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In this paper we determine the spectral data parametrizing Higgs bundles in a

generic fiber of the Hitchin map for the case where the structure group is the special

Clifford group with fixed Clifford norm. These are spin and “twisted” spin Higgs

bundles. The method used relates variations in spectral data with respect to the Hecke

transformations for orthogonal bundles introduced by Abe. The explicit description also

recovers a result from the geometric Langlands program, which states that the fibers

of the Hitchin map are the dual abelian varieties to the corresponding fibers of the

moduli spaces of projective orthogonal Higgs bundles (in the even case) and projective

symplectic Higgs bundles (in the odd case).

1 Results

Let X be a smooth projective algebraic curve of genus g ≥ 2 and p ∈ X. Let M±
Spin(N)

(X)

denote the coarse moduli spaces of semistable Higgs bundles on X with the special

Clifford group SC(N) as structure group and fixed Clifford norm of even (+) or odd

(−) degree, respectively. For concreteness and without loss of generality, we require the

Clifford norms to be OX and OX(p), respectively. Then M+
Spin(N)

is exactly the moduli

space of Spin(N) Higgs bundles, whereas M−
Spin(N)

is a moduli space of twisted Spin(N)

Higgs bundles (see Section 2.1).
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The Hitchin fibration takes the form

h±
Spin(N)

: M±
Spin(N)

−→ B(N) :=
⎧
⎨

⎩

⊕m
i=1 H0(X, K2i

X ) N = 2m + 1
⊕m−1

i=1 H0(X, K2i
X ) ⊕ H0(X, Km

X ) N = 2m.

The maps h±
Spin(N)

realize these moduli spaces as algebraically complete integrable

systems whose generic fibers are torsors over abelian varieties. The main goal of this

note is to describe these abelian varieties explicitly in terms of spectral data.

The problem is clearly related to the case of Higgs bundles for orthogonal

groups. Here there is a complete description (see [10, 13]). Hitchin describes the spectral

data in terms of line bundles in the Prym variety associated to the spectral curve

defined by the point in B(N). The construction, which we briefly review in Sections 2.5

and 2.6 below, involves fixing a spin structure on X. In the end, this ancillary choice is

irrelevant, but it gives a hint that hidden in the argument is actually a lift to Spin(N) (or

SC(N)). We shall show that these data indeed provide the extra structure of a Clifford

bundle.

To be more precise, let �b ∈ B(N) be a generic point. By the spectral curve π : S →
X we mean (somewhat unconventionally) the normalization of the branched cover of X

defined by �b (see Sections 2.5 and 2.6). Let S = S/σ , where σ is the natural involution,

and let K(S, S) denote the kernel of the norm map NmS/S : J(S) → J(S). Then K(S, S)

is just the Prym variety P(S, S) of the cover p : S → S for N odd, whereas for N even,

P(S, S) ⊂ K(S, S) is the connected component of the trivial bundle. In both cases, J2(S)

acts additively on K(S, S) by pulling back via p∗, and it acts on J2(X) via the norm map

of the covering S → X. The main result may then be stated as follows.

Theorem 1.1 (Spectral Data). For generic points �b ∈ B(N), the fiber (h±
Spin(N)

)−1(�b) is a

torsor over the abelian variety:

ASpin(N)(X, �b) := K(S, S) ×J2(S) J2(X). (1.1)

In terms of Prym varieties,

ASpin(N)(X, �b) =
⎧
⎨

⎩

P(S, S) ×J2(S) J2(X) N odd;

P(S, S) ×H1/H0
J2(X) N even,
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where in the even case H0 	 Z/2 is the subgroup of J2(S) generated by the line bundle

defining the étale cover S → S and H1 is the annihilator of H0 in J2(S) with respect to

the Weil pairing.

The fact that the right-hand side of (1.1) is connected is not quite obvious (see

Lemma 4.2). We have the following consequence.

Corollary 1.2. The fibers of the Hitchin map for M−
Spin(N)

are connected.

In the case of M+
Spin(N)

, that is, Spin(N)-Higgs bundles, the connectedness of the

fibers follows from a general result of several authors (cf. [6, 8]), whereas the fact that

the fiber structure is the same in the twisted case M−
Spin(N)

(and hence also connected)

is a consequence of Theorem 1.1. An application of this fact is the following: Hitchin’s

construction [11] of a projectively flat connection on the space of generalized Spin(N)

theta functions works as well in the twisted case. This connection was used by the

authors in [15] in their study of strange duality for odd orthogonal bundles.

For a general complex reductive Lie group G, works of Donagi–Pantev [6],

Hitchin [13], and Hausel–Thaddeus [9] show that the Hitchin system associated to G

is dual to the Hitchin system associated to LG, the Langlands dual group to G. Another

consequence of Theorem 1.1 is an explicit duality for spin bundles. Let APSO(2m)(X, �b)

and APSp(2m)(X, �b) denote the fibers over �b ∈ B(N) of the Hitchin map for the moduli

spaces of projective special orthogonal and projective symplectic Higgs bundles, where

N = 2m or N = 2m + 1, respectively. Then we have the following theorem (see Section 4):

Theorem 1.3 (Langlands Duality). For generic points �b, we have the following dualities

of abelian varieties:

(1)
(
ASpin(2m)(X, �b)

)∨ 	 APSO(2m)(X, �b);

(2)
(
ASpin(2m+1)(X, �b)

)∨ 	 APSp(2m)(X, �b).

