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1. Introduction

Let (X,ω) be a compact Kähler manifold of dimension n and (E, h)→ X a C∞ hermitian
vector bundle on X. The celebrated theorem of Donaldson-Uhlenbeck-Yau states that if A
is an integrable unitary connection on (E, h) that induces an ω-slope stable holomorphic
structure on E, then there is a complex gauge transformation g such that g(A) satisfies
the Hermitian-Yang-Mills (HYM) equations. The proof in [40] uses the continuity method
applied to a deformation of the Hermitian-Einstein equations for the metric h. The approach
in [11, 12] deforms the metric using a nonlinear parabolic equation, the Donaldson flow.
Deforming the metric is equivalent to acting by a complex gauge transformation modulo
unitary ones, and in this context the Donaldson flow is equivalent (up to unitary gauge
transformations) to the Yang-Mills flow on the space of integrable unitary connections. The
proof in [12] assumes that X is a projective algebraic manifold (more precisely, that ω is
a Hodge metric) whereas the argument in [40] does not. The methods of Uhlenbeck-Yau
and Donaldson were combined by Simpson [35] to prove convergence of the Yang-Mills flow
for stable bundles on all compact Kähler manifolds. The Yang-Mills flow thus defines a
map As(E, h) → M∗

HYM(E, h) from the space of smooth integrable connections on (E, h)

inducing stable holomorphic structures to the moduli spaceM∗
HYM(E, h) of irreducible HYM

connections.1 Continuity of this map follows by a comparison of Kuranishi slices (see [15, 31]).
When the holomorphic bundle EA = (E, ∂̄A) is strictly semistable, then the Donaldson

flow fails to converge unless EA splits holomorphically into a sum of stable bundles (i.e.
it is polystable). If n = 1 it is still true, however, that the Yang-Mills flow converges to
a smooth HYM connection on E for any semistable initial condition. This was proven
by Daskalopoulos and Råde [7, 32]. Moreover, the holomorphic structure of the limiting
connection is isomorphic to the polystable holomorphic bundle Gr(EA) obtained from the
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associated gradation of the Jordan-Hölder filtration of EA. For n ≥ 2, there is an obstruction
to a smooth splitting into an associated graded bundle, and Gr(EA) may not be locally
free. The new phenomenon of bubbling occurs, and one must talk of convergence in the
sense of Uhlenbeck, that is, away from a singular set of complex codimension at least 2 (see
Theorem 2.2 below). In [8] (see also [9]) it was shown for n = 2 that the Yang-Mills flow
converges in the sense of Uhlenbeck to the reflexification Gr(EA)∗∗, which is a polystable
bundle. The bubbling locus, which in this case is a collection of points with multiplicities, is
precisely the set where Gr(EA) fails to be locally free [10]. The extension of these results in
higher dimensions was achieved in [33, 34]. Here, even the reflexified associated graded sheaf
may fail to be locally free, and one must use the notion of an admissible HYM connection
introduced by Bando and Siu [4]. Convergence of the flow to the associated graded sheaf for
semistable bundles in higher dimensions was independently proven by Jacob [22].

In a different direction, a compactification of M∗
HYM was proposed by Tian in [37] and

further studied in [38]. This may be viewed as a higher dimensional version of the Donaldson-
Uhlenbeck compactification of ASD connections on a smooth manifold of real dimension 4 (cf.
[14, 13]). It is based on a finer analysis of the bubbling locus for limits of HYM connections
that is similar to the one carried out for harmonic maps by Fang-Hua Lin [27]. More
precisely, Tian proves that the top dimensional stratum is rectifiable and calibrated by ω
with integer multiplicities, and as a consequence of results of King [23] and Harvey-Shiffman
[19], it represents an analytic cycle. The compactification is then defined by adding ideal
points containing in addition to an admissible HYM connection the data of a codimension
2 cycle in an appropriate cohomology class (see Section 2). At least when X is projective,
the space M̂HYM of ideal HYM connections is a compact topological space (Hausdorff), and
the compactification of M∗

HYM is obtained by taking its closure MHYM ⊂ M̂HYM. Under this
assumption, we recently showed, in collaboration with Daniel Greb and Matei Toma, that
MHYM admits the structure of a seminormal complex algebraic space [16].

The purpose of this note is to point out the compatibility of this construction with the
Yang-Mills flow. For example, in the case of a Riemann surface, the flow defines a continuous
deformation retraction of the entire semistable stratum onto the moduli space of semistable
bundles. This is precisely what is to be expected from Morse theory (see [2]). In higher
dimensions, as mentioned above, bubbling along the flow needs to be accounted for. The
result is the following.

Main Theorem. Let (E, h) be a hermitian vector bundle over a compact Kähler manifold
(X,ω) with [ω] ∈ H2(X,Z). Let A1,1(E, h) denote the set of integrable unitary connections
on (E, h) with the smooth topology (see Section 2). Let Ass(E, h) ⊂ A1,1(E, h) be the subset
consisting of slope semistable holomorphic bundles. Then:

(1) Ass(E, h) is an open subset of A1,1(E, h);
(2) the Yang-Mills flow defines a continuous map

(1.1) F : Ass(E, h)→ M̂HYM(E, h) .
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In particular, the restriction of F gives a continuous map As(E, h)→MHYM(E, h),
where As(E, h) ⊂ Ass(E, h) is the closure of As(E, h) in the smooth topology.

(3) In fact, on the closure, the map F factors as follows:

As(E, h)
Q //

F ''

M
µ
(E, h)

Φ
��

MHYM(E, h)

(1.2)

where M
µ
(E, h) is a modular compactification of the moduli space of stable holo-

morphic structures on E, Φ is a continuous comparison map between the two com-
pactifications, and Q is a continuous map.

