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Abstract. Given a simple, simply connected, complex algebraic group G, a flat projective con-
nection on the bundle of nonabelian theta functions on the moduli space of semistable parabolic
G-bundles over any family of smooth projective curves with marked points was constructed by
the authors in an earlier paper. Here, it is shown that the identification between the bundle
of nonabelian theta functions and the bundle of WZW conformal blocks is flat with respect
to this connection and the one constructed by Tsuchiya-Ueno-Yamada. As an application, we
give a geometric construction of the Knizhnik-Zamolodchikov connection on the trivial bundle
over the configuration space of points in the projective line whose typical fiber is the space of
invariants of tensor product of representations.
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1. Introduction

The Wess-Zumino-Witten (WZW) model [48, 69] is a cornerstone of two dimensional rational
conformal field theories [10, 44]. The WZW conformal blocks were constructed mathematically
by Tsuchiya-Ueno-Yamada [66]. Let ĝ be an affine Lie algebra and (C, p) a smooth curve C
with n-distinct marked points p = (p1, · · · , pn). Choose formal coordinates ξ = (ξ1, · · · , ξn)
around p, and using these coordinates assign a copy of ĝ to each point pi. Fix a positive integer

`. Then for any choice of n-tuple of integrable highest weights ~λ = (λ1, · · · , λn) of level `,

the construction in [66] associates a finite dimensional vector space V
†
~λ
(C,p, ξ, g, `) to the data

(C, p, ξ). For a family of smooth curves π : C → S with n-distinct sections p, these vector

spaces patch together to produce a coherent sheaf V†~λ
(g, `) → S. The Sugawara construction

[66] endows this sheaf with the structure of a twisted D-module, and hence V
†
~λ
(g, `) is actually

a holomorphic vector bundle. The authors of [66] show that this vector bundle extends to the

Deligne-Mumford-Knudsen compactification M
′
g,n of the moduli spaces of n-pointed curves M′g,n

with chosen formal coordinates. Moreover, the flat projective connection on the interior M′g,n

extends to a flat projective connection with logarithmic singularities over M
′
g,n. The bundle

V
†
~λ
(g, `) → S of conformal blocks is sometimes called the Friedan-Shenker bundle. We refer to

the above mentioned flat projective connection on V
†
~λ
(g, `) → S as the WZW/TUY connection.

Later, Tsuchimoto [64] gave a coordinate free construction of the bundle of conformal blocks

and showed that it descends to a vector bundle V†~λ(g, `) on the Deligne-Mumford-Knudsen

moduli space Mg,n of n-pointed stable nodal curves (cf. Fakhruddin [25]). The flat projective
connection also descends to a projective connection with logarithmic singularities. In other

words, there is a projectively flat isomorphism between the conformal blocks V
†
~λ
(g, `) and the

pullback F ∗V†~λ(g, `) under the natural forgetful map F : M
′
g,n → Mg,n. We refer the reader

to Section 2 for a construction of conformal blocks and to Section 3 for the construction of the
WZW/TUY connection.

We now discuss how conformal blocks are related to moduli spaces of bundles on curves. The
moduli space MG(C) of principal bundles, with a reductive structure group G, on a smooth
projective curve C, provides a natural nonabelian generalization of the Jacobian variety J(C),
which parametrizes line bundles of degree zero on C. The moduli space of (semistable) principal
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G-bundles on a smooth projective algebraic curve is itself a projective variety. It was originally
constructed through Geometric Invariant Theory. Its smooth locus parametrizes isomorphism
classes of stable bundles with minimal automorphism groups (see [18]), also known as the reg-
ularly stable loci. There are various important variations on this construction. One can choose
marked points p = (p1, · · · , pn) on the algebraic curve C and decorate a principal G-bundle
P with a generalized flag structure over p, leading to the notion of quasi-parabolic bundles.
Additionally, one can choose weight data τ = (τ1, · · · , τn) in the Weyl alcoves, or equivalently

weights ~λ = (λ1, · · · , λn), and use them to define a suitable notion of stability and semistablity.
The corresponding moduli spaces Mpar,ss

G,τ (C,p) can, in turn, be understood as the space of rep-

resentations of the fundamental group of the corresponding punctured surface C \ {p}, where
the loops around the marked points go to fixed conjugacy classes determined by τ [43, 57]. This
generalizes the classical results of Narasimhan-Seshadri [47] and Ramanathan [51], proved in the
non-parabolic case.

The moduli space Mpar,ss
G,τ (C,p) is equipped with a natural ample determinant of cohomology

line bundle Detpar,φ(τ ) associated to a choice of faithful linear representation φ of G. This
generalizes the theta line bundle on the Jacobian variety J(C). Therefore, the global sections
of this line bundle on Mpar,ss

G,τ (C,p) can thus be thought of as a nonabelian generalization of the
classical theta functions. We refer the reader to Section A.1 for more details on the constructions
of the moduli space and the parabolic determinant line bundle on it.

Via the uniformization theorems of Harder and Drinfeld-Simpson [24, 31], moduli spaces of
parabolic bundles also have an adèlic description that directly connects to the representation
theory of affine Lie algebras via the work of several authors (see [8, 27, 37, 40, 49, 59]). Using this,
the corresponding moduli stack of principal G-bundles and its parabolic analog ParG(C,p, τ )
can be expressed as a double quotient

ParG(C,p, τ ) = G(Γ(C,OC(∗p))\
n∏
i=1

G(C((ξi)))/Pi ,

where the Pi are parahoric subgroups of G(C[[ξi]]) determined by the weights τi. The weights
also determine a homogeneous G(Γ(C, OC(∗p)))-equivariant line bundle L~λ

on ParG(C,p, τ ).

The line bundle Det⊗apar,φ(τ ) coincides with L~λ
, where a is a rational number determined by the

Dynkin index of the representation φ. Generalizations (see Kumar [36], Mathieu [42]) of the
Borel-Weil theorems (see (B.3)) for affine flag varieties G(C((ξ)))/Pi, coupled with the adèlic
description, give a canonical isomorphism (see (B.2)) with conformal blocks

V
†
~λ
(C,p, ξ, g, `) ∼= H0(Mpar,ss

G,τ (C,p), Det⊗apar,φ(τ )).

This isomorphism can be reinterpreted as the Chern-Simon/WZW correspondence. More details
are given in Section B.1.

Using differential geometric methods, Hitchin, [32], generalizes a construction of Mumford-
Welters [68] to obtain a flat projective connection on the Friedan-Shenker bundle with fibers
H0(MG(C), Det⊗`), from the viewpoint of geometric quantization in the sense of Kostant-
Souriau. This connection also appears in Witten’s [70] interpretation of Jones polynomial link
invariants as 3-manifold invariants. Hitchin’s construction was reinterpreted by van Geemen-de
Jong [67] sheaf theoretically in terms of the existence of a “heat operator”, which in the relative
setting is a differential operator that is a combination of a first order operator with one that
is second order on the fibers (see Section 4). We recall the details of the general methods of
Hitchin-van Geemen-de Jong [67] in Section 4. We also refer to the several complementary
approaches of Andersen [1], Axelrod-Witten-della Pietra [3], Baier-Bolognesi-Martens-Pauly [4],
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Faltings [26], Ginzburg [30], Ran [52], Ramadas [50], Sun-Tsai [61] and for generalizations to
reductive groups, Belkale [11].

In [39], Laszlo showed that the connection constructed by Hitchin and the one in [66] coincide

under the natural identification of H0(MG(C), Det⊗`) with V
†
0(C, g, `). A similar result for

twisted Spin groups was also proved by Mukhopadhyay-Wentworth [45]. The following questions
are natural in the context of parabolic moduli spaces:

(1) Is there a projective heat operator (see Section 4 and Definition 4.1) on the line bundle
Det⊗apar,φ(τ )) that induces a flat projective connection on the vector bundle over Mg,n

with fibers H0(Mpar,ss
G,τ (C,p), Det⊗apar,φ(τ ))?

(2) If such a connection exists, is the identification of conformal blocks with nonabelian
parabolic theta functions flat with respect to this connection and the WZW/TUY con-
nection?

For g(C) ≥ 2, Scheinost-Schottenloher, [55], constructed a parabolic Hitchin connection for
G = SLr under the assumption that the canonical bundle of Mpar,ss

SLr,τ
(C,p) admits a square-root.

Bjerre [21] removed the “restriction” in [55] for G = SLr by working on a different parabolic
moduli space with full flags. In both [21, 55], the authors construct a connection on the push-

forward “metaplectically corrected” line bundles of the form Det⊗apar,φ(τ )⊗K1/2

Mpar,ss
SLr,τ

(C,p)
. We also

refer the reader to Remark 6.3. In [19], we constructed a projective heat operator on Det⊗apar,φ(τ )

in general. This was produced from a candidate parabolic Hitchin symbol (see (5.6)) satisfying
a Hitchin-van Geemen-de Jong type equation (see (5.2))1 , 2.

The following result answers the above question (2) and thus generalizes the result of Laszlo,
proved in the non-parabolic case.

Theorem 1.1 (Main Theorem). Let S parametrize a smooth family of n-pointed curves. Let
πe : Mpar,rs

G,τ → S be the relative moduli space parametrizing regularly stable parabolic G bundles,
i.e., stable parabolic bundles with minimal automorphisms. The natural isomorphism

PV†~λ(g, `) ∼−−→ Pπe∗Det⊗apar,φ(τ ) ,

constructed via the uniformization theorem, between the projectivizations of the bundles of con-
formal blocks and nonabelian parabolic theta functions, is flat for the WZW/TUY connection on

PV†~λ(g, `) and the parabolic Hitchin connection on Pπe∗Det⊗apar,φ(τ ).