Here is a brief sketch of the main idea behind the proof of Theorem 1.1. First,

spectral data describe an orthogonal bundle VL → X in terms of a line bundle L ∈ K(S, S).

In Section 3.2 we show that if L is modified by a line bundle defined by a generic

point p ∈ S (and its reflection by σ ), then the new orthogonal bundle obtained is

exactly the Hecke transformation of VL at the point π(p) introduced by Abe [1]. The

result, Corollary 3.4, means that we can move around in the spectral data for orthogonal

bundles via elementary transformations on the bundle itself. This interpretation makes
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it transparent that a choice of lift of VL to a Clifford bundle induces a lift on the

transformed bundle as well (see Corollary 3.5). In this way, a Clifford structure is

naturally defined on VL, L = M2, given one on the orthogonal bundle with “trivial”

spectral data. We then show that the dependence of this structure on M is exactly given

by the action of J2(S) via the norm map. In Section 4, we prove directly that the abelian

varieties appearing are dual to the ones for the projective symplectic and orthogonal

cases.

2 Preliminaries

2.1 Clifford bundles

Let (V, q) be a complex orthogonal vector space, C(V) the Clifford algebra of (V, q), and

C+(V) the even part. The special Clifford group is defined as follows:

SC(V) =
{
g ∈ C×+(V) | gvg−1 ∈ V for all v ∈ V

}
.

The induced action of SC(V) on V is by orthogonal transformations and gives rise to an

exact sequence

0 −→ C
× −→ SC(V) −→ SO(V) −→ 0. (2.1)

The Clifford (or spinor) norm of an element g ∈ SC(V) is defined as

Q(g) = q(v1) · · · q(vk)

where g = v1 · · · vk, for vj ∈ V (any g ∈ SC(V) has such an expression). The spin group is

then Spin(V) := Q−1(1). The restriction of (2.1) to Spin(V) becomes

0 −→ Z/2 −→ Spin(V) −→ SO(V) −→ 0.

We set SC(N) = SC(CN), where C
N has the standard orthogonal structure.

For a connected complex reductive Lie group G, let MG denote the coarse moduli

space of semistable G-Higgs bundles on X. In the case G = SC(N), the Clifford norm

induces a morphism MSC(N) → Pic(X), which we also denote by Q. For an SC(N) bundle

P and L ∈ Pic(X), we will denote by P ⊗ L the SC(N) bundle whose transition functions

are obtained by multiplying those of P and L. It is then clear that

Q(P ⊗ L) = Q(P) ⊗ L2. (2.2)
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Fix p ∈ X, and consider bundles OX(dp), where d ∈ Z. Then the preimage

by Q of the class of [OX(dp)] ∈ Pic(X) depends only on the parity of d. Let M±
Spin(N)

be the inverse images of the bundles [OC(dp)], for d = 0, 1. Therefore, while by

definition M+
Spin(N)

= MSpin(N), the space M−
Spin(N)

is a “twisted” component that does

not correspond to a moduli space of G-bundles for any complex reductive G. The

connected components M±
SO(N)

of MSO(N) are labeled by the 2nd Stiefel–Whitney class:

V ∈ M±
SO(N)

⇐⇒ w2(V) = ±1 (cf. [3, Prop. 1.3]), and the projection (2.1) induces a

morphism M±
Spin(N)

→ M±
SO(N)

. We refer to [17, Prop. 3.4] for more details.

In this paper, we mostly regard points in M±
SO(N)

as equivalence classes of rank

N semistable orthogonal Higgs bundles: that is, a holomorphic bundle V → X with

nondegenerate symmetric bilinear pairing ( , ) : V ⊗ V → OX , and a fixed isomorphism

det V 	 OX , equipped with a holomorphic map � : V → V ⊗ KX satisfying (�v, w) +
(v, �w) = 0 for all v, w ∈ V.

2.2 Hecke transformations of orthogonal bundles

We first recall Hecke transformations for orthogonal bundles following Abe [1]. Let V →
X be an orthogonal bundle. Choose a point p ∈ X and an isotropic line τ in the fiber Vp

of V at p. Let τ⊥ denote the orthogonal subspace to τ in Vp, and set τ1 = Vp/τ⊥. We view

τ and τ1 as torsion sheaves on X supported at p. Then we may define a locally free sheaf

V� → X by the elementary transformation:

0 −→ V� → V → τ1 −→ 0. (2.3)

Next let V� = (V�)∗. Since the orthogonal structure gives an isomorphism V∗ 	 V,

dualizing (2.3) yields an exact sequence:

0 −→ V → V� → τ2 −→ 0 (2.4)

where τ2 is a torsion sheaf supported at p of length 1. Now the orthogonal structure also

induces maps

V� ⊗ V� −→ OX(p) and V� ⊗ V� −→ OX . (2.5)

Consider the subsheaf V� ↪→ V� obtained by composing V� ↪→ V in (2.3) with V ↪→ V� in

(2.4). Then V�/V� is a torsion sheaf supported at p, and the fiber at p is a rank 2 orthog-

onal space. Since V/V� is isotropic, there is a canonical splitting V�/V� 	 V/V� ⊕ τ2.