The proof of item (1) of the Main Theorem relies on a theorem of Maruyama along with
a comparison between A1,1(E, h) and the Quot scheme (see Section 4 and Corollary 6.2 as
well as 6.1). Part (2) is a consequence of the work in [16], with small modifications. Part
(3) is also a corollary of the result of 6.1 in Section 6, combined with the continuity of the
map Φ proven in [16]. For the case of Kähler surfaces, the second statement of part (2)
was claimed in [10, Thm. 2]. Unfortunately, there is an error in the proof of Lemma 8 of
that paper, and hence also in the proof of Theorem 2. The Main Theorem above validates
the statement in [10, Thm. 2], at least in the projective case. We do not know if the result
holds when X is only a Kähler surface. The advantage of projectivity is that a twist of
the bundle is generated by global holomorphic sections. These behave well with respect to
Uhlenbeck limits and provide a link between the algebraic geometry of geometric invariant
theory quotients and the analytic compactification. We review this in Section 4 below.

2. Uhlenbeck limits and admissible HYM connections

In this section we briefly review the compactification of M∗
HYM(E, h) by ideal HYM con-

nections. As in the introduction, let (E, h) be a hermitian vector bundle on a compact
Kähler manifold (X,ω) of dimension n, and let gE denote the bundle of skew-hermitian
endomorphisms of E. The space A(E, h) of C∞ unitary connections on E is an affine space
over Ω1(X, gE), and we endow it with the smooth topology. A connection A ∈ A(E, h) is
called integrable if its curvature form FA is of type (1,1). Let A1,1(E, h) denote the set of
integrable unitary connections on (E, h). Then A1,1(E, h) ⊂ A(E, h) inherits a topology as
a closed subset. The locus As(E, h) of stable holomorphic structures is open in A1,1(E, h)

(cf. [28, Thm. 5.1.1]). Under the assumption that ω is a Hodge metric we shall prove below
that the subset Ass(E, h) of semistable holomorphic structures is also open in A1,1(E, h) (see
Corollary 6.2).
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We call the contraction
√
−1ΛFA of FA with the Kähler metric the Hermitian-Einstein

tensor. It is a hermitian endomorphism of E. The key definition is the following (cf. [4] and
[37, Sect. 2.3]).

Definition 2.1. An admissible connection is a pair (A, S) where
(1) S ⊂ X is a closed subset of finite Hausdorff (2n− 4)-measure;
(2) A is a smooth integrable unitary connection on E

∣∣
X\S;

(3)
∫
X\S |FA|

2 dvolX < +∞;
(4) supX\S |ΛFA| < +∞.

An admissible connection is called admissible HYM if there is a constant µ such that√
−1ΛFA = µ · I on X\S.

The fundamental weak compactness result is the following.

Theorem 2.2 (Uhlenbeck [39]). Let Ai be a sequence of smooth integrable connections on
(E, h) → X with uniformly bounded Hermitian-Einstein tensors. Then for any p > n there
is

(1) a subsequence (still denoted Ai),
(2) a closed subset S∞ ⊂ X of finite (2n− 4)-Hausdorff measure,
(3) a connection A∞ on a hermitian bundle E∞ → X\S∞, and
(4) local isometries E∞ ' E on compact subsets of X\S∞

such that with respect to the local isometries, and modulo unitary gauge equivalence, Ai → A∞
weakly in Lp1,loc(X\S∞).

Remark 2.3. If one further assumes that ||dAiΛFAi ||L2(X,ω) → 0, then the limiting connec-
tion is Yang mills (see Section 3). For the proof of this see [8], Prop. 2.11.

We call the limiting connection A∞ an Uhlenbeck limit. The set

S∞ =
⋂

σ0≥σ>0

{
x ∈ X | lim inf

i→∞
σ4−2n

∫
Bσ(x)

|FAi |2
ωn

n!
≥ ε0

}
,

where σ0 and ε0 are universal constants depending only on the geometry of X, is called the
(analytic) singular set.

For the definition of a gauge theoretic compactification more structure is needed. This is
provided by the following, which is a consequence of work of Tian [37] and Hong-Tian [20]
(see for example [37],Thm 4.3.3).

Proposition 2.4. The Uhlenbeck limit of a sequence of smooth HYM connections on (E, h)

is an admissible HYM connection. Moreover, the corresponding singular set S∞ is a holo-
morphic subvariety of codimension at least 2. The same is true for Uhlenbeck limits of se-
quences along the Yang-Mills flow, except that the limiting connection is merely Yang-Mills
in general (note that the flow satisfies the condition of 2.3).
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For the definition of the flow see Section 3 below.
To be more precise, there is a decomposition S∞ = |C∞| ∪ S(A∞), where

(2.1) S(A∞) :=

{
x ∈ X

∣∣∣∣ lim
σ↓0

σ4−2n

∫
Bσ(x)

|FA∞|
2 ω

n

n!
6= 0

}
.

has codimension ≥ 3, and |C∞| is the support of a codimension 2 cycle C∞. The cycle appears
as the limiting current of the Yang-Mills energy densities, just as in the classical approach
of Donaldson-Uhlenbeck in real dimension 4. This structure motivates the following

Definition 2.5 ([16, Def. 3.15]). An ideal HYM connection is a triple (A, C, S(A)) satisfying
the following conditions:

(1) C is an (n− 2)-cycle on X;
(2) the pair (A, |C| ∪ S(A)) is an admissible HYM connection on the hermitian vector

bundle (E, h)→ X, where S(A) is given as in eq. (2.1);
(3) [ch2(A)] = ch2(E) + [C], in H4(X,Q);

Note that here, instead of allowing arbitrary sets S as in Definition 2.1, we require the
particular form in item (2) above. This gives better control of these higher codimensional
sets in sequences. We also remark that since the set S(A) is determined by A, we can also
think of an ideal connection as simply a pair (A, C), and we will make this abuse of notation
in the sequel.