We are guided by a fundamental observation that if an algebraic group G acts on a smooth
variety X and L is a G-equivariant line bundle on X, then the map induced by the Beilinson-
Bernstein localization functor Loc : Ug→ Γ(X,D(L )) is a quantum analog of the moment map
for the G action on X, and the corresponding graded map Sym g→ Γ(X, gr(D(L ))) is dual to
the moment map. Hence, it is “independent” of the line bundle L . Thus, an essential point in
the proof of this theorem is the fact that the symbols of the Sugawara operators coming from
affine Lie algebras do not depend on the highest weights. This is checked via a direct calculation
generalizing the non-parabolic counterparts in the works on Laszlo [39] and Tsuchiya-Ueno-
Yamada [66]. The counterpart of this statement on the moduli of parabolic bundles side for the
parabolic Hitchin symbol is therefore the crux of the argument. This is carried out in Proposition

1Subsequent to the submission of our paper [19], in May 2023 a draft of the thesis of Zakaria Ouaras appeared
in which the author proves the existence of a unique flat projective connection in the case of moduli spaces of
parabolic vector bundles with arbitrary fixed determinant and genus g ≥ 2

2We have been informed [2] that in the case of genus zero, SL2, and equal weights λ sufficiently small so that
conformal blocks are invariants, the Hitchin connection constructed in [1] agrees with the KZ equation.
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5.6 using Corollary 5.5. These are the key new features/differences in the proof of Theorem 1.1
to that in non-parabolic case considered by Laszlo [39].

Application. Now we discuss an application of the parabolic generalization of Theorem 1.1 by
giving a geometric reconstruction of the Knizhnik-Zamolodchikov (KZ) equation. Let us now
focus on the genus zero case. Since P1 has a global coordinate and a global meromorphic two
form on P1×P1 with second order poles along the diagonal, the WZW/TUY connection gives a
flat (honest) connection on the bundle of conformal blocks. The equations for the flat sections are
known as Knizhnik-Zamolodchikov equations [34]. Thus, the KZ equations constitute a system
of first order differential equations, arising from the conformal Ward identities, that determines
n-point correlation functions in the Wess-Zumino-Witten-Novikov model of two dimensional
conformal field theory. The KZ equations have remarkable realizations in many other areas.
For example higher dimensional generalizations of hypergeometric functions are known to be
solutions of these equations [54]. The KZ equations can also be regarded as quantizations of
the isomonodromy problem for differential equations of Fuchsian type [53]. The Kohno-Drinfeld
[23, 35] theorem relates the monodromy representation of the braid group induced by the KZ
connection with solutions of the Yang-Baxter equation.

Here, we consider the KZ equations as equations for flat sections of the trivial vector bundle
A~λ over the configuration space Xn of n-points in C with fibers

A~λ := Homg(Vλ1 ⊗ · · · ⊗ Vλn , C) .

We restrict the projective heat operator constructed in [19] to the open substack ParcG(P1,p, ~λ)
of quasiparabolic bundles in case of genus zero, where the underlying principal G-bundle is
trivial. This turns out to be the quotient stack

ParcG(P1,p, ~λ) = [(G/Pλ1 × · · · ×G/Pλn) /G],

where Pλi are parabolic subgroup determined by λi and the global sections of the homogeneous
line bundle L~λ

are just the invariants A~λ. Thus, we obtain a flat connection on the vector bundle
A~λ over Xn. Finally using Theorem 1.1, we identify this connection with the KZ connection.
This gives an alternative geometric construction of the KZ equations. We refer the reader to
Section 7 and Corollary 7.1 for more details and precise statements.

The outline of the paper is as follows. In Sections 2 and 3 we review in some detail the
construction of the WZW/TUY connection in the parabolic setting. In Section 4, we review
the construction from [19] of the Hitchin connection in the parabolic setting. This involves the
metaplectic correction in a central way. An important step in this section is the re-expression of
one of the “controlling equations” of van Geemen-de Jong for the existence of a projective heat
operator on elements of the rational Picard group (see Section 4.2). Finally, in Section 5.2 we
state the fundamental result, Theorem 5.3, which provides a simplification of the expression for
parabolic Hitchin symbol. This is the geometric reflection of the aforementioned fact that the
Sugawara operators do not depend on the highest weights.

Finally, in Section 6, using this result we directly relate the symbols of the Sugawara tensor
and the parabolic Hitchin connection, thus proving Theorem 1.1 (see Section 6.4). In the last
Section 7 we elaborate on the special case of genus zero curves. In Appendix A, we define the
line bundles over moduli spaces of parabolic G-bundles whose sections give rise to the Friedan-
Shenker bundles. We also relate these line bundles to the determinant of cohomology in the
relative setting.

Acknowledgments. We thank Prakash Belkale for suggesting the question of constructing
the Knizhnik-Zamolodchikov connection geometrically. S. M. would like to thank Arvind Nair
for useful discussions.
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2. Conformal Blocks

In this section we recall the basic notions of conformal blocks, following Tsuchiya-Ueno-
Yamada [66]. Let g be a complex simple Lie algebra and h ⊂ g a Cartan subalgebra. Let ∆
be a system of roots and κg the Cartan-Killing form, normalized so that κg(θg, θg) = 2 for the
longest root θg. We let νg : h∗ ∼−−→ h denote the isomorphism induced by κg.

2.1. Affine Lie algebras and integrable modules. Let ξ be a formal parameter. The affine
Lie algebra

ĝ := g⊗ C((ξ))⊕ C · c
is a central extension of the loop algebra C((ξ)) by c. The Lie bracket operation on ĝ is given
by the formula

[X ⊗ f, Y ⊗ g] := [X, Y ]⊗ fg + κg(X, Y ) Rest=0(gdf) · c,(2.1)

where X, Y ∈ g and f, g are elements of C((ξ)).

We now briefly recall the basic objects in the representation theory of ĝ. It is well-known
that the finite dimensional g modules are parametrized by the subset P+(g) ⊂ h∗ consisting of
dominant integral weights. The representation corresponding to a weight λ will be denoted by
Vλ. Let ` > 0 be a positive integer, and consider the set P`(g) := {λ ∈ P+(g) | κg(λ, θg) ≤ `}.
The highest weight irreducible integrable representations of ĝ at level ` are classified by the set
P`(g) defined above. The ĝ-module corresponding to λ will be denoted by Hλ.

2.2. Sheaf of Conformal Blocks. Integrable representations of affine Lie algebras were used
by Tsuchiya-Ueno-Yamada [66] and Tsuchiya-Kanie [65] to define conformal blocks. In this
paper, we will restrict ourselves to conformal blocks associated to smooth curves. Let π : C → S
be a family of smooth projective curves, and let p = (p1, · · · , pn) be n non-intersecting sections
of the map π such that the complement C\ ∪ni=1 pi(S) is an affine scheme.

Consider formal coordinates ξ1, · · · , ξn around the sections p = (p1, · · · , pn) giving isomor-
phisms limm OC/I

m
pi
∼= OS [[ξi]], where Ipi is the ideal sheaf of the section pi. Let g be a simple

Lie algebra. As before, we get a sheaf of OS Lie algebras defined by

(2.2) ĝn(S) := g⊗

(
n⊕
i=1

OS((ξi))

)
⊕ OS · c

The Lie algebra ĝn(S) in (2.2) contains a natural subsheaf of Lie algebras g⊗C π∗OC(∗D), where
D =

∑n
i=1 pi(S). That it satisfies the Lie algebra condition is actually guaranteed by the residue

theorem.

For any choice of n-tuple of weights ~λ = (λ1, · · · , λn) in P`(g), consider the ĝn(S)-module
(hence it is also a g⊗C π∗OC(∗D)-module)

H~λ
(S) := Hλ1 ⊗Hλ2 ⊗ · · · ⊗Hλn ⊗C OS .

Definition 2.1. The sheaf of covacua V~λ(g,C/S, p, `) at level ` is defined to be the largest
quotient of H~λ

(S) on which g ⊗C π∗OC(∗D) acts trivially. The sheaf of conformal blocks

V
†
~λ
(g,C/S,p, `) is defined to be the OS dual of the sheaf of covacua.

Since the above definition uses only the fact that the formal coordinates identify the completed
local ring with the Laurent series ring, the definition of sheaf of covacua and the sheaf of
conformal blocks can be extended in a straightforward manner to families of nodal curves with
Deligne-Mumford stability property.
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2.3. Coordinate free construction. The sheaf ĝn and its integrable modules can be defined
without the choice of formal coordinates ξ; we recall this from [64]. Let π : C → S be as above.
Consider the sheaf of formal meromorphic functions on C with poles along the marked sections

KC/pi := lim
a→+∞

lim
m→+∞

O(api(S))/Impi .

Using this, the coordinate free affine Lie algebra is defined as follows:

(2.3) ĝ(C/pi) := g⊗KC/pi ⊕ OS · c.

Its n-pointed analog is defined to be

ĝn(C/S) :=

(
g⊗

n⊕
i=1

KC/pi

)
⊕ OS · c.

The Lie bracket operation is defined as in the previous section.

The Verma module Mλ(C/S) (resp.the coordinate free highest weight integrable module
Hλ(C/S)) can be defined similarly by inducing representations (and taking quotients) using
a parabolic subalgebra

p̂pi := g⊗ ÔC/pi(S)⊕ OS · c

on the finite dimensional module Vλ via evaluation. More precisely Mλi(C/S) = Ind
ĝ(C/pi)

p̂pi
Vλi

refer the reader to [64] for more details.

Definition 2.2. The coordinate free sheaf of covacua V~λ(g, C/S, `) is defined to be the sheaf

of coinvariants H~λ(C/S)/
(
g⊗C π∗OC(∗D)H~λ(C/S)

)
. As before, the sheaf of coordinate free

conformal blocks V†~λ(g, C/S, `) is defined to be the OS-module dual of V~λ(g, C/S, `).

