kähler, or even projective algebraic. For example, take X to be projective with $\left[\omega_{i}\right], i=0, \ldots, n-2$, all ample classes, and take ω as in (1.2). Then the class ω^{n-1} represents a point in the interior of the cone of movable curves (see [3]).
- Notice that if $\Omega_{0}=\omega_{1}^{n-2}$, then $d \Omega_{0}=0$ implies $d \omega_{1}=0$, and the manifold is Kähler. However, closedness of $\Omega_{0}=\omega_{1} \wedge \cdots \wedge \omega_{n-2}$, for different ω_{i}, can occur in the non-Kähler setting. One might expect that this will provide new insights for the study the nonKähler complex manifolds, since the results obtained here already put restrictions on complex manifolds admitting such structures.

Proof of Theorem 5.1. The proof, of course, closely follows the lines of the classical theorem, taking care to avoid the Kähler condition.

First, assume (\mathcal{E}, θ) is an ω-polystable Higgs bundle. If $\operatorname{ch}_{1}(\mathcal{E}) \cup\left[\omega^{n-1}\right]=$ 0 , then by Theorem 3.2 there is a hermitian metric h on \mathcal{E} such that (1.3) is satisfied for

$$
\begin{equation*}
D=\bar{\partial}_{E}+\partial_{E}+\theta+\theta^{*} \tag{5.1}
\end{equation*}
$$

(note that $\lambda=0$ by (3.2). Hence, F_{D} is primitive. Moreover, $\sqrt{-1} F_{D}$ is of type $(1,1)$ and hermitian. Since $\operatorname{ch}_{2}(\mathcal{E}) \cup\left[\Omega_{0}\right]=0$, we have

$$
0=\int_{X} \operatorname{tr}\left(F_{D} \wedge F_{D}\right) \wedge \Omega_{0}
$$

Since Ω_{0} is a Hodge-Riemann form, we conclude that D is a flat connection, which is necessarily semisimple.

Now let D be a semisimple flat connection on E. By Corlette's theorem (see Remark 4.2) there exists a harmonic metric, which has the following consequence. Decomposing into type we can express D as in (5.1), where $\theta \in \Omega^{1,0}(X$, End $E)$, and $\theta+\theta^{*}$ is essentially $d u$ for an equivariant harmonic $\operatorname{map} u: \widetilde{X} \rightarrow \mathrm{GL}(n, \mathbb{C}) / \mathrm{U}(n)$. Let

$$
\begin{equation*}
D^{\prime \prime}=\bar{\partial}_{E}+\theta \quad, \quad D^{\prime}=\partial_{E}+\theta^{*} \tag{5.2}
\end{equation*}
$$

We wish to prove that $G_{D}=\left(D^{\prime \prime}\right)^{2}=0$, for then $\bar{\partial}_{E}$ is integrable, $\bar{\partial}_{E} \theta=0$, and $\theta \wedge \theta=0$; i.e. $\left(\bar{\partial}_{E}, \theta\right)$ is a Higgs bundle.

Flatness of D implies,
(1) $\partial_{E} \theta=0$;
(2) $\left(\bar{\partial}_{E} \theta\right)^{*}=-\bar{\partial}_{E} \theta$;
(3) $\partial_{E}^{2}+\frac{1}{2}[\theta, \theta]=0$;

By (4.1), we have $\left(\bar{\partial}_{E} \theta-\left(\bar{\partial}_{E} \theta\right)^{*}\right) \wedge \omega^{n-1}=0$, and combining this with (2) we have

$$
\begin{equation*}
\bar{\partial}_{E} \theta \wedge \omega^{n-1}=\bar{\partial}_{E} \theta \wedge \omega_{0} \wedge \Omega_{0}=0 \tag{5.3}
\end{equation*}
$$

i.e. G_{D} is primitive (note that we have only used the balanced condition for this part).