Here we have denoted by ch2(A) the (2, 2)-current given by

ch2(A)(Ω) := − 1

8π2

∫
X

tr(FA ∧ FA) ∧ Ω ,

for smooth (2n − 4)-forms Ω. This is well defined by Definition 2.1 (3), and in [37, Prop.
2.3.1] it is shown to be a closed current. It thus defines a cohomology class as above. By [4],
there is a polystable reflexive sheaf E extending the holomorphic bundle (E|X\|C|∪S(A), ∂A).
The singular set sing(EA) of EA, that is, the locus where EA fails to be locally free, coincides
with S(A) (see [38, Thm. 1.4]). By the proof of [34, Prop. 3.3], ch2(A) represents the class
ch2(E). Thus we may alternatively regard an ideal connection as a pair (EA, C), where EA
is a reflexive sheaf, C is a codimension 2 cycle with ch2(E) = ch2(E) + [C], and where the
underlying smooth bundle of EA on the complement of |C| ∪ sing(E) is isomorphic to E. See
[16, Sec. 3.3] for more details. Moreover we consider two ideal connections (EA1 , C1) and
(EA2 , C2) to be equivalent if EA1 and EA2 are isomorphic as sheaves (or equivalently A1 and
A2 are gauge equivalent), and C1 and C2 are equal.

Definition 2.6. We define M̂HYM(E, h) to be the space of gauge equivalence classes of ideal
HYM connections.

In what follows, we shall denote by [A] the unitary gauge equivalance class of a connection
A ∈ A1,1(E, h), and by [(A, C)] the equivalence class of an ideal HYM connection (A, C).
The main result is the following (see [16],Thm 3.17).
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Theorem 2.7. Assume ω is a Hodge metric. Let [(Ai, Ci)] ∈ M̂HYM(E, h). Then there is
a subsequence (also denoted by {i}), and an ideal HYM connection (A∞, C∞, S(A∞)) such
that Ci converges to a subcycle of C∞, and (up to gauge transformations) Ai → A∞ in C∞loc
on X\(|C∞| ∪ S(A∞)). Moreover,

(2.2) ch2(Ai)− Ci −→ ch2(A∞)− C∞

in the mass norm; in particular, also in the sense of currents.

Using the result above one can define a compact Hausdorff topology on M̂HYM(E, h), and
from there a compactification MHYM(E, h) of MHYM(E, h). For more details we refer to
[37, 38] and [16, Thm. 1.1] which is proved in Section 3 of that paper.

3. The Yang-Mills flow

The Yang-Mills flow is a time dependent family of integrable connections A(t) depending
on A0 ∈ A1,1(E, h) satisfying the equations:

(3.1)
∂A(t)

∂t
= −dA∗(t)FA(t) , A(0) = A0

Donaldson [11] shows that a solution to (3.1) exists (modulo gauge transformations) for all
0 ≤ t < +∞. Eq. (3.1) is formally the negative gradient flow for the Yang-Mills functional:

YM(A) =
1

2

∫
X

|FA|2 dvolω.

Critical points of YM are called Yang-Mills connections and satisfy d∗AFA = 0. A smooth
integrable Yang-Mills connection A decomposes the bundle EA holomorphically and isomet-
rically into a direct sum of the (constant rank) eigenbundles of

√
−1ΛωFA, and the induced

connections are Hermitian-Yang-Mills. Similarly, an admissible Yang-Mills connection on a
reflexive sheaf gives a direct sum decomposition into reflexive sheaves admitting admissible
HYM connections.

By Proposition 2.4, any sequence of times tj along the flow has an Uhlenbeck limit, which
is Yang-Mills. A priori this limit might depend on the choice of subsequence chosen to
achieve convergence. It turns out that the limit is independent of the chosen subsequence
however. There is a canonical ideal connection associated to the bundle EA0 which is the
putative limit for all subsequences.

Let A ∈ Ass(E, h), i.e. the induced holomorphic bundle EA = (E, ∂̄A) is semistable. Then
there is a Seshadri filtration {0} = F0 ⊂ F1 ⊂ · · · ⊂ F` = EA such that the successive
quotients Qi = Fi/Fi−1, i = 1, . . . , ` are stable torsion-free sheaves all of equal slope to
that of EA0 . Let Gr(EA) = ⊕`i=1Qi and C∞ the cycle defined by the codimension 2 support
of Gr(EA)∗∗/Gr(EA) (see Section 5). By the result of Bando-Siu [4], there is an admissible
HYM connection A∞ on Gr(EA)∗∗, such that (A∞, C∞) defines an ideal HYM connection in
the sense of Definition 2.5. For a detailed description of this we refer to [16, Sec. 3.1].
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Theorem 3.1 ([8, 10, 33, 34, 22, 20]). Let A0 ∈ Ass(E, h). Then the Yang-Mills flow At with
initial condition A0 converges in the sense of Theorem 2.7 to an ideal connection (A∞, C∞),
where A∞ is the admissible HYM connection on Gr(EA0)

∗∗, and C∞ is the codimension 2

cycle defined by the torsion-free sheaf Gr(EA0).

Remark 3.2. Note that this says in particular that in the case that A0 gives a semistable
holomorphic structure, the Uhlenbeck limit is in fact HYM rather than merely Yang-Mills.
A version of the theorem also holds when EA0 is a general unstable bundle as well.

Remark 3.3. The theorem above states that there is a well-defined ideal HYM connection
F ([A0]) defined by the limit at ∞ of the Yang-Mills flow, and which is given purely in
terms of the holomorphic initial data and the solution for admissible HYM connections on
reflexive sheaves. In particular, if A and Ã are complex gauge equivalent (i.e. EA ' EÃ),
then F ([A]) = F ([Ã]). Thus, the map F in (1.1) is alternatively defined by setting

(3.2) F : Ass(E, h) −→ M̂HYM(E, h) : [A] 7→ [(A∞, C∞)] .