Observe that a choice of formal coordinates around the marked points actually induces iso-
morphisms between ĝ(C/pi) and the sheaf ĝξi := g ⊗ OS((ξi)) ⊕ OS · c. This identifies the
coordinate free conformal blocks and the sheaf of covacua with those obtained by a choice of
coordinates.

We now recall some important properties of the sheaf of conformal blocks. The reader is
referred to [66], [64], [25], and [58] for proofs and further exposition.

Theorem 2.3. Let g be a simple Lie algebra and ` > 0 a positive integer. Then the following
statements hold:

(1) The sheaf of conformal blocks V†~λ(g,C/S, `) carries a flat projective connection and hence

it is locally free [64].The Verlinde formula, [27, 62], computes the rank of the vector bundle

V†~λ(g, `).

(2) Let M′g,n be the moduli stack of stable curves along with a choice of formal coordinates

around the marked points. Then the sheaf V†~λ
(g, C/S, `) gives a vector bundle with a flat

projective connection with logarithmic singularities along the boundary.

(3) The sheaf of conformal blocks descends to a vector bundle V†~λ(g, `) with a flat projective

connection on the moduli stack Mg,n. Moreover, the vector bundle V†~λ(g, `) extends to

a vector bundle over the Deligne-Mumford compactification Mg,n, and the projective
connection extends to a projective connection with logarithmic singularities along the
boundary.

(4) The natural forgetful map form F : M
′
g,n → Mg,n identifies the vector bundle V

†
~λ
(g, `)

with the pull-back F ∗V†~λ(g, `).
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We will refer to the connections in Theorem 2.3 as the TUY/WZW connections; their con-
struction is recalled in Section 3.

Remark 2.4. There are several other important properties — e.g. “propagation of vacua” and
“factorization theorems” — exhibited by conformal blocks. We refer the reader to [66] for more
details.

We also point out that V
†
~λ
(g, `) and V†~λ(g, `) do not agree as twisted D-modules. This issue

does not appear in [39], as the weights there are zero. We refer the reader to [64] for the

computation of the Atiyah algebra of V†~λ(g, `).

3. Energy momentum tensor and the Sugawara construction

In this section, following the discussion in [66] we recall the definition of the Sugawara tensor,
which will be used in defining the connections on the sheaf of covacua and conformal blocks.

For any X ∈ g, the element X ⊗ ξm ∈ ĝ will be denoted by X(m). The energy momentum
tensor T (z) at level ` is defined by the formula

(3.1) T (z) =
1

2(`+ h∨(g))

dim g∑
a=1

:Ja(z)Ja(z): ,

where : : is the normal ordering (cf. [66, p. 467]), h∨(g) is the dual Coxeter number of g, and
{J1, · · · , Jdim g} is an orthonormal basis of g with respect to the normalized Cartan-Killing
form. Also, define

X(z) :=
∑
n∈Z

X(n)z−n−1

for any element X ∈ g. The n-th Virasoro operator Ln is defined by the formula (see [33]):

(3.2) Ln :=
1

2(`+ h∨(g))

∑
m∈Z

dim g∑
a=1

:Ja(m)Ja(n−m): .

The operators Ln act on the module Hλ defined in Section 2.1.

For X ∈ g, f(z) ∈ C((z)) and ` = `(z) ddz , define (as in [66])

X[f ] := Resz=0 (X(z)f(z)) dz, T [`] := Resz=0 (T (z)`(z)) dz.

3.1. Construction of the WZW/TUY connection. Let C be an irreducible smooth pro-
jective curve with n-marked points p = (p1, · · · , pn). For every 1 ≤ i ≤ n, we choose a formal
coordinate ξi around the marked point pi on the curve C. Following [66], let us briefly recall
the construction of a flat projective connection.

Let π : C → S be a versal family of n-pointed stable curves equipped with n non-intersecting
sections pi : S → C. Let D =

∑n
i=1 pi(S) be the corresponding divisor on C. We have a short

exact sequence of sheaves

(3.3) 0 −→ π∗TC/S(∗D) −→ π∗TC,π(∗D) −→ TS −→ 0

on S. On the other hand, we also have the short exact sequence

(3.4) 0 −→ π∗TC/S(∗D) −→
n⊕
i=1

OS [ξ−1
i ]

d

dξi
−→ R1π∗TC/S(−D) −→ 0.

obtained from pushing forward the following short exact sequence

(3.5) 0 −→ TC/S(−D) −→ TC/S(∗D) −→
n⊕
i=1

OS [ξ−1
i ]

d

dξi
−→ 0.
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Since the family of n-pointed curves C is versal, we have the Kodaira-Spencer isomorphism
TS

∼−−→ R1π∗TC/S(−D). Combining (3.3) and (3.4), the following commutative diagram of
homomorphisms is obtained:

(3.6)

0 π∗TC/S(∗D) π∗TC,π(∗D) TS 0

0 π∗TC/S(∗D)
⊕n

i=1 OS [ξ−1
i ] ddξi R1π∗TC/S(−D) 0,

t KS

θ

where t is the projection to the polar part of the Laurent expansion of sections in terms of the
given coordinates ξi around the divisors pi(S). This map t is an isomorphism because the family
C is versal.

Let ~̀ = (l1, · · · , ln) and ~m = (m1, · · · , mn) be two formal vector fields; both li and mi are

defined on a formal neighborhood of pi(S). The Lie bracket [~̀, ~m]d is given by the formula

(3.7) [~̀, ~m]d := [~̀, ~m]0 + θ(~̀)(~m)− θ(~m)(~̀),

where [ , ]0 is the usual Lie bracket of formal vector fields and θ(~̀) acts componentwise using

the formal parameters ξi. Now for any formal vector field ~̀, define the operator D(~̀) on H~λ
by

the formula

(3.8) D(~̀)(F ⊗ |Φ〉) := θ(~̀)(F )⊗ |Φ〉 − F ·

Ñ
n∑
j=1

ρj(T [lj ])

é
|Φ〉,

where ρj is the action on Hλj defined on [66, p. 475].

3.2. WZW/TUY connection. After possibly shrinking S, we can find a symmetric bidiffer-
ential ω on C ×S C with a pole of order two on the diagonal such that the biresidue is 1. For

any formal vector field ~̀ define

aω(~̀) := − cv
12

n∑
i=1

Resξi=0 (`i(ξi)Sω(ξi)dξi) ,

where Sω is the projective connection associated to ω, and cv =
`dim g

`+ h∨(g)
is the central charge.

Now let τ be a vector field on S. Take a lift of τ to π∗TC/S(∗D) and denote it by ~̀. With the
choice of a bidifferential ω as above, we define the following operator on the sheaf of conformal
blocks:

(3.9) ∇(ω)
τ (〈Ψ|) := D(~̀)(〈Ψ|) + aω(~̀)(〈Ψ|).

We recall the following result (see [66, Thm. 5.3.3]).

Proposition 3.1. The operator ∇(ω)
τ in (3.9) defines a flat projective connection on the sheaf

of conformal blocks V
†
~λ
(g, `).

Remark 3.2. Consider the natural forgetful map F : M
′
g,n → Mg,n constructed by forgetting

the choice of formal parameters at the n-marked points. Then the natural identification between
F ∗V~λ(g, `) and V~λ(g, `) as locally free sheaves intertwines, up to a first order operator, the pull-
back of the coordinate free TUY connection on F ∗V~λ(g, `) and the TUY connection on V~λ(g, `).
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4. Projective connections via heat operators

4.1. Heat operators and the Hitchin-van Geemen-de Jong equation. Let π : M → S
be a smooth map of smooth varieties, and let L be a line bundle on M . The Kodaira-Spencer
infinitesimal deformation map is given by:

KSM/S : TS −→ R1π∗TM/S .

On the other hand, we have the coboundary map

µL : π∗ Sym2 TM/S −→ R1π∗TM/S ,

occurring in the long exact sequence obtained from the push forward π∗ of the fundamental
short exact sequence of differential operators

0 −→ TM/S
∼= D

≤1
M/S(L)/OM −→ D

≤2
M/S(L)/OM

s2−→ Sym2 TM/S −→ 0 ,

where s2 is the symbol map and D
≤i
M/S(L) is the sheaf of relative differential operators of order

atmost i. Following [67], consider the sheaf W(L) defined by

(4.1) W(L) := D
≤1
M (L) + D

≤2
M/S(L).

There is a natural short exact sequence

(4.2) 0 −→ D
≤1
M/S(L) −→ W(L)

q0−→ π∗TS ⊕ Sym2 TM/S −→ 0.

Definition 4.1. A heat operator D : π∗TS → W(L) is a section of the natural projection map
W(L) → π∗TS . A projective heat operator is a section of W(L)/OM → π∗TS .

A projective heat operator evidently lifts, locally, to a heat operator. Given a homomorphism
ρ : π∗TS → Sym2 TM/S , one can ask whether there is a canonical projective heat operator
D : π∗TS → W(L)/OM such that q1 ◦ D = ρ. The following theorems of Hitchin [32] and van
Geemen-de Jong [67], answer a fundamental question on existence of projective heat operators.

Theorem 4.2 ([32, 67]). Assume that the following conditions hold:

• KSM/S + µL ◦ ρ = 0;

• ∪[L] : π∗TM/S → R1π∗OM is an isomorphism;
• π∗OM = OS.

Then there exists a unique projective heat operator D lifting any candidate symbol ρ : π∗TS →
Sym2 TM/S. Moreover the coherent sheaf π∗L carries a projective connection.

Remark 4.3. We can take L to be an object in the rational Picard group Pic(M)⊗Q. All the
sheaves that appear in the statement of Theorem 4.2 are well-defined, and the proof in [67] does
not require the assumption that L be a line bundle.

4.2. Heat operators and metaplectic quantization. We are interested in the case where
the Kodaira-Spencer map KSM/S , the candidate symbol ρ : TS → π∗ Sym2 TM/S and the class
of L are intertwined by the equation:

(4.3) KSM/S + ∪[L] ◦ ρ = 0.