Finally, we define V ι ⊂ V� to be the kernel of the map V� → V/V�. Equivalently, there is
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an exact sequence

0 −→ V� → V ι → τ2 −→ 0. (2.6)

Then V ι inherits an orthogonal structure from (2.5). Moreover, the exact sequence (2.6)

determines an isotropic line τ ι in the fiber of V ι at p. Finally, from (2.3) and (2.6), the

trivialization of det V induces one for det V ι.

Definition 2.1. The ι-transform is the map: (V, τ) �→ (V ι, τ ι).

2.3 Hecke transformations of Clifford bundles

We wish to extend the previous discussion to Clifford bundles. For this it is useful to

have a description of the ι-transform explicitly in terms of transition functions. Let P be

a special Clifford bundle and V the associated orthogonal bundle. Let 
 ⊂ X be a disk

centered at p, and σ : 
 → P a section. Set X∗ = X \ {p}. This gives a trivialization of

P and a local frame e1, . . . , eN for V on 
 with respect to which the quadratic structure

is, say, of the form (ei, ej) = δi+j−1,N . Similarly, we may choose a section of P| X∗ . Set


∗ = X∗ ∩ 
. Let ϕ̂ : 
∗ → SC(N) denote the transition function gluing the bundles

P| 
 and P| X∗ , and let ϕ : 
∗ → SO(N) be the quotient transition function for (E , q). The

transformed bundle V ι is defined by modifying ϕ by ζ : 
∗ → SO(N), where

ζ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z

1
. . .

1

z−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.7)

Write z = exp(2π iξ), Im ξ > 0, and set

ζ̂ (z) = exp(π iξ) exp
(
(π iξ/2)(e1eN − eNe1)

)
. (2.8)

One checks that ζ̂ is well defined under ξ �→ ξ +1, and so it yields a map ζ̂ : 
∗ → SC(N).

Moreover, the projection (2.1) of ζ̂ to SO(N) recovers ζ . Gluing the trivial SC(N)-bundles

over 
 and X∗ via ϕ̂(z)̂ζ (z), we define a new Clifford bundle Pι. The associated orthogonal

bundle (with transition function ϕ(z)ζ(z)) coincides with V ι. With this understood, the

main observation is the following:

Proposition 2.2. We have Q(Pι) 	 Q(P) ⊗ OX(p). In particular, w2(V ι) = −w2(V).
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Proof. From (2.8), Q(Pι) is a line bundle with transition function on 
∗ given by

Q(ϕ̂ζ̂ ) = exp(2π iξ) Q(ϕ̂(z)) Q
(
exp

(
(π iξ/2)(e1eN − eNe1)

)) = z · Q(ϕ̂(z))

since exp
(
(π iξ/2)(e1eN − eNe1)

) ∈ Spin(N); hence, the result . �

Remark 2.3 We could just as well have chosen a prefactor of exp(−π iξ) in (2.8) to

obtain a Clifford bundle with norm Q(P) ⊗ Ip, where Ip denotes the ideal sheaf of p ∈ X.

The two Clifford bundles thus defined are isomorphic after tensoring by OX(p). Later

on, however, we shall consider multiple Hecke transformations at points of a reduced,

not necessarily effective divisor D; hence, the points will have a sign. For convenience,

at each point p in the support of D we shall choose exp(±π iξ) in (2.8) so that the change

of Clifford norm corresponds to the sign of p.

2.4 Spectral data for symplectic bundles

In this section, following [13] and [10], we briefly recall the explicit description of

generic fibers of the Hitchin map for the groups Sp(2m) and PSp(2m) in terms of

spectral data. Let E → X be a symplectic bundle of rank 2m with pairing 〈 , 〉, and

� : E → E ⊗ KX be a Higgs field such that 〈v, �w〉+〈�v, w〉 = 0, for all sections v, w ∈ E.

The coefficients of the characteristic polynomial of � gives an element �b ∈ B(N),

N = 2m + 1. Let π : tot(KX) → X be the total space of the canonical bundle on X, and let

λ : tot(KX) → π∗KX denote the tautological section. The spectral curve associated to �b is

S :=
{
w ∈ tot(KX) | λ2m + π∗(b2)λ2m−2 + · · · + π∗(b2m) = 0 at w

}
. (2.9)

We assume that S is smooth. This implies that the last coefficient b2m of �b has simple

zeros at Z(b2m) ⊂ X and that b2m−2 is nonzero on Z(b2m) (see [4]). Let σ denote the

involution w �→ −w on S, and S = S/σ . In this case, the kernel K(S, S) of the norm map

NmS/S : J(S) → J(S) is connected and so coincides with the Prym variety P(S, S). Let

L ∈ P(S, S), and consider U = L ⊗
(
KS ⊗ π∗K−1

X

)1/2
. Since KS = π∗K2m

X , a square root

of KS ⊗ π∗K−1
X can be given by a choice of theta characteristic on X. We then have the

following result of Hitchin.