4. The method of holomorphic sections

Admissibility of a connection is precisely the correct analytic notion to make contact
with complex analysis. Bando [3] and Bando-Siu [4] show that bundles with admissible
connections admit sufficiently many local holomorphic sections to prove coherence of the
sheaf of L2-holomorphic sections. This local statement only requires the Kähler condition.
The key difference between the projective vs. Kähler case is, of course, the abundance of
global holomorphic sections. These provide a link between the algebraic and analytic moduli.
They are also well-behaved with respect to limits. The technique described here mimics that
introduced by Jun Li in [26].

We henceforth assume [ω] ∈ H2(X,Z). Let L → X be a complex line bundle with
c1(L) = [ω]. Define the numerical invariant:

(4.1) τE(m) :=

∫
X

ch(E ⊗ Lm)td(X) .

Since ω is a (1, 1) class, L may be endowed with a holomorphic structure L making it the
ample line bundle defining the polarization of X. We also fix a hermitian metric on L with
respect to which the Chern connection of L has curvature −2πiω. Use the following notation:
E(m) := E ⊗ Lm. The key property we exploit is the following, which is a consequence of
Maruyama’s boundedness result [30], as well as the Hirzebruch-Riemann-Roch theorem.

Proposition 4.1. There is M ≥ 1 such that for all m ≥ M and all A ∈ Ass(E, h), if
EA = (E, ∂̄A) then the bundle EA(m) is globally generated and all higher cohomology groups
vanish. In particular, dimH0(X, EA(m)) = τE(m) for m ≥M .
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In the following, we shall assume m has been fixed sufficiently large. Fix a vector space
V of dimension τE(m), and let

(4.2) H = V ⊗ L−m .

The Grothendieck Quot scheme Quot(H, τE) is a projective scheme parametrizing isomorph-
ism classes of quotients H → F → 0, where F → X is a coherent sheaf with Hilbert
polynomial τE [18, 1]. Proposition 4.1 states that there is a uniform m such that for every
A ∈ Ass(E, h) there is a quotient H → EA → 0 in Quot(H, τE) with EA ' (E, ∂̄A). The next
result begins the comparison between Uhlenbeck limits and limits in Quot(H, τE).

Proposition 4.2. Let {Ai} ⊂ Ass(E, h), and suppose Ai → A∞ in the sense of Uhlenbeck
(Theorem 2.2), and assume uniform bounds on the Hermitian-Einstein tensors, and that A∞
is Hermitian-Yang-Mills. Then there are quotients H → Fi in Quot(H, τE), with Fi ∼= EAi,
converging to a semistable quotient H → F∞ → 0 in Quot(H, τE) and an inclusion F∞ ↪→
EA∞ such that F∗∗∞ ' EA∞.

The proof of this result for sequences of HYM connections is in [16, Prop. 4.2], but the proof
there works as well under the weaker assumption of a uniformly bounded Hermitian-Einstein
tensor. Indeed, the first key point is the application of the Bochner formula to obtain uniform
bounds on L2-holomorphic sections. The precise statement is that if s ∈ H0(X, EAi(m)) then
there is a constant C depending only on the geometry of X, m, and the uniform bound on
the Hermitian-Einstein tensor, such that supX |s| ≤ C‖s‖L2 . As noted above, we may realise
the the bundles EAi as elements of Quot(H, τE). In fact, any choice of L2-orthonormal
basis for H0(X, EAi(m)) determines a specific representation qi : H → EAi → 0. Using the
sup-norm bound on sections, one can extract convergent subsequences for the elements of
these orthonormal bases to obtain a map q∞ : H → EA∞ . The limiting sections may no
longer form a basis of H0(X, E∞(m)), nor necessarily do they generate the fiber of EA∞ .
Remarkably, though, it is still the case that the rank of the image sheaf ẼA∞ ⊂ EA∞ of q∞
agrees with rank(E) and has Hilbert polynomial τE (for this one may have to twist with a
further power of L). In fact, the quotient sheaf T∞ = E∞/Ẽ∞ turns out to be supported in
complex codimension 2 (the first Chern class is preserved under Uhlenbeck limits). Hence,
in particular, (ẼA∞)∗∗ ' EA∞ . See [16, proof of Lemma 4.3] for more details.

The second ingredient in the proof is the fact that Quot(H, τE) is compact in the analytic
topology. Hence, after passing to a subsequence, we may assume the qi converge. Con-
vergence in Quot(H, τE) means the following: there is a convergent sequence of quotients
Fi → F∞ and isomorphisms fi making the following diagram commute

H // Fi
fi
��

// 0

H
qi // EAi // 0
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The proof is completed, as in [16, Lemma 4.4], by showing that F∞ ' ẼA∞ . The crucial
point that is used in showing this is that the two sheaves are quotients of H with the same
Hilbert polynomial.

5. Analytic cycles and the blow-up set

In the case of the stronger notion of convergence of Uhlenbeck-Tian, we go one step further
and identify the cycle associated to the sheaf F∞ with the cycle C∞ that arises from bubbling
of the connections. The candidate is the following: for any torsion-free sheaf F → X, define
a codimension 2 cycle CF from the top dimensional stratum of the support of F∗∗/F . See
for example [16, Sec. 2.5.3].

Proposition 5.1. Let Ai be a sequence of connections as in Proposition 4.2, and suppose
furthermore that they converge to an ideal HYM connection (A∞, C∞) in the sense of Theorem
2.7. Let H → F∞ be as in the statement of Proposition 4.2. Then C∞ = CF∞.