We refer to (4.3) as the equation controlling the deformations. Recall that the connecting
homomorphism

µL⊗k : π∗ Sym2 TM/S −→ R1π∗TM/S

is given by the formula (see [4])

(4.4) µL⊗k = ∪
Å

[k · L]− 1

2
[KM/S ]

ã
.
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4.2.1. Rewriting the deformation equation. We will now rewrite (4.3) to produce a projective
heat operator on L. Throughout this subsection we assume that for any positive k ∈ Q, the
connecting homomorphism µL⊗k in (4.4) is an isomorphism. This condition holds, for example,
in the case of moduli spaces of parabolic bundles.

Now

KSM/S + ∪[L] ◦ ρ = KSM/S +
1

k

Å
∪
Å
k[L]− 1

2
KM/S

ã
+ ∪1

2
[KM/S ]

ã
◦ ρ

= KSM/S + µL⊗k ◦
Å

1 + µ−1
L⊗k
◦ (∪1

2
[KM/S ])

ã
◦ 1

k
ρ

= KSM/S + µL⊗k ◦ ρ̃k,

where ρ̃k =
Ä
1 + µ−1

L⊗k
◦
(
∪1

2 [KM/S ]
)ä
◦ 1
kρ is the symbol map. Again assuming that the con-

ditions of Theorem 4.2 are satisfied, we get a projective heat operator D on L with symbol ρ̃k
such that the following diagram commutes

(4.5)

π∗D
≤2
M (L⊗k)

TS π∗ Sym2 TM/S

symb

ρk

This induces a projective connection on π∗L
⊗k for any positive k ∈ Z with symbol ρ̃k

4.2.2. Metaplectic correction d’après Scheinost-Schottenloher. We can rewrite the left-hand side
of (4.3) as follows:

KSM/S + ∪[L] ◦ ρ = KSM/S +
1

k

Å
∪
Å

[k · L] +
1

2
[KM/S ]

ã
− ∪1

2
[KM/S ]

ã
◦ ρ

= KSM/S + µ
L⊗k⊗K

1
2
M/S

◦ ρk,

where ρk := 1
kρ and L⊗k ⊗ K1/2

M/S is considered as an element of the rational Picard group.

Thus, from (4.3) the following equation is obtained:

(4.6) KSM/S + µ
L⊗k⊗K

1
2
M/S

◦ ρk = 0.

Assume that the other conditions of the Hitchin-van Geemen-de Jong existence theorem are

satisfied. Then Theorem 4.2 tells us that there exists a unique projective heat operator D̂k with

symbol ρk and a connection on π∗(L
k ⊗K

1
2

M/S). As pointed out in Remark 4.3, the projective

heat operator makes sense even if the square-root of KM/S does not exist.

It is easy to see that for any candidate symbol, there exists a second order projective operator

D̂ on K
1
2 with the same given symbol. However, this operator is not a projective heat operator,

since the natural projection of it to π∗TS is zero. On the other hand, we have a projective heat
operator D on L⊗k with the same symbol ρ̃k. The following is then a natural question.

Question 4.4. Using the projective heat operator D and the projective operator D̂ with symbol

ρk, can we construct a projective heat operator D̃ on Lk ⊗K
1
2

M/S?

Remark 4.5. Observe that the equations in Theorem 4.2 imply that there exists at most one
heat operator provided

µ
L⊗k⊗K

1
2
M/S

: π∗ Sym2 TM/S −→ R1π∗TM/S
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is an isomorphism. A positive answer to Question 4.4 would immediately imply that the symbol

of D̃ satisfies the equation for ρk given in (4.6). This will provide a necessary relation that the
linear maps ∪[L] and ∪[KM/S ] are scalar multiples of each other. This would give an alternative,
more conceptual understanding of Theorem 4.1 in [19]

5. Parabolic Hitchin symbol as in Biswas-Mukhopadhyay-Wentworth

In this section we first briefly recall the construction of the Hitchin connection for the moduli
space of parabolic bundles Mpar,rs

G,τ obtained in [19]. We refer the reader to Appendices A.1 and
A.3 for a brief review of the moduli stack of parabolic bundles and the parabolic determinant
of cohomology line bundles. We will freely use the correspondence between parabolic G bundles

on a curve C and equivariant (Γ-G)-bundles on a Galois cover “C of the curve C with Galois
group Γ. This is recalled in Appendix A.2.

In particular, we focus on the parabolic Hitchin symbol defined in the paper [19]. Using
restriction to fibers of the Hitchin map, we give a simplification of the expression for the symbol
that enables us to compare the parabolic Hitchin symbol with the symbol of the Sugawara
operators as constructed in [66]. The main result of this section is Proposition 5.6. This is a
key new feature and one of the main technical difficulties in the parabolic set-up that does not
appear in [39].

5.1. The Hitchin symbol. In [19] (recalled in Appendix A.2), we identified the moduli space

Mpar
G,τ of parabolic bundles with the moduli space Mτ ,ss

G of (Γ, G)-bundles on a Galois cover “C
of the curve C via the invariant pushforward functor [5, 6].

This includes the following identifications: Let P be a regularly stable parabolic bundle and

P̂ the corresponding (Γ, G) bundle (see Appendix A.2). Let Par(P) (resp. Spar(P)) denote the
bundle of parabolic (resp. strictly parabolic) automorphisms of P. Then

(5.1) H0(C, Spar(P)⊗KC(D)) ∼= H0(“C, adP⊗K“C)Γ

and

(5.2) H1(C, Par(P)) ∼= H1(“C, adP)Γ.

The Hitchin symbol was defined using the natural map

(5.3) H0(“C, adP⊗K“C)Γ ⊗H1(“C, adP)Γ κg−−−→ H1(“C, K“C)Γ ∼= C;

where the last isomorphism is given by the Serre duality on “C. As in [32, Prop. 2.16], this
induces a natural map

(5.4) ρsym : R1πs∗TC/S(−D) −→ πe∗ Sym2 TMτ ,rs
G /S ,

where πe : Mτ ,rs
G → S and πs : C → S are the projections. On the other hand we also have

the pairing

(5.5)

H0(C, Spar(P)⊗KC(D))⊗H1(C, Par(P))

H1(C, Spar(P)(D)⊗ Par(P)⊗KC) H1(C, KC) ∼= C.
κg

This also induces a map

(5.6) ρ̃sym : R1πs∗TC/S(−D) −→ πe∗ Sym2 TMpar,rs
G,τ /S .
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The isomorphisms H1(C, KC) ∼= C in (5.5) and H1(“C, K“C) ∼= C are both given by the
residue theorem and Serre duality, but for different curves. Hence, the map on Hitchin symbols
ρsym and ρ̃sym do not commute under the identifications given by (5.1) and (5.2). However they
are related as follows:

Lemma 5.1. Let ρsym and ρ̃sym be as above. Then |Γ| · ρsym = ρ̃sym.

Proof. This is immediate from the commutativity of

H1(C,KC) H1(“C, K“C)Γ

C C

∼

×|Γ|

�

5.2. Parabolic Hitchin connection via heat operators. Let φ : G → SL(V ) be a linear
representation satisfying the hypothesis of Section A.3. Let Lφ be the pullback of the deter-
minant of cohomology line bundle to Mτ ,ss

G . Via the identification of parabolic G-bundles as
equivariant bundles and Proposition A.7, we have identified it with the parabolic determinant
of cohomology Detpar(νsl(V )(φ(τ ))). For notational convenience, we will drop φ when denoting
the line bundle Detpar,φ(P, τ ) and simply write Detpar(P, τ ).

In [19], the authors produced a projective heat operator on the line bundle L⊗kφ whose symbol

satisfies the following Hitchin-van Geemen-de Jong equation:

(5.7) KSMpar,rs
G,τ /S + µLkφ

◦
Å

1

mφk
Id +µ−1

Lkφ
◦
Å
∪ 1

2mφk
[KMpar,rs

G,τ /S ]

ãã
◦ ρsym ◦KSC/S = 0.

Setting ρ = ρsym ◦KSC/S gives

(5.8) KSMpar,rs
G,τ /S + µLkφ

◦
Å

Id +µ−1
Lkφ
◦
Å
∪1

2
[KMpar,rs

G,τ /S ]

ãã
◦ 1

mφ · k
ρ = 0,

where k is a rational number.

Let k = `/|Γ|. Using the identification Lφ ∼= (Detpar(P, τ ))
|Γ|
` in Proposition A.7, from (5.8)

we get that

KSMpar,rs
G,τ /S + µ

Detpar(P,τ )⊗K1/2

M
par,ss
G,τ

/S

◦ |Γ|
mφ · `

ρ = 0.

Definition 5.2. For any rational number a, we will denote the projective heat operator on
Det⊗apar,φ(P, τ ) obtained in [19] by D(g, a ·mφ · `).

The following is one of the main results of [19, Theorem 4.1].

Theorem 5.3. Let L be an element of Pic(Mpar,rs
G,τ ) ⊗ Q of level a. Then there is an equal-

ity ∪[L] = ∪a[Det] as linear maps πe∗ Sym2 TMpar,rs
G,τ /S → R1πe∗TMpar,rs

G,τ /S, where Det is the

determinant of cohomology (non-parabolic) line bundle.

Remark 5.4. The above result should be put in the more general context of deformation
theory of the moduli space of the parabolic bundles as studied in Boden-Yokogawa [22], and the
birational variation of these moduli spaces as the weights vary.

Since line bundles on Mpar,rs
G,τ are pull-backs of rational powers of line bundles from Mpar,s

SL(V ),α

for an appropriate choice of representation (φ, V ) of G, the following is an immediate conse-
quence of Theorem 5.3.
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Corollary 5.5. Let M̂G and Mpar,rs
G,τ be as in Section A.3. Let (φ, V ) be a representation of G.