To prove that $G_{D}=0$, we argue as in the proof of Theorem 4.1 (see also [5, proof of Thm. 5.1]). We have:

$$
\begin{aligned}
d \operatorname{tr}\left(\bar{\partial}_{E} \theta \wedge \theta^{*}\right) \wedge \Omega_{0} & =\partial \operatorname{tr}\left(\bar{\partial}_{E} \theta \wedge \theta^{*}\right) \wedge \Omega_{0} \\
& =\operatorname{tr}\left(\partial_{E} \bar{\partial}_{E} \theta \wedge \theta^{*}\right) \wedge \Omega_{0}+\operatorname{tr}\left(\bar{\partial}_{E} \theta \wedge\left(\bar{\partial}_{E} \theta\right)^{*}\right) \wedge \Omega_{0} \\
& =-\frac{1}{2} \operatorname{tr}\left(\left[\left[\theta, \theta^{*}\right], \theta\right] \wedge \theta^{*}\right) \wedge \Omega_{0}+\operatorname{tr}\left(\bar{\partial}_{E} \theta \wedge\left(\bar{\partial}_{E} \theta\right)^{*}\right) \wedge \Omega_{0} \\
& =-\frac{1}{4} \operatorname{tr}\left([\theta, \theta] \wedge[\theta, \theta]^{*}\right) \wedge \Omega_{0}+\operatorname{tr}\left(\bar{\partial}_{E} \theta \wedge\left(\bar{\partial}_{E} \theta\right)^{*}\right) \wedge \Omega_{0}
\end{aligned}
$$

so integrating,

$$
0=-\frac{1}{4} \int_{X} \operatorname{tr}\left([\theta, \theta] \wedge[\theta, \theta]^{*}\right) \wedge \Omega_{0}+\int_{X} \operatorname{tr}\left(\bar{\partial}_{E} \theta \wedge\left(\bar{\partial}_{E} \theta\right)^{*}\right) \wedge \Omega_{0}
$$

By the Hodge-Riemann property of Ω_{0}, both terms on the right hand side are nonpositive, and hence vanish. We conclude that $\bar{\partial}_{E} \theta=0$, and $[\theta, \theta]=0$. By (3) above, $\bar{\partial}_{E}$ is integrable, and this completes the proof.

6. Rigidity of representations of fundamental groups

For the sake of completeness, in this last section we point out that two important results of Corlette and Simpson generalize to our setting. Let $G_{\mathbb{R}}$ be a simple real algebraic group acting by isometries on the irreducible bounded symmetric domain $G_{\mathbb{R}} / K$. We assume (X, ω) is a compact complex manifold with a balanced metric of Hodge-Riemann type. Let P be the principle $G_{\mathbb{R}}$ bundle with structure group reduced to K. As in [6], one can associate a volume $\operatorname{vol}(P)$ to P by defining it as a power of the first Chern class of P up to a conformal factor. Now the following generalizes [6, Thm. $0.1]$.
Theorem 6.1. Suppose P is flat with $\operatorname{vol}(P) \neq 0$ and $G_{\mathbb{R}} / K$ is not of the form $\mathrm{U}(n, 1) / \mathrm{U}(n) \times \mathrm{U}(1)$ or $\mathrm{SO}(2 n+1,2) / \mathrm{S}(\mathrm{O}(2 n+1) \oplus \mathrm{O}(2))$. Then the monodromy homomorphism of the fundamental group of X into $G_{\mathbb{R}}$ is locally rigid as a homomorphism of the fundamental group of X into the complexification of $G_{\mathbb{R}}$.

The argument follows by replacing [6, Prop. 2.4] with argument in the proof of Theorem 5.1 to get the holomorphic property of the harmonic sections. This is the only place where the Kähler assumption is needed in [6]. Simpson's argument in the Kähler case also gives (see [21)

Theorem 6.2. Suppose $\rho: \pi_{1}(X) \rightarrow \mathrm{GL}(n, \mathbb{C})$ is a locally rigid representation of the fundamental group of X. Then the associated flat vector bundle is the underlying vector bundle of a complex variation of Hodge structure.