Theorem 2.4 ([10, Section 5.10]). Let �b ∈ B(N) be such that b2m has simple zeros and

b2m−2 is nonzero on Z(b2m). Then h−1
Sp(2m)

(�b) identifies with points on the Prym variety
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P(S, S). The correspondence sends L ∈ P(S, S) to E = π∗(U), where

U = L ⊗ (KS ⊗ π∗K−1
X )−1/2 ∈ P(S, S).

The Higgs field � is obtained by multiplication with λ. Conversely, given a symplectic

Higgs bundle (E, �), let U → S be the line bundle

U := ker(π∗E
�−→ π∗(E ⊗ KX)).

Then L = U ⊗ (KS ⊗ π∗K−1
X )1/2 ∈ P(S, S).

The symplectic structure on E = π∗U is defined as follows. Let σ̂ denote a

linearization of σ on U. Then (̂σ )2 acts as −1 on the fibers. It suffices to define a

nondegenerate skew pairing on sections of U over open sets A ⊂ X. For two such sections

u and v, let

〈u, v〉 = trS/X

(
σ̂ (u)v

dπ

)

. (2.10)

Since σ̂ squares to −1, we have

(
σ̂ (u)v

dπ

)

(z) = −
(

σ̂ (v)u

dπ

)

(σ (z)),

and hence since trS/X( · ) = trS/X trS/S( · ), the pairing 〈 , 〉 is skew. The fact that it is

nondegenerate follows as in [10].

Let M0
PSp(2m)

be the moduli space of semistable Higgs bundles for PSp(2m)

that lift to Sp(2m) bundles, and let hPSp(2m) : M0
PSp(2m)

→ B(N) be the Hitchin map.

Since the Higgs field take values in the adjoint bundles, the natural projection of

Sp(2m) → PSp(2m) give a natural projection MSp(2m) → M0
PSp(2m)

. Now Theorem 2.4

has the following consequence:

Corollary 2.5. The fibers of the Hitchin map hPSp(2m) are in one to one correspondence

with points P(S, S)/J2(X), where J2(X) acts through pulling back by π : S → X.

2.5 Spectral data for odd orthogonal bundles

Let V be a vector bundle of rank 2m + 1 with a nondegenerate symmetric bilinear ( , )

form along with a trivialization det V 	 OX . Let � : V → V ⊗ KX be a Higgs field
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satisfying (v, �w) + (�v, w) = 0. Then

det(λ − �) = λ(λ2m + b2λ2m−2 + · · · + b2m).

As in the case of the symplectic bundle, we assume that the zeros Z(b2m) of b2m are

simple and that b2m−2 is nonvanishing on Z(b2m). In [13, Section 4.1] Hitchin shows that

the one-dimensional zero eigenspace of � generates the line bundle V0 isomorphic to

K−m
X , and that the quotient V1 = V/V0 is of the form E ⊗ K1/2

X , where E is a symplectic

bundle. The symplectic form 〈 , 〉 on E is induced by the formula 〈v1, v2〉 = (v1, �v2), and

the Higgs field � restricted to E⊗K1/2
X induces a symplectic Higgs field. We again define

the spectral curve S by (2.9), and so the orthogonal bundle gives rise to L ∈ P(S, S).

Going in the other direction, starting with a symplectic bundle (E, �′) we define

an orthogonal structure on V = V0 ⊕ V1 by using b2m on V0 and

(u, v) = trS/X

(
σ̂ (u)v · λ−1

dπ

)

(2.11)

[see (2.10)] on V1. Because the section λ is odd, this becomes an even pairing. This only

defines the orthogonal structure on V away from the ramification locus, however, and

extending it to X requires more information. Since the details are not important for this

paper, we simply state the result.

Theorem 2.6 ([13]). Let (E, �′) be a generic symplectic Higgs bundle of rank 2m. Then

an associated SO(2m + 1) Higgs bundle is determined by a vector eb ∈ Eb ⊗ Km−1/2
b for

each point b ∈ Z(b2m) satisfying a certain compatibility condition with �′. In terms of

the spectral data L of E, this is equivalent to a choice of line vb ∈ Lb, which squares to

the canonical trivialization of L2 at b. Moreover, the generic fibers of h±
SO(2m+1)

for each

connected component M±
SO(2m+1)

are isomorphic to P(S, S)/J2(S), where the J2(S)-action

is via the pullback by p : S → S.

2.6 Spectral data for even orthogonal bundles

In this case, a point in B(N) is of the form: �b = (b2, . . . , b2m−2, pm), N = 2m. We assume

pm has simple zeros at Z(pm) and that b2m−2 is nonvanishing on Z(pm). The curve

defined analogously to (2.9) is

S′ :=
{
w ∈ tot(KX) | λ2m + π∗(b2)λ2m−2 + · · · + π∗(b2m−2)λ2 + π∗(p2

m) = 0 at w
}
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The zeros Z(pm) (which we view also as points in S′) are singularities of S′. With the

assumption above these are the only singularities, and they consist of 2m(g−1) ordinary

double points. Let σ be the involution on S′ sending λ to −λ. The fixed points of σ are

exactly the singularities. If S denotes the normalization of S′, μ : S → S′, then since the

singularities are double points, σ extends to an involution of S. The relevant diagram

now is the following:

The double covering p : S → S is unramified, and hence it is determined by a

line bundle L ∈ J2(S). We will need the following:

Lemma 2.7. The line bundle L → S is in the kernel of the norm map NmS/X : J(S) →
J(X).