Then the line bundle K
M̂G/S

restricted to Mpar,rs
G,τ is of level −2h∨(g).|Γ|

mφ
with respect to SL(V ),

and hence

∪[KMpar,rs
G,τ /S ] = ∪

[K
M̂G/S

]

|Γ|
as linear maps from π∗ Sym2 TMpar,rs

G,τ /S to R1π∗TMpar,rs
G,τ /S.

Proof. On the one hand, we have the fact from [37] that K
M̂G/S

is −2h∨(g)Lφ, where Lφ is the

ample generator of the Picard group of the moduli stack of SL(V ) bundles on “C, where “C → C
is a Γ-cover. Moreover, Lφ restricted to Mpar,rs

G,τ /S is of level |Γ| (see Appendix A.3). On the

other hand, the canonical bundle KMpar,rs
G,τ /S has a component that is −2h∨(g) times the ample

generator of the Picard group of the moduli stack of G bundles on C, which in turn is of level
1
mφ

with respect to the sl(V ) embedding of g. This proves the result. �

Corollary 5.5 further simplifies the parabolic Hitchin symbol, as shown by the following.

Proposition 5.6. Assume that mφ · `+ h∨(g) 6= 0. Then

(5.9)
1

mφ`

Å
1 + µ−1

Detpar(τ ) ◦
Å

1

2
∪ [KMpar,rs

τ ,G /S ]

ãã
◦ ρ̃sym =

ρ̃sym
mφ · `+ h∨(g)

.

Proof. Since ρ̃sym is invertible, we need to show that

mφ · `+ h∨(g)

mφ · `

Å
1 + µ−1

Detpar(τ )

Å
1

2
∪ [KMpar,rs

~α,SLr
/S ]

ãã
= Id .

So it suffices to prove that

µ−1
Detpar

(τ ) ◦
Å

1

2
∪ [KMpar,rs

G,τ /S ]

ã
=

Å
−1 +

mφ · `
mφ · `+ h∨(g)

ã
Id .

By multiplying with µDetpar(τ ), it suffices to show that

(5.10) ∪ [KMpar,rs
G,τ /S ] =

Å −2h∨(g)

mφ · `+ h∨(g)

ã
µDetpar(τ ).

Now by [37, 38], applied to the moduli space M̂G of principal G bundle on “C, we get that

(5.11) [K
M̂G

] = −2h∨(g).mφ.[Lφ].

By Corollary 5.5,

∪[KMpar,rs
G,τ /S ] = ∪

−2h∨(g)[Lφ]

mφ · |Γ|
= ∪−2h∨(g)

mφ · |Γ|

Å |Γ|[Detpar(τ )]

`

ã
.

Rewriting the above equation, we find

∪mφ · `[KMpar,rs
G,τ /S ] = ∪

Å−2h∨(g) ·mφ · `
|Γ| ·mφ

ã |Γ|[Detpar(τ )]

`
,

∪
mφ · `

mφ · `+ h∨(g)
[KMpar

G,τ /S
] =

Å
∪ 1

mφ · `+ h∨(g)

(
−2h∨(g)[Detpar]

)ã
,

∪[KMpar,rs
G,τ /S ] =

Å
∪ −2h∨(g)

mφ · `+ h∨(g)

Å
[Detpar(τ )]− 1

2
[KMpar,rs

τ ,G /S ]

ãã
,

∪1

2
[KMpar

τ ,G/S
] =

Å −h∨(g)

mφ · `+ h∨(g)

ã
· µDetpar(τ ) (from (4.4)) .
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This completes the proof. �

6. Proof of Theorem 1.1

In this section, we give a proof of the main theorem in this article by comparing the Sugawara
tensor and the parabolic analog of the heat operator with a given symbol constructed by the
authors in [19].

Let ParrsG (C,p, τ ) be the open substack parametrizing regularly stable parabolic bundles of
parabolic type τ . Then the natural map ParrsG (C,p, τ ) → Mpar,rs

G,τ (C,p) is a gerbe banded by

the center Z(G) of the group G.

Similarly, let Qrsτ be the open ind-subscheme of Qτ parametrizing the regularly stable bundles.
The natural map πreg given by the composition

πreg : Qrsτ −→ ParrsG (τ ) −→ Mpar,rs
G,τ

is a LC′,G/Z(G) torsor which is étale locally trivial. Here, LC′,G is the loop group associated to
a punctured curve.

6.1. Twisted D-modules via quasi-section of Drinfeld-Simpson. Let πs : C → S be
a versal family of n-pointed smooth curves of genus g. We choose formal coordinates ξ =
(ξ1, · · · , ξn) along the sections p.

Let τ = (τ1, · · · , τn) be as in Section B.1, and let Qτi be the affine flag variety associated
to τi. The above choice of coordinates gives an identification of Qτ with

∏n
i=1 LG/Pτi . By the

discussion in [9, Secs. 5.2.9-5.2.12], the infinitesimal action, of the central extension L̂G of the
loop group, on Qτi gives a map

U(ĝξi)
opp −→ H0(Qτi , DQτi/S

(L~λ
)).

Here DQτi/S
(Lλi) is the ring of relative Lλi-twisted differential operators on Qτi , and U(ĝξi) is

a suitable completion of the universal enveloping algebra of ĝξi , and U(ĝξi)
opp is the opposite

algebra. Summing over all the coordinates, we get a map

(6.1)

n⊕
i=1

(
U(ĝξi)

opp
)
−→ H0(Qτ , DQτ /S(L~λ

))

which via further restriction gives a map
⊕n

i=1

(
U(ĝξi)

opp
)
→ H0(Qrsτ , DQτ /S(L~λ

)). Both sides
of (6.1) carry natural filtrations and the map in (6.1) is a map of filtered sheaves of algebras.

As in [39], we consider a quasi-section of πrs. The result of [24] implies that the natural étale

locally trivial torsor πrs : Qrsτ → M rs
G,τ has a quasi-section Npar,rs

G,τ
r−−→ Mpar,rs

G,τ such that r is

an étale epimorphism, and there is a map σ : Npar,rs
G,τ → Qrsτ such that the following diagram

commutes

(6.2)

Qrsτ

Npar,rs
G,τ Mpar,rs

G,τ

S

πrs

r

σ

πe

Now since the map r is étale, we get an isomorphism

H0(Npar,rs
G,τ , r∗TMpar,rs

G,τ /S) = H0(Npar,rs
G,τ , TNpar,rs

G,τ /S).
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Given any relative differential operator D on the line bundle L~λ
, we can pull it back via σ

(see Section 8.1 and 8.7 in [39]) to a differential operator on the line bundle σ∗L~λ
which, by an

abuse of notation, is again denote by L~λ
. Thus, (6.1) gives the following map of filtered sheaves

of algebras

(6.3) ~L~λ
:

n⊕
i=1

(
U(ĝξi)

opp
)
−→ H0(Npar,rs

G,τ , DNpar,rs
G,τ /S(L~λ

)).

The sheaf of Lie algebras
⊕n

i=1

(
U(ĝξi)

opp
)

carries a natural PBW filtration and we let(⊕n
i=1

(
U(ĝξi)

opp
))≤m

be the m-th part of the filtration. Then the following diagram is com-
mutative
(6.4)

H0(Npar,rs
G,τ ,D≤m

Npar,rs
G,τ /S

(L~λ
))

(⊕n
i=1

(
U(ĝξi)

opp
))≤m

H0(Npar,rs
G,τ , Symm TNpar,rs

G,τ /S)

H0(Npar,rs
G,τ ,D≤m

Npar,rs
G,τ /S

(ONpar,rs
G,τ

))

symb≤m
~≤mL~λ

~≤m
O symb≤m

where symb≤m denotes the principal m-th order symbol map of a differential operator.

6.2. Projective heat operator from Sugawara. We now give a local description of the map
~L~λ

. Let P be a regularly stable parabolic G-bundle in the moduli space of parabolic bundles

of parabolic weights ~λ on a curve C with parabolic structure over p. We consider it as a point
in Npar,rs

G,τ . The tangent space at P is given by H1(C, Par(P)), where Par(P) is the sheaf of Lie

algebras given by parabolic endomorphisms of the bundle P.

Let Pi ⊂ G be the parabolic subgroup determined by the weight λi attached to the point
pi ∈ p, and let pi be the corresponding Lie algebra. We denote by p−i the opposite parabolic

and by n−i the nilpotent radical of p−i . We have a short exact sequence of sheaves

(6.5) 0 −→ Par(P) −→ Par(P)

(
n∑
i=1

mipi

)
−→

n⊕
i=1

Ñ
n−i ⊕

mi⊕
j=1

g⊗ ξji

é
−→ 0,

where m1, · · · , mn are nonnegative integers. Taking the long exact sequence of cohomologies
associated to (6.5), we get a homomorphism

(6.6)
n⊕
i=1

(
n−i ⊕ g⊗ C[ξ−1

i ]ξ−1
i

)
−→ H1(C, Par(P)).

Combining this with the natural projection g⊗C((ξi)) → n−i ⊕g⊗C[ξ−1
i ]ξ−1

i for each 1 ≤ i ≤ n,
we get a homomorphism

(6.7) ρi : g⊗ C((ξi)) −→ n−i ⊕ g⊗ C[ξ−1
i ]ξ−1

i −→ H1(C, Par(P)).

The composition of maps ρi in (6.7) is the local description of ~O (defined in (6.3))

(6.8)
(
U(ĝpi)

opp
)⊕n −→ H0(Npar,rs

G,τ , DNpar,rs
G,τ /S(O)).
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The operator D(~̀) defined in (3.8) gives a relative second order differential operator D on
Npar,rs
G,τ which acts on the i-th factor by (T [li]) (see (3.3) and (6.7)). Thus we have the following

diagram

(6.9)

⊕n
i=1 OS((ξi))

d
dξi

H0(Npar,rs
G,τ , D≤2

Npar,rs
G,τ /S

(L~λ
))

H0(S, TS).