The proof of this result follows from the discussion in [16, Sec. 4.3] (see in particular Prop.
4.7). Although the result there is stated for sequence of HYM connections, this is required
only to obtain the same sup-norm inequality on the global sections of E(m) that was used to
obtain Proposition 4.2. Thus, the uniform bound on the Hermitian-Einstein tensor suffices,
we have first of all that EA∞ ∼= F∗∗∞ .

Let us sketch the argument. The first key point is that [CF∞ ] = [ C∞] in rational cohomo-
logy. Indeed, the connection A∞ is defined on the smooth locus of the sheaf F∗∗∞ and is
smooth there, and ch2(A∞) defines a closed current (see Section 2). It then follows as in the
proof of [34, Prop. 3.3] that [ch2(A∞)] = ch2(F∗∗∞ ). The exact sequence

0 −→ F∞ −→ F∗∗∞ −→ T∞ −→ 0 ,

implies that
[ch2(A∞)] = ch2(F∞) + ch2(T∞) = ch2(E) + [CF∞ ] ,

where in the second inequality we have used the fact that the Chern classes of F∞ are the
same as those of E, and Proposition 3.1 of [34] (see also the latest arxiv version of this
reference). By the convergence of the currents in Theorem 2.7 and Chern-Weil theory, we
have

ch2(E) + [C∞] = [ch2(Ai)] + [C∞] = [ch2(A∞)].

Combining these two equalities gives the statement.
What remains to be shown is that given any irreducible component Z ⊂ supp(T∞), for

the associated multiplicity mZ as defined in [16, Sec. 2.5.3], we have an equality

mZ = lim
i→∞

1

8π2

∫
Σ

tr(FAi ∧ FAi)− tr(FA∞ ∧ FA∞) ,

where Σ is a generic real 4-dimensional slice intersecting Z transversely in a single smooth
point. For Hermitian-Yang-Mills connections this is [16, Prop 4.9]. Again note that the
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proof provided there only uses the Hermitian-Yang-Mills condition to obtain the quotient
F∞, and so by the preceding discussion also applies here. With this in hand, the point is
that if Z is contained in the support |C∞| then it must be equal to one of the irreducible
components. In this case, the number on the right hand side of the equality above is exactly
the multiplicity of this component in the cycle C∞, and otherwise this number is zero, (see
[16, Lemma 3.13] and [34, Lemma 4.1] and again note that the proof is completely general).
If the equality holds, this number cannot be zero, since mZ is strictly positive by definition,
and therefore Z must be a component of C∞, and the multiplicities agree. Since C∞ and CF∞
are equal in cohomology, there can be no other irreducible components of C∞, and so C∞ =

CF∞ . For more details, see the proof of [16, Prop. 4.7].

Remark 5.2. It should be emphasized that Proposition 5.1 does not claim that the support
of F∗∗∞/F∞ coincides with the full bubbling locus |C∞| ∪ S(A∞); only the top dimensional
strata are necessarily equal. This differs from what occurs, for example, along the Yang-Mills
flow (see [34, Thm. 1.1]). It would be interesting to understand the behavior of the higher
codimensional pieces from this perspective. There are recent examples due to Chen-Sun
indicating that this should be subtle (see [5, 6]).

6. Relation with the topology of the Quot scheme

In this section we consider the relationship between the Quot scheme Quot(H, τE) dis-
cussed in Section 4, and the infinite dimensional space A1,1(E, h) of integrable connections.
Recall that Quot(H, τE) has a PGL(V ) action obtained by change of basis in the vector space
V . We are interested in the points in Quot(H, τE) where the quotient sheaf is locally free and
has underlying C∞ bundle isomorphic to E. A PGL(V ) orbit of such a point corresponds to
an isomorphism class of holomorphic structures on E, or equivalently, to a complex gauge
orbit in A1,1(E, h). Conversely, a connection A ∈ A1,1(E, h) gives a holomorphic bundle
which, provided m is sufficiently large, can be realized as a quotient. Complex gauge equi-
valent connections give rise to different quotients in the same PGL(V ) orbit. We wish to show
that this correspondence between complex gauge orbits in A1,1(E, h) and PGL(V )-orbits in
Quot(H, τE) can be made continuous in the respective topologies. Since the complex gauge
orbit space in A1,1(E, h) is non-Hausdorff in general (and similarly for Quot(H, τE)), we will
lift to a map from open sets in A1,1(E, h) itself.

This discussion gives rise to the following notion. Let U ⊂ A1,1(E, h). We call σ : U →
Quot(H, τE) a classifying map if the quotient σ(A) is a holomorphic bundle isomorphic to
(E, ∂̄A). Recall from Section 4 that the bundle H depends on a sufficiently large choice of
m, which we omit from the notation. Then the result is the following.

Theorem 6.1. Fix A0 ∈ A1,1(E, h). Then for m sufficiently large (depending on A0), there
is an open neighborhood U ⊂ A1,1(E, h) of A0 and a continuous classifying map σ : U →
Quot(H, τE). On Ass(E, h), the twist m may be chosen uniformly.
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Throughout the proof, as in Section 4, we fix a hermitian structure hL on L such that the
curvature of the Chern connection of (L, hL) defines a Kähler metric ω on X.

Proof. Let d(m,n) = τE(m) · dimH0(X,Ln). For n � 1, Quot(H, τE) is embedded in the
Grassmannian G(d(m,n), τE(m + n)) of τE(m + n)-dimensional quotients of Cd(m,n). More
precisely, suppose q : H → E is a point in Quot(H, τE), and let K = ker q. There is a
sufficiently large n (uniform over the whole Quot scheme) such that

(6.1) H i(X,K(m+ n)) = H i(X, E(m+ n)) = {0} , i ≥ 1

(cf. [21, Lemmata 1.7.2 and 1.7.6]). We therefore have a short exact sequence:

(6.2) 0 −→ H0(X,K(m+ n)) −→ H0(X,H(m+ n)) −→ H0(E(m+ n)) −→ 0

Since the middle term has dimension d(m,n), and by (6.1) the last term has dimension
τE(m + n), we obtain a point in G(d(m,n), τE(m + n)). For n sufficiently large, this cor-
respondence between quotients and points in the Grassmannian gives an embedding of the
Quot scheme.