Proof. We prove this by computing det π∗OS in two different ways. First, the normal-

ization gives an exact sequence:

0 −→ OS′ −→ μ∗OS −→ OZ(pm) −→ 0.

Since π = π ′ ◦ μ, this implies

0 −→ (π ′)∗OS′ −→ π∗OS −→ OZ(pm) −→ 0. (2.13)

Now from general facts about spectral curves, we get det(π ′)∗OS′ 	 K−2m(m−1)
X (cf. [4,

Section 3]). So from (2.13) we have

det π∗OS 	 K−m(2m−1)
X ⊗ Km

X = K−2m(m−1)
X . (2.14)

On the other hand, by the definition of L, p∗OS = OS ⊕ L. It follows that

π∗OS = π∗
(
p∗OS

) = π∗OS ⊕ π∗L

det π∗OS 	 (
det π∗OS

)2 ⊗ NmS/X L. (2.15)
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As before (except now note that S ⊂ totK2
X ), we have π∗OS 	 ⊕m−1

i=0 K−2i
X . Plugging this

into (2.15) we obtain

det π∗OS 	 K−2m(m−1)
X ⊗ NmS/X L.

Now comparing this with (2.14), we conclude that NmS/X L 	 OX . �

Returning to the spectral data, as in the symplectic and odd orthogonal cases,

for L ∈ K(S, S) we let V = π∗U, where U = L⊗ (KS ⊗ π∗K−1
X )−1/2. The pairing is defined by

(u, v) = trS/X

(
σ̂ (u)v

dπ

)

(2.16)

as in (2.10), except that now σ̂ squares to the identity so that the pairing is symmetric.

Let P(S, S) ⊂ K(S, S) denote the connected component of the identity of ker NmS/S. Then

we have the following theorem due to Hitchin [10].

Theorem 2.8. The correspondence described above identifies a generic fiber of the

Hitchin map h±
SO(2m)

with P(S, S).

The moduli space of PSO(2m)-Higgs bundles has four connected components.

Let M0
PSO(2m)

denote the neutral component consisting of those bundles that lift to

Spin(2m)-bundles. As an easy corollary of Theorem 2.8 we get a description of the

spectral data:

Corollary 2.9. The generic fibers of the Hitchin map h0
PSO(2m)

: M0
PSO(2m)

→ B(2m) are

in one-to-one correspondence with elements of the abelian variety P(S, S)/J2(X).

3 Spin Structures From Spectral Data

3.1 Case of special spectral data

Lemma 3.1. Fix generic �b ∈ B(N). Consider the orthogonal bundles Vc:

• for N = 2m + 1:

Vc = K−m
X ⊕ K−m+1

X ⊕ · · · ⊕ OX ⊕ · · · ⊕ Km−1
X ⊕ Km

with orthogonal structure given by the pairing of K−j with Kj, and OX an

orthogonal subbundle;
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• for N = 2m:

Vc = K−m
X ⊕ K−m+1

X ⊕ · · · ⊕ OX ⊕ · · · ⊕ Km−1
X ⊕ Km ⊕ OX

where the last factor OX is also an orthogonal subbundle.

Then Vc admits a Higgs field �c such that (Vc, �c) is a stable SO(N)-Higgs bundle in the

fiber over �b.

Proof. This follows from Hitchin’s construction via the principal sl(2)-embedding for

split real forms (see [12] and also [2, Sections 8.4 and 8.5]). �

By Theorems 2.6 and 2.8, there is a line bundle Lc ∈ P(S, S) such that Lc gives

spectral data for (Vc, �c).

Lemma 3.2. Recall that we have fixed a theta characteristic K1/2
X . Then K1/2

X also

determines a lift of (Vc, �c) to Spin(N)-Higgs bundles.

Proof. The bundles Vc admit quasi-isotropic decompositions W+ ⊕W− ⊕OX (odd case)

and W+ ⊕ W− (even case), where det W+ = Km(m+1)/2
X . Indeed, in the N odd case we take

W+ = ⊕m
i=1Ki. For N even, we add to this a choice of isotropic line in OX ⊕ OX . It is well

known that a choice of square root of det W+ determines a lift to Spin, and such a root

is determined by K1/2
X (cf. [14]). �

3.2 Application of the Hecke transformation for even orthogonal bundles

In Section 2.2 we described how an orthogonal bundle V → X with a choice of isotropic

line τ at a point p ∈ X gives rise to a new orthogonal bundle V ι. In this section, we relate

the spectral data of these orthogonal bundles under this transformation. We have the

following.

Proposition 3.3. For L ∈ K(S, S), let VL = π∗U, U = L ⊗ (KS ⊗ π∗K−1
X )−1/2, be the

orthogonal bundle associated to L by Theorem 2.8. Choose a point p ∈ S outside the

ramification locus, and let L̃ = L ⊗ OS(p) ⊗ Iσ(p), where Iσ(p) denote the ideal sheaf of

the point σ(p). The fiber of U at p corresponds to an isotropic line τ in the fiber of VL at

π(p). Then VL̃ is isomorphic to the orthogonal bundle V ι
L in Definition 2.1.