D

θ

We can realize D as a projective heat operator by taking a lift of a vector field on S to an
element of

⊕n
i=1 OS((ξi))

d
dξi

. Now as described in the previous section, the difference between

two lifts can be understood as a OS-module homomorphism aω. Thus the map D descends to a
projective heat operator, and we will also denote the descended operator by D. In the rest of
this section we show that the symbol of D is the Hitchin symbol ρ̃sym, which will complete the
proof of Theorem 1.1.

6.3. The parabolic duality pairing and the Hitchin symbol. Recall that the Cartan-
Killing form induces a nondegenerate bilinear form between the sheaves

κg : Spar(P)(D)⊗ Par(P) −→ OC .

Let Dpi be a formal disc around each marked point pi in C, and let C∗ = C\{p1, · · · , pn} be
the complement. Consider the following open covering:

C = C∗ ∪ (tni=1Dpi) .

A section of Spar(P) restricted to Dpi consists of an element of g ⊗ C[[ξi]] whose image under
the natural evaluation map

evpi : g⊗ C[[ξi]] −→ g

is contained in the nilradical ni of the parabolic subalgebra pi. Similarly, Par(P) consists of
sections whose restriction to any formal discDpi has the property that the image of the evaluation
map is in pi.

Let {P i} be a Čech cocycle representative in
∏n
i=1

(
Par(P)(D∗pi)

)
of a cohomology class of

H1(C, Par(P)) with respect to the covering C = C∗ ∪ (tDpi). Here we have P i ∈ g⊗C((ξi)),
under a trivialization of P restricted to Dpi . Similarly we let {φidξi} ∈ g ⊗ C((ξi))dξi denote
the restriction of an element of H0(C, Spar(P)⊗KC(D)) to tD∗pi .

The natural pairing in (5.5) takes the form

H0(C, Spar(P)⊗KC(D))⊗H1(C, Par(P)) −→ C(6.10)

{φidξi} × {P i} 7−→
n∑
i=1

Resξi=0 κg(φi, P i)dξi.(6.11)

Now consider a Čech representative ~̀ = {li} ∈ ⊕ni=1C((ξi))
d
dξi

of a cohomology class in

H1(C, TC(−D)). Let φ be a global section of the sheaf Spar(P) ⊗ KC(D). For each i, we
have

li =

∞∑
m=−mi

li,mξ
m+1
i

d

dξi
,

and φ restricted to D∗pi is of the form

φidξi =
∑
m∈Z

Xi,mξ
−m−1
i dξi ∈ g⊗ C((ξi))dξi.
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Since the diagram in (6.4) commutes, we can evaluate the symbol of D by computing the
following:

〈φ⊗ φ,
n∑
i=1

T [li]〉 =

n∑
i=1

〈φi ⊗ φidξ2
i ,

∞∑
m=−mi

li,mLm〉

=
n∑
i=1

∞∑
m=−mi

li,m〈φi ⊗ φidξ2
i , Lm〉

=
n∑
i=1

∞∑
m=−mi

li,m〈φi ⊗ φidξ2
i ,

1

2(`+ h∨(g))

∑
k∈Z

dim g∑
a=1

:Ja(k)Ja(m− k):〉.

Now if li = ξni+1
i

d
dξi

, we get that

〈φ⊗ φ,
n∑
i=1

T [ξni+1
i

d

dξi
]〉 =

n∑
i=1

〈φi ⊗ φidξ2
i , Lni〉

=
1

2(`+ h∨(g))

n∑
i=1

∑
k∈Z

dim g∑
a=1

〈φi ⊗ φidξ2
i , :Ja(k)Ja(ni − k):〉.

If ni 6= 0, then we get that

〈φi ⊗ φidξ2
i , Lni〉 =

1

2(`+ h∨(g))

∑
k∈Z

dim g∑
a=1

〈φi ⊗ φidξ2
i , J

a(k)Ja(ni − k)〉

=
1

2(`+ h∨(g))

∑
k∈Z

dim g∑
a=1

Resξi=0〈φi, Ja(k)〉dξi.Resξi=0〈φi, Ja(ni − k)〉dξi

=
1

2(`+ h∨(g))

∑
k∈Z

dim g∑
a=1

(∑
m∈Z

Resξi=0 κg(Xi,m, J
a)ξk−m−1dξi

)

×

(∑
m∈Z

Resξi=0 κg(Xi,m, J
a)ξni−k−m−1dξi

)

=
1

2(`+ h∨(g))

∑
k∈Z

dim g∑
a=1

κg(Xi,k, J
a)κg(Xi,ni−k, J

a)

=
1

2(`+ h∨(g))

∑
k∈Z

κg(Xi,k, Xi,ni−k).

The zero-th Virasoro operator L0 can be rewritten without normal ordering as follows:

L0 =
1

2(`+ h∨(g))

dim g∑
a=1

JaJa +
1

(`+ h∨(g))

∞∑
k=1

Ja(−k)Ja(k).

Thus we get the following:

〈φi ⊗ φidξ2
i , L0〉

=
1

2(`+ h∨(g))

dim g∑
a=1

〈φi ⊗ φidξ2
i , J

aJa〉+
1

(`+ h∨(g))

∞∑
k=1

〈φiφidξ2
i , J

a(−k)Ja(k)〉
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=
1

2(`+ h∨(g))

dim g∑
a=1

(∑
m∈Z

Resξi=0 κg(Xi,m, J
a)ξ−m−1

i dξi

)2

+
1

(`+ h∨(g))

∞∑
k=1

dim g∑
a=1

((∑
m∈Z

Resξi=0 κg(Xi,m, J
a)ξ−k−m−1

i dξi

)

×

(∑
m∈Z

Resξi=0 κg(Xi,m, J
a)ξk−m−1

i dξi

))

=
1

2(`+ h∨(g))

dim g∑
a=1

κg(Xi,0, J
a)κg(Xi,0, J

a).

+
1

(`+ h∨(g))

∞∑
k=1

dim g∑
a=1

κg(Xi,−k, J
a)κg(Xi,k, J

a)

=
1

2(`+ h∨(g))
κg(Xi,0, Xi,0) +

1

2(`+ h∨(g))

∑
k∈Z\{0}

κg(Xi,−k, Xi,k)

=
1

2(`+ h∨(g))

∑
k∈Z

κg(Xi,k, Xi,−k).

We summarize the above calculations in the following proposition.

Proposition 6.1. For any 1 ≤ i 6= n, and for any mi ∈ Z,

〈φi ⊗ φidξ2
i , Lmi〉 =

1

2(`+ h∨(g))

∑
k∈Z

κg(Xi,k, Xi,mi−k).

6.4. Proof of the Main theorem (Theorem 1.1). Recall that the product

H1(C, TC(−D))⊗H0(C, SPar(P)⊗KC(D)) −→ H1(C, ParP)

induces a homomorphism

(6.12) ρ̃sym : R1πn∗TXparG /Mpar,rs
G,τ

(−D) −→ πn∗ Sym2 TMpar,rs
G,τ /S .

Consider the Čech cover of C given by C = C∗ ∪ (tni=1Dpi). In particular, given any Čech

cohomology class {ξni+1
i

d
dξi
} in H1(C, TC(−D)), using Serre duality and the identification of

SPar(P)(D) with Par(P)∨, we get a symmetric bilinear form on H0(C, SPar(P)⊗KC(D)).

As in the previous section, consider a section φ ∈ H0(C, SPar(P) ⊗KC(D). For each i, the
section φ restricted to D∗pi is of the form

φidξi =
∑
m∈Z

Xi,mξ
−m−1
i dξi ∈ g⊗ C((ξi))dξi.

Thus evaluating a cocycle class {ξni+1
i

d
dξi
} against a section φ written in the Čech cover as

{φidξi}, we get that

{ξni+1
i

d

dξi
}(φ) := Resξi=0 κg(φidξi ⊗ 〈ξni+1

i

d

dξi
, φidξi〉)

= Resξi=0 κg(φidξi,
∑
m∈Z

Xi,mξ
ni−m
i )

= Resξi=0 κg(
∑
k∈Z

Xi,kξ
−k−1
i ,

∑
m∈Z

Xi,mξ
ni−m
i )dξi
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=
∑
k∈Z

κg(Xi,k, Xi,ni−k).

We summarize the discussion in this subsection in the following proposition which completes
the proof the Theorem 1.1.

Proposition 6.2. Let a be any rational number and φ be a faithful representation with Dynkin

index mφ. Then the symbol of the projective heat operator D acting on L
⊗a.mφ
~λ

∼= Det⊗apar,φ(τ )

constructed from the Sugawara tensor and uniformization (see Section 6.2) coincides with

1

2(a ·mφ · `+ h∨(g))
ρ̃sym.

Hence, the projective heat operator D and the projective heat operator constructed in [19] via
(5.2) coincide.

Remark 6.3. If a square-root of KMpar,s
SLr,α

/S exists, then it follows that the push-forward of the

line bundle Detpar(α)⊗K
1
2

Mpar,s
SLr,α

/S
produces conformal blocks of level `−h∨(sl(r)), where h∨(g)

is the dual Coxeter number of a Lie algebra g. From the calculations in this section, and the fact
that the tangent and cotangent spaces of the moduli space Mpar,s

SLr,α
are only dependent on the

flag type of α, it follows that the symbol ρsym/` equals the symbol of the differential operator
that induces the TUY connection. However, it should be mentioned that even if KMpar,s

SLr,α
/S has

a square-root, the pushforward π∗

Å
Detpar(α)⊗K

1
2

Mpar,s
SLr,α

/S

ã
may not have any sections.

7. Geometrization of the KZ equation on invariants

In this section, we show a geometric construction of the Knizhnik-Zamolodchikov connection
(KZ). This question was suggested to us by Professor P. Belkale. Let us first recall the classical
construction of the KZ connection [34].