Given A0 ∈ A1,1(E, h), EA0 = (E, ∂̄A0), choose m such that EA0(m) is globally generated
and has no higher cohomology. Set V0 = H0(X, EA0(m)). Then dimV0 = τE(m). The map

ev : V0 ⊗OX −→ EA0(m) : s⊗C f 7→ fs

realizes EA0(m) as a quotient of V0 ⊗ OX . After twisting back by L−m, we have a quotient
H → EA0 → 0.

For A ∈ U (the open set U remains to be specified) in order to realize EA = (E, ∂̄A) as a
quotient of H, it suffices to give an isomorphism of V0 with VA = ker ∂̄A ⊂ Γ(E ⊗ Lm), for
then EA is obtained through this isomorphism followed by evaluation ev as above. Note here
that we assume already that U has been chosen sufficiently small so that EA(m) is globally
generated and has no higher cohomology. This is the first condition on U , and it can be
arranged by semicontinuity of cohomology (see [25, Ch. 7]).

On Γ(E⊗Lm) we have an L2-inner product. Since VA and V0 are subspaces of Γ(E⊗Lm),
we can define a map by orthogonal projection πA : VA → V0. Let us write this explicitly. For
s ∈ VA, let πA(s) = s0 = s+us, where us ∈ V ⊥0 . We require ∂̄A0s0 = 0, or ∂̄A0(s+us) = 0. If
we write ∂̄A = ∂̄A0 +a, a ∈ Ω0,1(X, gE), then the above is ∂̄A0us = as. Let G0 be the Green’s
operator for the ∂̄A0 laplacian acting on Ω0,1(E ⊗ Lm). In general, the Green’s operator
inverts the laplacian up to projection onto the orthogonal complement of the harmonic
forms in Ω0,1(X,E ⊗ Lm). We have assumed vanishing of H1(X, EA0(m)), so in our case G0

is a genuine inverse. Set us = ∂̄∗A0
G0(as). Then

∂̄A0us = ∂̄A0 ∂̄
∗
A0
G0(as) = �A0G0(as) + ∂̄∗A0

∂̄A0G0(as) = as ,

as desired. Here, we have used the fact that ∂̄A0G0 = G0∂̄A0 , and that, by the integrability of
∂̄A and s ∈ VA, ∂̄A0(as) = 0. Notice that this definition of us guarantees that it is orthogonal
to V0. Now, by Hodge theory ∂̄∗A0

G0 is a bounded operator on L2. More precisely, the image
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of ∂̄∗A0
G0 lies in (ker ∂̄A0)

⊥, ∂̄A0(∂̄
∗
A0
G0) = I, and ∂̄∗A0

(∂̄∗A0
G0) = 0 so boundedness follows

from the elliptic estimate for ∂̄A0 . Namely, for any φ ∈ Ω0,1(E ⊗ Lm) we have an estimate

(6.3) ||∂̄∗A0
G0(φ)||L2 ≤ ||∂̄∗A0

G0(φ)||L2
1
≤ B||∂̄A0(∂̄

∗
A0
G0)(φ)||L2 = B||φ||L2 .

We therefore obtain (setting φ = as) the estimate

(6.4) ‖us‖L2 ≤ B‖as‖L2 ≤ B(sup |a|)‖s‖L2 .

In particular, for sup |a| sufficiently small, which we guarantee by shrinking U , we have
‖πA(s)‖L2 ≥ (1/2)‖s‖L2 . Hence, πA is injective and therefore an isomorphism. The classify-
ing map is then defined by setting σ(A) to be the quotient:

H
π−1
A ⊗ id
−−−−−→ VA ⊗ L−m

ev

−−→ EA −→ 0 .

It remains to show that σ is continuous. We begin with a few preliminaries. For s ∈
Γ(E ⊗ Lm), let

π̃A : Γ(E ⊗ Lm) −→ Γ(E ⊗ Lm) : s 7→ s+ ∂̄∗A0
G0(as) ,

so that π̃A restricted to VA is πA. Again using that ∂̄∗A0
G0 is a bounded operator, for

A1, A2 ∈ U , and ∂̄Ai = ∂̄A0 + ai, i = 1, 2, we have

‖(π̃A1 − π̃A2)s‖L2 = ‖∂̄∗A0
G0((a1 − a2)s)‖L2 ≤ B‖(a1 − a2)s‖L2 ≤ B sup |a1 − a2|‖s‖L2 .

It follows that π̃A is continuous in A. By the argument following (6.4), it is also uniformly
invertible for A ∈ U , with

(6.5) ‖π̃−1
A ‖ ≤ 2 .

Hence,

(π̃−1
A1
− π̃−1

A2
)s = π̃−1

A1
(π̃A2 − π̃A1)π̃

−1
A2
s

‖(π̃−1
A1
− π̃−1

A2
)s‖L2 ≤ 4‖π̃A1 − π̃A2‖ · ‖s‖L2 ≤ 4B sup |a1 − a2|‖s‖L2 .