Proof. Let τ1 = VL/τ⊥. It is a skyscraper sheaf supported at π(p) of length 1. Denote

the orthogonal structure on VL by ( , ). By definition of the pairing (2.11) and (2.16),



Spectral Data for Spin Higgs Bundles 13

τ1 can be identified with the fiber of U at σ(p). Under the direct image, the sheaf map

VL → τ1 given by e �→ (e, τ) corresponds to evaluation U → Uσ(p). In other words, the

direct image of the exact sequence

0 −→ U ⊗ Iσ(p) −→ U −→ Uσ(p) −→ 0

is

0 −→ V�
L −→ VL −→ τ1 −→ 0.

With respect to the orthogonal structure, V�
L = (V�

L)∗ is the direct image of U ⊗ OS(p).

Now the direct image of the exact sequence

0 −→ U −→ U ⊗ OS(p) −→ Up −→ 0

is

0 −→ VL −→ V�
L −→ τ2 −→ 0.

By definition, V ι
L is the kernel of the induced map V�

L → VL/V�
L 	 τ1, and it follows that

V ι
L = π∗

(
U ⊗ OS(p) ⊗ Iσ(p)

)
. �

Corollary 3.4. Let L ∈ K(S, S), L = Lc ⊗ M ⊗ σ ∗(M∗) for M ∈ J(S). Then for any generic

choice of divisor div M, VL is isomorphic to the Hecke transform V ι
c at π(div M).

Proof. Write the divisor D of M as

D = p1 + · · · + pr − q1 − · · · − qs.

Then

−σ(D) = −σ(p1) − · · · − σ(pr) + σ(q1) + · · · + σ(qs)

is a divisor of σ ∗(M∗), and so M ⊗ σ ∗(M∗) has divisor

r⊗

i=1

(
OS(pi) ⊗ Iσ(pi)

)
⊗

s⊗

i=1

(
OS(σ (qi)) ⊗ Iqi

)
.

Now apply Proposition 3.3 repeatedly. �
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Using the results of Section 2.3 (see Proposition 3.3 and recall the convention in

Remark 2.3), we also have the following:

Corollary 3.5. In addition to the hypothesis of Proposition 3.3, suppose that VL has a

lift to an SC-bundle PL. Then this determines a lift PL̃ of VL̃ to an SC-bundle with

Q(PL̃) = Q(PL) ⊗ OX(p).

In particular, if L = Lc ⊗ M ⊗ σ ∗(M∗), M ∈ J(S), a choice of spin structure on VLc

determines a lift of VL to an SC-bundle PM with Q(PM) = NmS/X(M).

Remark 3.6. Implicit in Corollary 3.4 is the following: if we modify the choice of

divisor D of M by a generic meromorphic function f then there is a natural isomorphism

of the orthogonal bundles obtained by Hecke transformations on π(D) and π(D+div(f )).

Indeed, multiplication of sections of U (in the proof of Proposition 3.3) by f /σ ∗(f ) is

an isometry with respect to the pairing (2.11) or (2.16). Furthermore, in an appropriate

local frame this isometry has the form of ζ in (2.7), and so the SC-bundles obtained in

Corollary 3.5 are similarly isomorphic.

3.3 Application of the Hecke transformation for odd orthogonal bundles

With small modifications, the arguments of the previous section apply equally well to

the case of odd-dimensional orthogonal bundles. We note the following:

(1) As in Section 2.5, the orthogonal bundle determined by L ∈ Prym(S, S) in the

complement of the ramification locus is isometric to VL = V0 ⊕ V1, where

V0 = K−m
X , V1 = EL ⊗ K1/2

X , and EL is the symplectic bundle from Section 2.4;

namely, EL = π∗U, U = L ⊗ (KS ⊗ π∗K−1
X )1/2. Let p ∈ S \ π−1(Z(b2m)). Then the

isotropic line for EL at π(p) determined by p gives a canonical isotropic line

in V1, and hence also VL, at π(p). Tensoring the exact sequences in the proof

of Proposition 3.3 by K1/2
X , we find as before that the orthogonal structure on

V ι
L coincides with that on VL̃, L̃ = L⊗OX(p)⊗Iσ(p), away from the ramification

locus.

(2) Now apply the above to the case where L has the form Lc ⊗ M ⊗ σ ∗(M∗),
M ∈ J(S). The gluing data in Theorem 2.6 depends on a choice of vector

vb ∈ L|π−1(b) at each b ∈ Z(b2m), which squares to the canonical trivialization

of L2 at π−1(b). Since M ⊗ σ ∗(M∗) is canonically trivial at these points, such
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a choice for Lc gives one for L as well. As opposed to the even case, because

of the gluing the extended orthogonal bundle VL depends on the choice of M,

even when M ∈ Prym(S, S).

Finally, in this case the procedure of the previous section gives a lift of VL to an SC-

bundle away from Z(b2m), depending on a choice of square root K1/2
X on X. To extend

this to X, we note the following result, which is certainly well known.

Proposition 3.7. Let V → X be an orthogonal bundle (odd or even rank) on a smooth

curve X and D ⊂ X finite. A lift of V to an SC-bundle on X \ D determines a lift of V to

an SC-bundle on X. The resulting SC-bundle is uniquely determined up to twisting by

divisors supported on D.