References

1. J. Amorós, M. Burger, K. Corlette, D. Kotschick, and D. Toledo, Fundamental groups of compact Kähler manifolds, Mathematical Surveys and Monographs, vol. 44, American Mathematical Society, Providence, RI, 1996. MR 1379330
2. Indranil Biswas, Stable Higgs bundles on compact Gauduchon manifolds, C. R. Math. Acad. Sci. Paris 349 (2011), no. 1-2, 71-74. MR 2755700
3. Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201-248. MR 3019449
4. Xuemiao Chen and Richard A. Wentworth, Compactness for Ω-Yang-Mills equations, (2021), preprint.
5. Kevin Corlette, Flat G-bundles with canonical metrics, J. Differential Geom. 28 (1988), no. 3, 361-382. MR 965220
6. , Rigid representations of Kählerian fundamental groups, J. Differential Geom. 33 (1991), no. 1, 239-252. MR 1085142
7. Jean-Pierre Demailly, Complex analytic and differential geometry, Online notes.
8. Tien-Cuong Dinh and Viêt-Anh Nguyên, The mixed Hodge-Riemann bilinear relations for compact Kähler manifolds, Geom. Funct. Anal. 16 (2006), no. 4, 838-849. MR 2255382
9. S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. (3) 55 (1987), no. 1, 127-131. MR 887285
10. Paul Gauduchon, Fibrés hermitiens à endomorphisme de Ricci non négatif, Bull. Soc. Math. France 105 (1977), no. 2, 113-140. MR 486672
11. Daniel Greb and Matei Toma, Compact moduli spaces for slope-semistable sheaves, Algebr. Geom. 4 (2017), no. 1, 40-78. MR 3592465
12. M. Gromov, Convex sets and Kähler manifolds, Advances in differential geometry and topology, World Sci. Publ., Teaneck, NJ, 1990, pp. 1-38. MR 1095529
13. Jürgen Jost and Shing-Tung Yau, Harmonic maps and group representations, Differential geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 241-259. MR 1173045
14. François Labourie, Existence d'applications harmoniques tordues à valeurs dans les variétés à courbure négative, Proc. Amer. Math. Soc. 111 (1991), no. 3, 877-882. MR 1049845
15. Jun Li and Shing-Tung Yau, Hermitian-Yang-Mills connection on non-Kähler manifolds, Mathematical aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, Singapore, 1987, pp. 560-573. MR 915839
16. Martin Lübke and Andrei Teleman, The Kobayashi-Hitchin correspondence, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. MR 1370660
17. , The universal Kobayashi-Hitchin correspondence on Hermitian manifolds, Mem. Amer. Math. Soc. 183 (2006), no. 863, vi+97. MR 2254074
18. M. L. Michelsohn, On the existence of special metrics in complex geometry, Acta Math. 149 (1982), no. 3-4, 261-295. MR 688351
19. Yoichi Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 449-476. MR 946247
20. Julius Ross and Matei Toma, Hodge-Riemann bilinear relations for Schur classes of ample vector bundles, preprint (2019), http://arxiv.org/abs/1905.13636.
21. Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992), no. 75, 5-95. MR 1179076
22. V. A. Timorin, Mixed Hodge-Riemann bilinear relations in a linear context, Funktsional. Anal. i Prilozhen. 32 (1998), no. 4, 63-68, 96. MR 1678857
23. Matei Toma, A note on the cone of mobile curves, C. R. Math. Acad. Sci. Paris 348 (2010), no. 1-2, 71-73. MR 2586747
24. Claire Voisin, Hodge theory and complex algebraic geometry. I, english ed., Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge University Press, Cambridge, 2007, Translated from the French by Leila Schneps. MR 2451566

Department of Mathematics, University of Maryland, College Park, MD 20742, USA

Email address: xmchen@umd.edu
Email address: raw@umd.edu