7.1. KZ connection. Let g be a fixed semisimple Lie algebra, and let ~λ = (λ1, · · · , λn) be
an n-tuple of highest weights. Consider the vector space of invariants of tensor product of
representations

A~λ(g) := Homg(Vλ1 ⊗ · · · ⊗ Vλn ,C).

The space of invariants sits inside the zero weight space (Vλ1 ⊗ · · · ⊗ Vλn)∗0 of the dual of the
tensor product of representations.

Let Xn = {z = (z1, · · · , zn) ∈ Cn | zi 6= zj}, and consider the trivial vector bundle A~λ
on the configuration space of points Xn whose fiber is A~λ(g). It is well known [29, 28, 66] that

the space of conformal blocks V†~λ
(C, g, `,z) on P1 = Ct{∞} with n marked points (z1, · · · , zn)

for g at level ` and weights ~λ injects into A~λ(g):

(7.1) ι : V
†
~λ
(P1, g, `,z) ↪→ A~λ(g).

This map is actually an isomorphism for ` � 0. Specific bounds for ` are given in Belkale-
Gibney-Mukhopadhyay ([14, 15]).

As in Section 3, consider an orthonormal basis J1, · · · , Jdim g of the Lie algebra g for the

normalized Cartan-Killing form. Define the Casimir operator Ω =
∑dim g

a=1 JaJa. For pairs of
integers 1 ≤ i 6= j ≤ n, and vectors v1 ⊗ · · · ⊗ vn ∈ Vλ1 ⊗ · · · ⊗ Vλn , let

Ωi,j(v1 ⊗ · · · ⊗ vn) :=

dim g∑
a=1

v1 ⊗ · · · ⊗ Javi ⊗ · · · ⊗ Javj ⊗ · · · ⊗ vn.
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For any complex number κ 6= 0, the formula

(7.2)

Å
∇(κ)

∂
∂zi

(f ⊗ 〈Ψ|
ã

(|Φ〉) :=
∂f

∂zi
〈Ψ|Φ〉 − f

κ

∑
j 6=i

〈Ψ|Ωi,j(φ)〉
zi − zj

,

defines a flat connection on (Vλ1 ⊗ · · · ⊗ Vλn)∗0 ⊗OXn over Xn that preserves the subbundle A~λ.
Hence, its monodromy gives a representation of the pure braid group π1(Xn, z).

In this discussion, we restrict ourselves to the case where κ = `+ h∨(g), and κg(λi, θg) < 1

for all i. In this case it is known that the connection ∇(`+h∨(g)) preserves the bundle V
†
~λ
(g, `) of

conformal blocks and it is equal to the TUY/WZW connection [28, 29, 66].

7.2. Invariants as global sections. As in Section A.1 consider the moduli stack of quasi-

parabolic bundles ParG(P1, z, τ ) of local type τ on P1, where τ and ~λ are related by the
usual exponential map as before. Consider the open substack ParcG(P1, z, τ) of ParG(P1, z, τ )
parametrizing quasi-parabolic bundle on P1 whose underlying bundle is trivial. By construction,
we have an isomorphism of ParcG(P1, z, τ ) with the quotient stack

(7.3) [(G/P1 × · · · ×G/Pn) /G],

where P1, · · · , Pn are the parabolics determined by τ1, · · · , τn and G acts diagonally on the
product of partial flag varieties.

Let L~λ
be the Borel-Weil-Bott line bundle on ParG(P1, z, τ ), and consider the restriction of

L~λ
to ParcG(P1, z, τ ). We get a natural map

(7.4) H0(ParG(P1, z, τ ), L~λ
) −→ H0(ParcG(P1, z, τ ), L~λ

).

Now the restriction of L~λ
to [(G/P1 × · · · ×G/Pn) /G] is Lλ1 � · · · � Lλn , where the Lλi are

the natural homogeneous line bundles on G/Pi determined by the weights λi. Moreover, by
the Borel-Weil theorem, we have H0(G/Pi, Lλi) = V ∗λi . Thus, from the restriction we get the
natural commutative diagram
(7.5)

H0(ParG(P1, z, τ ),L~λ
) H0(ParcG(P1, z, τ ),L~λ

)
(⊗n

i=1H
0(G/Pi, Lλi)

)g
V
†
~λ
(P1, g, `,z) Homg(Vλ1 ⊗ · · · ⊗ Vλn ,C)

(
V ∗λ1
⊗ · · · ⊗ V ∗λn

)g
.

∼=

res

∼= ∼=

ι

Here the left vertical isomorphism is due to Laszlo-Sorger [40]; the diagram was used in [14].
Now it follows that the complement of ParcG(P1, z, τ ) in ParG(P1, z, τ ) is just the ordinary theta
divisor.

7.3. Differential operators. Recall the notion of a good stack from Beilinson-Drinfeld [9]: an
equidimensional algebraic stack Y over complex numbers is good if the dimension of Y is half
the dimension of the cotangent stack T∨Y . Let Ysm be the smooth topology of Y. For any object
S ∈ Ysm and a smooth 1-morphism πS ∈ Y, we have the exact sequence

TS/Y −→ TS −→ π∗STY −→ 0.

Consider the sheaf of differential operators DS on S and the left ideal I = DSTS/Y ⊂ DS .
Set DY(S) := DS/I,. This DY is an OY module along with a natural filtration such that
SymTY

∼= grDY. The above also works for differential operators twisted by a line bundle.

Since the nilpotent cone of the moduli space of parabolic Higgs bundles is isotropic of exactly
half the dimension [7, 26, 41], it follows that the stack ParG(P1, z, τ ) is good. Moreover, since
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both ParcG(P1, z, τ ) and ParrsG (P1, z, τ ) are quotients of a smooth scheme by a reductive group,
they are also good.

Now we know that the line bundle L~λ
descends to a line bundle on ParG(P1, z, τ ). The

construction of the projective heat operator (cf. Definition 5.2) with symbol (5.2) gives a second
order differential operator D on L~λ

over the moduli stack ParrsG (P1, z, τ ). Since the sheaf

D≤2(L~λ
) is coherent and ParrsG (P1, z, τ ) has complement of dimension at least two (provided τ

satisfies the conditions in the statement of Theorem B.1) applying Hartogs theorem, we get a
differential operator on L~λ

over the entire stack ParG(P1, z, τ), which we will still denote by D.

Recall that via the uniformization theorem and the Sugawara construction, we have a degree
two differential operator D on L~λ

, which by Theorem 1.1 agrees with D. Since the Sugawara

construction restricted to the open substack ParcG(P1, z, τ ) induces the KZ connection, we have
the following corollary obtained by restricting D to ParcG(P1, z, τ ).

Corollary 7.1. Let πc : ParcG(τ ) → Xn be the relative open substack of quasi-parabolic bundles
whose underlying bundle is trivial. Then the heat operator D induces a flat connection on the
vector bundle πc∗L~λ

over Xn whose fiber at a point z is H0(ParcG(C, z, τ ),L~λ
). Moreover, the

natural identification of πc∗L~λ
with A~λ is flat for the geometric connection on πc∗L~λ

and the
Knizhnik-Zamolodchikov connection on A~λ.

Appendix A. Moduli spaces of parabolic bundles

In this section, we briefly recall the basic notion of parabolic bundles and the natural line
bundles on their moduli spaces.

Let C,p be as in Section 3.1. Let E be a vector bundles on C. A quasi-parabolic structure on
E at a point p ∈ p is a strictly decreasing flag

Ep = F 1Ep ⊃ F 2Ep · · · ⊃ · · · ⊃ F kpEp ⊃ F kp+1Ex = 0.

of linear subspaces in Ep. The above integer kp is the length of the flag at p, and the tuple

(r1(F •Ep), · · · , rkp(F •Ep))

records the jumps in the dimension of the subspaces and is defined by

rj(F
•Ep) := dimF jEp − dimF j+1Ep.

A parabolic structure on E at p is a quasi-parabolic structure as above together with a sequence
of rational numbers

0 ≤ α1 < α2 < · · · < αkp < 1

known as the weights. A parabolic bundle (E, α, r) on C with parabolic divisor p is a vector
bundle E on C along with parabolic structure over the points in p. Using the weights α, the
parabolic degree of E is defined to be

pdeg(E) := deg(E) +

n∑
i=1

kpi∑
j=1

rj(F
•(Epi))αj(F

•(Epi)).

Stable and semistable parabolic bundles are defined using the parabolic degree (see [43]). Mehta
and Seshadri constructed the moduli space Mpar

α of semistable parabolic bundles [43].

We now discuss some natural ample line bundles on Mpar
α , following [20]. Let α be a fixed

set of weights for fixed flag type r, and let (E, α, r) be a parabolic bundle on (C, p). Define
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the parabolic Euler characteristic

χp(E) := χ(E)−
n∑
i=1

kpi∑
j=1

rj(F
•(Epi))αj(F

•(Epi)).

Let E be a family of parabolic bundles on C, parametrized by a scheme T , of rank r, weight
α and flag type r. For each point pi, we have a string of rational numbers

αpi = (0 ≤ α1(pi) < · · · < αj(pi) < · · · < αkpi (pi) < 1)

which are the parabolic weights. Observe that the parabolic Euler characteristic χp remains
constant in a connected family.

Let ` be the least common multiple of all denominators of all the rational numbers appearing
in α.

Definition A.1. The parabolic determinant bundle of level ` on Mpar
α is the element of the

rational Picard group Pic(T )Q given by
(A.1)

ParDet(E,α) := Det(E)`
⊗Ö

n⊗
i=1

Ñ
kpi⊗
j=1

det Grj F•,pi(E|T×pi)

é`.αj(pi)
è
⊗
(
detE|T×p0

) `.χp(E)

r ,

where p0 is a fixed point of C, and Grj denotes the j-th graded piece of the filtration F•,pi on
E|T×pi (cf. [20, Prop. 4.5]).