Proof. Let P → X denote the principal orthogonal bundle associated to V. We assume

a lift P̃ on X \ D to a principal SC-bundle. By the uniformization theorem [7, Thm. 3]

we can find a trivialization σ− of P restricted to X \ D. Fix a lift σ̃− of σ− to P̃, and a

coordinate disk z ∈ 
 about p ∈ D. Let 
∗ = 
 \ {p}. Identify P|
 with 
 × SO via a

trivialization σ+. This also gives a lift of P to a spin bundle on 
 with trivialization σ̃+.

The transition function for the bundle P identifies σ−|
∗ with a section of 
 × SO, and

so on 
∗ × SO we may write σ− = g · σ+ for some g : 
∗ → SO.

Now since the group SO is not simply connected the element g may not admit

a lift to g̃ : 
∗ → Spin. If we set z = exp(2π iξ), then g(z) admits a lift g̃(ξ) ∈ Spin. If

g̃(ξ + 1) = g̃(ξ), then there is a well-defined map g̃ : 
∗ → Spin. If g̃(ξ + 1) = −g̃(ξ),

then exp(π iξ )̃g(ξ) gives a well-defined map 
∗ → SC with Clifford norm z. Identifying

g̃(z) · σ̃+ (resp. exp(π iξ )̃g(ξ) · σ̃+) with σ̃− defines the transition function for an SC-bundle.

This proves the existence of the extension, and the statement about uniqueness is then

clear. �

In the case where L = Lc ⊗ M ⊗ σ ∗(M∗), M ∈ J(S), then the lifts g̃ will be to

Spin at every point of Z(b2m), since this is true when M is trivial. Hence, applying

Proposition 3.7 and the preceding discussion, we see that the conclusion of Corollary 3.5

holds for odd orthogonal bundles as well.

3.4 Proof of Theorem 1.1

The argument can be made uniformly in the even and odd cases. We first consider the

case of trivial Stiefel–Whitney class. Observe that
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(1) If S → S ramified, then the squaring map surjects P(S, S)/J2(S) onto P(S, S);

(2) If S → S is étale, then
(
P(S, S)/J2(S) ∩ P(S, S)

) 	 P(S, S) via squaring.

Let P be a spin Higgs bundle in the fiber over �b. According to Theorems 2.6 and 2.8, the

underlying orthogonal bundle to P is of the form VL for spectral data L ∈ P(S, S) (in the

odd case, the dependence is on a square root of L). Recall from Lemma 3.2 that a choice

of theta characteristic determines a spin structure on Vc. By Corollary 3.5, if we write

L = Lc ⊗ M2 for M ∈ P(S, S), then there is a lift of VL to a SC-bundle PM . We must check

the dependence of this lift on the choice of M. By Theorems 2.6 and 2.8 and (2) above,

the ambiguity in the orthogonal bundle from the choice of M is the action of J2(S). So

consider M⊗p∗N, for N ∈ J2(S) such that M⊗p∗N is in P(S, S). Let N(t) be a family in J(S),

N(0) = OS and N(1) = N, and set M(t) = M ⊗p∗N(t) ∈ J(S). Thus L = Lc ⊗M(t)⊗σ ∗(M∗(t))
for all t. By Corollary 3.5, we obtain a family of lifts of VL to SC-bundles PM(t) with

Q
(
PM(t)

) = NmS/X(M) ⊗ NmS/X(p∗N(t)) =
(
NmS/X N(t)

)2
. (3.1)

In (3.1) we have used two facts: first, since M ∈ ker NmS/S, and NmS/X = NmS/X ◦ NmS/S,

we have NmS/X(M) = OX ; and second,

NmS/X

(
p∗N(t)

) = NmS/X

(
NmS/S p∗N(t)

)
= NmS/X

(
N2(t)

)
=

(
NmS/X(N(t))

)2
.

Now it follows from (3.1) that

Q
(
PM(t) ⊗

(
NmS/X N(t)

)∗) = OX .

But then PM(t) ⊗
(
NmS/X N(t)

)∗
is a family of spin bundles that lift the fixed orthogonal

bundle VL. The set of such lifts is finite, so the family is necessarily constant. Evaluating

at t = 0 and t = 1, we find

PM⊗p∗N 	 PM ⊗ NmS/X N.

Given one lift of VL to a spin bundle, the others are obtained by tensoring by elements of

J2(X). From the above, a change of M is equivalent to the action of J2(S) on J2(X). Since

NmS/X : J2(S) → J2(X) is surjective (cf. the next section), P = PM⊗p∗N for some choice

of N. The proof of the theorem for spin bundles thus follows. The proof in the twisted

case follows similarly by applying the first part of Corollary 3.5 and using the same

argument as above.
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4 Duality

We continue with the same notation as in the previous sections. We may regard J2(X) as

a subgroup of J2(S) by pullback π∗. Using this fact, and dualizing the exact sequence

1 −→ J2(X)
π∗−→ J2(S) −→ J2(S)/J2(X) −→ 1 (4.1)

we see that
[
J2(S)/J2(X)

]∨ ⊂ J2(S)∨. Since the pullback π∗ is injective it follows that

NmS/X : J2(S) → J2(X) is surjective. Recall that K(S, S) = ker NmS/S, whereas the Prym

P(S, S) is the connected component containing OS.