We conclude that the map π−1
A : V0 → Γ(E ⊗ Lm), whose image is VA, is continuous for

A ∈ U . In fact, it satisfies an estimate:

(6.6) ‖(π−1
A1
− π−1

A2
)s0‖L2 ≤ 4B sup |a1 − a2|‖s0‖L2 ,

for all s0 ∈ V0.
The second ingredient we shall need is the following. Depending upon the choice of the

set U there is a uniform bound on the Hermitian-Einstein tensors ΛFA for each A ∈ U . It
follows as in Section 4 that we have an estimate: sup |s| ≤ C‖s‖L2 , for all s ∈ VA. Therefore,
using (6.5),

(6.7) sup |π−1
A (s0)| ≤ C‖π−1

A (s0)‖L2 ≤ 2C‖s0‖L2 ,

for all s0 ∈ V0.
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Finally, let s0 ∈ V0. The standard elliptic estimate states that there is a uniform constant
C such that

‖f‖L2
1
≤ C(‖f‖L2 + ‖∂̄Lnf‖L2)

for smooth sections f of Ln. In case f is holomorphic we may bootstrap this estimate and
use Sobolev embedding L2

k ⊂ L4, k ≥ n/2 to deduce an estimate of the form ‖f‖L4 ≤ C‖f‖L2

(for a possibly different constant). Using (6.6) and (6.7), there is a constant C1 > 0 such
that:

‖f(π−1
A1
− π−1

A2
)s0‖2

L2 ≤ ‖f‖2
L4‖(π−1

A1
− π−1

A2
)s0‖2

L4 ≤ C1‖f‖2
L2‖(π−1

A1
− π−1

A2
)s0‖L2‖s0‖L2

≤ C1(sup |a1 − a2|)‖s0‖2
L2‖f‖2

L2 .(6.8)

To prove continuity of σ, we show that the corresponding quotients (6.2) vary continuously
in the Grassmannian for A ∈ U . First, from the definition (4.2),

H0(X,H(m+ n)) = H0(X, V0 ⊗ Ln) ' V0 ⊗H0(X,Ln) .

On V0 ⊗ H0(X,Ln), we choose the tensor product metric of the L2 metrics on V0 and
H0(X,Ln). The map induced by σ is described as follows: for each A ∈ U we have

TA : V0 ⊗H0(X,Lm) −→ Γ(E ⊗ Lm+n) : s0 ⊗C f 7→ π−1
A (s0)⊗OX f

with image H0(X, EA(m+ n)). Moreover, from (6.8) it follows that

‖(TA1 − TA2)(s0 ⊗ f)‖2
L2 ≤ C1(sup |a1 − a2|)‖s0 ⊗ f‖2 .

Hence, TA is continuous in A for A ∈ U .
Recall that a smooth model for the Grassmannian G(N, k) of k-dimensional quotients of

CN is given by

G(N, k) =
{
P ∈ EndCN | P ∗ = P , P 2 = P , trP = N − k

}
.

Indeed, a smooth transitive action of U(N) on the right hand side above is defined by
(g, P ) 7→ gPg∗, and the stabilizer of the projection associated to the standard coordinate
splitting CN = Ck×CN−k is U(k)×U(N − k). Thus, the right hand side is indeed identified
with the homogeneous space U(N)/U(k) × U(N − k), which is the usual description of the
Grassmannian.

With this understood, in the setting above let PA ∈ End(V0 ⊗ H0(X,Lm)) denote the
orthogonal projection to kerTA, viewed as a point in G(d(m,n), τE(m + n)). It suffices to
show PA is continuous in A ∈ U . Because the dimensions of the kernels of TA are constant on
U , this reduces to showing that for any sequence Aj → A and sj ∈ kerTAj ⊂ V0⊗H0(X,Ln),
‖sj‖ = 1, there is a subsequence such that sj → s ∈ kerTA. Indeed, if this is the case we
may choose an orthonormal basis of such sections, {sαj }, so that for any s ∈ V0⊗H0(X,Ln),

PAjs =
∑
α

〈s, sαj 〉sαj ,

and the right hand side converges to PAs, and so ‖PAj − PA‖ → 0.
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By finite dimensionaliy of V0 ⊗ H0(X,Ln), we may assume sj → s for some s ∈ V0 ⊗
H0(X,Ln). Let sj = s0

j + s1
j be the orthogonal decomposition with respect to the splitting

kerTA ⊕ (kerTA)⊥. In particular, there is a constant c > 0 such that

(6.9) ‖TAs1
j‖ ≥ c‖s1

j‖ ∀j .

But then

0 = TAjsj = (TAj − TA)sj + TAs
1
j

and so

(TA − TAj)sj = TAs
1
j =⇒ ‖TAs1

j‖ → 0 .

The estimate (6.9) implies s1
j → 0. Hence, s ∈ kerTA, and continuity of σ is proven. The

uniformity of m in the second statement follows from Proposition 4.1. �

By a theorem of Maruyama, the semistable quotients in Quot(H, τE) form an open set
[29, Thm. 2.8]. Combining this with Theorem 6.1 we obtain part (1) of the Main Theorem.

Corollary 6.2. The set Ass(E, h) is open in A1,1(E, h).

This is item (1) of the Main Theorem.

Remark 6.3. The result in Corollary 6.2 is straightforward for Riemann surfaces (cf. [2, p.
576]) based on the Shatz stratification. More generally, an analytic proof can be given for
projective manifolds using the Yang-Mills flow, answering a question in [24, Rem. 7.3.38]. A
direct analytic proof for Kähler or Hermitian manifolds seems more difficult (for a partial
result, [36, Thm. 3]).

7. Proof of the Main Theorem

In this section we prove items (2) and (3) of the Main Theorem (in reverse order). As
seen in Section 4, a consequence of the assumption that X be projective is a representation
of holomorphic bundles and Uhlenbeck limits as quotients. The existence of many holo-
morphic sections also passes to certain line bundles on moduli spaces. This fact implies
strong separation properties and will be used in this section to deduce the Main Theorem.