Remark 4.1. In the case where S → S is étale, let H0 denote the kernel of the map

J(S) → J(S), and recall that L ∈ J2(S) defines the cover. Then H0 = {OS,L}. Moreover,

if H1 ⊂ J2(S) denotes the annihilator of L with respect to the Weil pairing, then pulling

back from S to S gives an identification of the two torsion points of the Prym P2(S, S) 	
H1/H0 (cf. [16]).

Now consider the following variety:

K(S, S)×J2(S)J2(X) :=
{(a, b) ∈ K(S, S) × J2(X)}/{(a · s, b · NmS/X(s)) ∼ (a, b) | s ∈ J2(S)}

Observe that K(S, S)×J2(S) J2(X) can be realized as a group quotient of K(S, S)×J2(X) and

hence has a natural group law. Now we define a map ι by

ι : P(S, S) −→ K(S, S) ×J2(S) J2(X) : a �→ [(a, 1)].

Lemma 4.2. The map ι induces the following:

(1) If S → S is ramified, then

P(S, S)
[
J2(S)/J2(X)

]∨ 	 K(S, S) ×J2(S) J2(X).

(2) If S → S is étale, then

P(S, S)
[
(H1/H0)/J2(X)

]∨ 	 K(S, S) ×J2(S) J2(X).



18 S. Mukhopadhyay and R. Wentworth

In particular, in both cases, K(S, S) ×J2(S) J2(X) is an abelian variety.

Proof. First, suppose S → S is ramified. Let [(a, b)] ∈ K(S, S) ×J2(S) J2(X). Since NmS/X

is surjective we can rewrite any representative in the form (a1, 1), where a1 = as and s

is an element of J2(S) such that NmS/X(s) = b. In particular, ι is surjective. On the other

hand, ker ι is clearly given by the kernel of NmS/X : J2(S)∨ → J2(X)∨. This is precisely
[
J2(S)/J2(X)

]∨
by the exact sequence (4.1).

Now we consider the case where S → S is étale. By [5, Prop. 11.4.3], the pullback

J(X) → J(S) is injective. This implies that the line bundle L defining the étale cover is

not in the image of J2(X) under pullback. We claim that the image of J2(X) lies in H1.

Indeed, with respect to the Weil pairing 〈 , 〉, if M ∈ J2(X) then

〈π∗M,L〉S = 〈M, NmS/X L〉X = 1,

since NmS/X(L) = OX by Lemma 2.7; hence, the claim. It follows that J2(X) injects

into H1/H0 and also that H1/H0 surjects to J2(X) under the map NmS/X . If [(a, b)] ∈
K(S, S) ×J2(S) J2(X) is such that a ∈ P(S, S), then we can find an element s ∈ P2(S, S) such

that NmS/X(s) = b. Then [a, b] = [as, 1], and clearly as ∈ P(S, S). If, on the other hand,

a ∈ K(S, S)\P(S, S), then there is ζ of J2(S)\H1 such that aζ ∈ P(S, S). By modifying ζ with

elements in H1 and using the surjectivity of NmS/X : H1/H0 → J2(X), we can furthermore

arrange that NmS/X(ζ ) = OX . Then we are done with the proof of surjectivity of ι, since in

this case [a, b] = [aζ , b]. Finally, a ∈ ker ι implies that [a, 1] = [1, 1] in K(S, S) ×J2(S) J2(X);

hence, a is two torsion and NmS/X(a) = 1, and so by Remark 4.1 the kernel of ι is

identified with ((H1/H0)/J2(X))∨. �

Lemma 4.3. We have the following isomorphism of abelian varieties.

[
P(S, S)/J2(X)

]∨ 	 K(S, S) ×J2(S) J2(X).

Proof. Let f : A → B be an isogeny of abelian varieties, and A∨ and B∨ be the

corresponding dual abelian varieties. Then there exists an isogeny of dual abelian

varieties with the following exact sequence:

1 → (ker f )∨ → B∨ → A∨ → 1, (4.2)

where ker f and (ker f )∨ are Cartier dual of each other. Consider the case, when S → S

is not étale. Applying the above with A = P(S, S)/J2(X) and B = P(S, S)/J2(S), we obtain
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an exact sequence

1 → (
J2(S)/J2(X)

)∨ → (
P(S, S)/J2(S)

)∨ → (
P(S, S)/J2(X)

)∨ → 1.

It is well known that
(
P(S, S)/J2(S)

)∨ 	 P(S, S). Hence, the result follows from Lemma 4.2.

If S → S is étale, then we put B = P(S, S)/(H1/H0) and we get an exact sequence

1 → (
(H1/H0)/J2(X)

)∨ → (
P(S, S)/(H1/H0)

)∨ → (
P(S, S)/J2(X)

)∨ → 1.

In this case, P(S, S) is principally polarized and, moreover,P2(S, S) 	 H1/H0. Hence

(
P(S, S)/(H1/H0)

) 	 P(S, S) 	 P(S, S)∨.

Now using Lemma 4.2 completes the proof. �

Proof of Corollary 1.2 Immediate from Theorem 1.1 and Lemma 4.2. �

Proof of Theorem 1.3 Immediate from Theorem 1.1, Lemma 4.3, and Corollaries 2.5

and 2.9. �
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