7.1. Item (3). We wish to prove that F is continuous on the closure of the stable locus. For
this we invoke the moduli space construction of Greb-Toma [17]. Let Rµss ⊂ Quot(H, τE)

denote the open subset consisting of quotients that are slope semistable torsion-free sheaves.
Then there exists a (seminormal) projective variety Mµss and a morphism (in particular,
continuous map) Rµss →Mµss : F 7→ [F ] with the following properties:

(1) If F1 ' F2, then [F1] = [F2] in Mµss (cf. the discussion preceding [16, Def. 2.20]);
(2) If [F1] = [F2] in Mµss, then F∗∗1 ' F∗∗2 and CF1 = CF2 [17, Thm. 5.5].
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The association [F ] → (F∗∗, CF) gives a well-defined map Φ : M
µ
(E, h) → MHYM(E, h),

where Mµ
(E, h) is the closure of M∗

HYM(E, h) in Mµss (see Section 4.1 of [16]). The map
As(E, h)

Q−→M
µ
(E, h) in the diagram (1.2) is defined by realizing a semistable bundle as a

quotient in Rµss (see the discussion following Proposition 4.1), and sending this quotient to
its equivalence class in Mµss.

By construction, Q may be locally exhibited as the composition of the map Rµss →Mµss

with a classifying map σ as discussed in the previous section. The former map is a morphism
of complex spaces and is therefore continuous. By Theorem 6.1, σ is continuous as well. Since
continuity is a local property, we deduce the continuity of Q. Now one of the main results of
[16] is Theorem 4.11, which states that Φ is also continuous. By Theorem 3.1, the diagram
(1.2) commutes, and we therefore conclude that F is continuous on As(E, h).

7.2. Item (2). To address the general situation, we first reduce the problem as in [10,
Sec. 4]. Let Ai → A0 be a sequence in Ass(E, h) converging in the C∞ topology, and
let [A∞, CA∞, S(A∞)] = F ([A0]). By the compactness theorem [16, Thm. 3.23], we may
assume that, after passing to a subsequence, there is an ideal connection (B∞, CB∞) such that
F ([Ai])→ [(B∞, CB∞)]. We must show that the two limits agree.

Let Ai,t denote the Yang-Mills flow at time t of Ai. Smooth dependence on initial condi-
tions implies that for each fixed T > 0, Ai,t → At as i→ +∞, uniformly for t ∈ [0, T ).

Lemma 7.1. There is a subsequence (whose index set will be also denoted by {i}) and
ti → +∞, such that [Ai,ti ]→ [(A∞, CA∞)] in the sense of Theorem 2.7.

Proof. The proof relies on several properties. First, since Ai,t → At for every t ≥ 0, by a
diagonalization argument we may choose a sequence Ai,ti so that (up to gauge), Ai,ti → A∞
weakly in Lp1,loc away from |C| ∪ S(A∞). Next, by the result in [20, Thm. C], any sequence
Ai,ti , ti → +∞, has a subsequence that converges to an ideal connection. This is shown in
[20] for a sequence of times along a single flow, but the argument extends more generally.
The key points are Theorem 8 and Proposition 9 of [20], and these hold uniformly for a
smoothly convergent sequence of initial conditions. Note that there is a uniform bound on
the Hermitian-Einstein tensor. Given this fact, we are exactly in the set-up of the proof
of [16, Proposition 3.20] (the “boundedness” assumption of that result is guaranteed, since
X is projective algebraic; see [16, Lemma 3.16]). The conclusion of that result is that we
may choose the ti such that the limiting ideal HYM connection of {Ai,ti} coincides with
[A∞, CA∞)]. �

The Yang-Mills flow lies in a single complex gauge orbit: Ai,t is complex gauge equivalent
to Ai for all t ∈ [0,+∞). By Remark 3.3 it follows that and F ([Ai,t]) = F ([Ai]). Therefore,
in the same way as above we may choose times si such that for Bi = Ai,si , [Bi] is sufficiently
close to F ([Ai]) so as to converge to [(B∞, CB∞)]. We state this as the following.

Lemma 7.2. There are complex gauge transformations gi such that if Bi = gi(Ai,ti), then
after passing to a subsequence, [Bi]→ [(B∞, CB∞)] in the sense of Theorem 2.7.
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As in Section 4, the holomorphic bundles EAi,ti can be realized as a sequence of quotients
qAi : H → EAi,ti , and the composition qBi with the gi from the lemma above realizes EBi
as quotients qBi . Note that by definition of the equivalence in the Quot scheme, since qAi
and qBi have the same kernels in H they represent the same points in Quot(H, τE). We
now apply Propositions 4.2 and 5.1 to both sequences Ai,ti and Bi. One obtains quotients
qAi → qA∞ : H → FA∞ and qBi → qB∞ : H → FB∞ in Quot(H, τE). Moreover, (FA∞)∗∗ ' EA∞
and (FB∞)∗∗ ' EB∞ . In particular, since EA∞ and EB∞ have admissible Hermitian-Einstein
metrics, the sheaves FA∞ and FB∞ are slope semistable, and so they lie in Rµss. Also, CA∞ = CFA∞
and CB∞ = CFB∞ (see [16, Lemma 2.10]).

Now [EAi,ti ] = [EBi ] in Mµss for every i, since Bi is gauge equivalent to Ai,ti . Because their
limits are also semistable (in fact polystable), we conclude again from item (1) above and
the continuity of the projection to Mµss that [FA∞] = [FB∞]. It then follows from item (2)
that EA∞ ' EB∞ , and CA∞ = CFA∞ = CFB∞ = CB∞. From the discussion following Definition
2.5, the isomorphism EA∞ ' EB∞ implies that A∞ and B∞ are gauge equivalent on their
common smooth locus. Moreover, since the singular set of the HYM connection agrees with
the singular set of the Bando-Siu extension, we have

S(A∞) = sing(EA∞) = sing(EB∞) = S(B∞) .

Finally, since the codimension 2-cycles also agree, the ideal HYM connections are gauge
equivalent. This completes the proof of the Main Theorem.

Acknowledgement. The authors wish to thank the referee for a careful reading of the
manuscript and many helpful suggestions.
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