Let Mpar,ss
SLr,α

be the moduli space of semistable parabolic SLr bundles or equivalently parabolic

bundles with trivialized determinant. Then ParDet(E,α) descends to a line bundle on Mpar,ss
SLr,α

,

which will be denoted by Detpar(α).

A.1. Parabolic G bundles. We shall follow the notation in [19, App. A] and refer the reader
there for more details. Consider the fundamental alcove Φ0, and let τ = (τ1, · · · , τn) be a
choice of n-tuple of weights in Φ0 which will be referred to as parabolic weights.

Definition A.2. Let G be a connected complex reductive group. A parabolic structure on a
principal G–bundle E → C with parabolic structures at the points p = (p1, · · · , pn) is a choice
of parabolic weights τ along with a section σi of the homogeneous space Epi/P (τi), for each
1 ≤ i ≤ n, where P (τi) is the standard parabolic associated to τi. Throughout this paper we
will assume that θg(τi) < 1 for all 1 ≤ i ≤ n.

We observe that when G = GLr, the associated bundle constructed via the standard represen-
tation of GLr recovers the notion of parabolic bundles and parabolic weights as in the beginning
of the present section. The notions of stability and semistability for parabolic G-bundles appear
in the work of Bhosle-Ramanathan [16]; for G = GLr they coincide with the notions of stable
and semistable parabolic vector bundles.

Let τ be an n-tuple of parabolic weights in the interior of the Weyl alcove of G. The
corresponding moduli space Mpar,ss

G,τ (respectively, Mpar,s
G,τ ) of semistable (respectively, stable)

parabolic G-bundles was constructed in [5]. These moduli spaces are normal irreducible quasi-
projective varieties. The smooth locus of Mpar,ss

G,τ is denoted by Mpar,rs
G,τ and it parametrizes

regularly stable parabolic bundles [18] or equivalently stable parabolic bundles with minimal
automorphisms.

Let ι : G → G′ be an embedding of connected semisimple groups. This homomorphism
ι produces a map Mpar,ss

G,τ → Mpar,ss
G′,τ ′ which is a finite morphism. The weights τ ′ and τ are
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related by ι. This plays a key role in construction of the moduli spaces. In fact, choosing an
appropriate representation of the group G, one can reduce the question of construction to the
corresponding question on parabolic vector bundles.

Remark A.3. Let C → S be a family of smooth curves with n disjoint sections. We will denote
the corresponding semistable and regularly stable moduli spaces also by Mpar,ss

G,τ and Mpar,rs
G,τ

respectively. When there is a scope of confusion, for any n-pointed smooth curve (C, p), we will
use the notation Mpar,ss

G,τ (C, p) and Mpar,rs
G,τ (C, p) respectively.

A.2. Parabolic bundles as equivariant bundles. We now discuss parabolic bundles from
the point of view of equivariant bundles. We refer the reader to [6], [17], [57], and [19, App.
B] for more details. This was used in [19] to construct a Hitchin type connection for parabolic
bundles and it will be crucial here as well.

Definition A.4. Let p : “C → C be a Galois cover of curves with Galois group Γ. A (Γ, G)-

bundle is a principal G-bundle “E on “C together with a lift of the action of Γ on “E as bundle

automorphism that commutes with the action of G on “E.

Assume that the map p : “C → C is ramified over pi ∈ C, 1 ≤ i ≤ n. Let Γqi ⊂ Γ = Gal(p)
be the isotropy subgroup for some qi over pi. A (Γ, G)–bundle on a formal disc around qi is
uniquely determined by the conjugacy class of a homomorphism ρi : Γqi → G given by the
action of Γqi on the fiber of the principal G–bundle over the point qi (see [6, 63]). Fix a generator
γi of the cyclic group Γqi . Now consider a string of parabolic weights τ = (τ1, · · · , τn) such
that ρi(γi) is conjugate to τi for each 1 ≤ i ≤ n. We will refer to this τ as the local type of a
(Γ, G)–bundle.

The notions of stability and semistability for (Γ, G)–bundles are similar to those for the
usual principal G-bundles; more precisely, the inequality is checked only for the Γ equivariant
reductions of the structure group to a parabolic subgroup of G ([5, 51]). Let Mτ ,ss

G (respectively,
Mτ ,s
G ) denote the moduli spaces of semistable (respectively, stable) (Γ, G) bundles of local type

τ .

Recall the isomorphism νg : g∨ ∼−−→ g from the Killing form. Given a string of parabolic
weights τ = (τ1, · · · , τn), choose a minimal integer ` such that exp

(
2π
√
−1 (` · νg(τi))

)
= 1.

Then by [46, 56], we can find a ramified Galois cover p : “C → C with ramification exactly
over n-points {pi}ni=1 whose isotropy at any ramification point is a cyclic group of order `. From
now on we will restrict ourselves only to such Galois covers. The following theorem is due to
[5, 6, 17].

Theorem A.5. Consider the moduli stack BunτΓ,G(“C) of (Γ, G)–bundles of fixed local type

τ . The invariant direct image functor identifies the stack BunτΓ,G(“C) with the moduli stack

ParG(C,p, τ ) of quasi-parabolic bundles of flag type τ . Moreover, the invariant push-forward
functor also induces an isomorphism between the moduli spaces Mpar,ss

G,τ (respectively, Mpar,s
G,τ )

and Mτ ,ss
G (respectively, Mτ ,s

G ).

A.3. Parabolic determinants as equivariant determinants. Consider the moduli space

Mτ ,ss
G of (Γ, G) bundles associated to a Galois cover p : “C → C with Galois group Γ. Let

M̂G be the moduli space of semistable principal G-bundles on the curve “C. There is a natural

forgetful map Mpar,ss
G,τ → M̂G that simply forgets the action of Γ.

Given a representation φ : G → SLr, consider the associated morphism φ : M̂G → M̂SLr

between the corresponding moduli spaces. Let L be the determinant of cohomology line bundle
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on M̂SLr . Let

Lφ := φ
∗
L

be its pullback to M̂G. If G = SLr, then φ can be taken to be the standard representation. Now
Theorem A.5 realizes the moduli space Mpar,ss

G,τ of parabolic bundles as a moduli space Mτ ,ss
G of

(Γ, G)–bundles on “C, which maps further into M̂G by forgetting the action of Γ. Thus using
the identification between Mτ ,ss

G and Mpar,ss
G,τ , we get a natural line bundle Lφ on Mpar,ss

G,τ .

On the other hand, using the parabolic determinant of cohomology, one can construct natural
line bundles on Mpar,ss

G,τ as follows:

Let τ = (τ1, · · · , τn) be a string of parabolic weights such that θg(τi) < 1 for all 1 ≤ i ≤ n.
Take a faithful representation (φ, V ) of the group G satisfying the following condition:

• The local type φ(τ ) = (φ(τ1), · · · , φ(τn)) is rational, and θsl(V )(φ(τi)) < 1.

Here, θg and θsl(V ) are the highest roots of the Lie algebras g and sl(V ), respectively. We now
recall the definition of the parabolic determinant of cohomology for G–bundles.

Definition A.6. Let E be a family of parabolic G–bundles on a curve C with n-marked points,
and let φ : G → SL(V ) be a faithful representation. Then the parabolic G-determinant bundle
Detpar,φ(τ ) with weight τ is defined to be the line bundle Detpar(νsl(V )(φ(τ ))).

The following is recalled from [20].

Proposition A.7. Let ` be the order of the stabilizer at each ramification point of the Galois

cover p : “C → C with Galois group Γ, then under the isomorphism in Theorem A.5, the
parabolic determinant of cohomology is related to Lφ by the formula

Lφ ∼= (Detpar,φ(τ ))
|Γ|
` ,

where the Γ cover “C is determined by the parabolic weight data νsl(V )(φ(τ)).

Appendix B. Uniformization of moduli spaces and conformal blocks

In this section, following the work of Belkale-Fakhruddin [12], Laszlo [39], and Laszlo-Sorger
[40], we discuss the universal isomorphism between the sections of the parabolic determinant of
cohomology bundle and the spaces of conformal blocks. If (C, ~p) is a fixed smooth n-pointed
curve, this identification is due to Beauville-Laszlo [8] (G = SLr and n = 0), Faltings [27],
Kumar-Narasimhan-Ramanathan [37] (for n = 0), Pauly [49] (for G = SLr) and Laszlo-Sorger
[40]. The result has been extended to nodal curves by Belkale-Fakhruddin [12]. All of the results
use a key uniformization theorem of Harder [31] and Drinfeld-Simpson [24] in the smooth case
and its generalization in [12, 13] for the nodal case. We mostly follow the discussion in [12, Sec.
6].

B.1. The line bundle on the universal moduli stack. Consider the moduli stack Mg,n

parametrizing smooth n-pointed curves of genus g. Recall from Section A.1 that given a tuple
τ = (τ1, · · · , τn) in the fundamental Weyl alcove Φ of a simple Lie algebra g, we have the moduli
stack ParG(C,p, τ ) of quasi-parabolic G bundles of type τ on a smooth curve C. This construc-
tion for families of smooth n-pointed curves gives relative moduli stacks πe : ParG(τ ) → Mg,n

such that for any smooth curve (C, ~p) we have π−1
e (C,p) = ParG(C,p, τ ). Throughout this

discussion, it is assumed that θg(τi) < 1 for all 1 ≤ i ≤ n.

Following [12] and [39], we construct a line bundle L~λ
→ ParG(τ ), such that π∗L~λ

= V∗~λ(g, `),

where ~λ and ` are related to τ by the exponential map. The construction in [12] extends to the
stable nodal curves.
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B.1.1. The relative affine flag varieties. Let C → S be a family of smooth n-pointed curves,
and let S = SpecR. Consider the affine curve C′ = C−tni=1pi(S). Let CA = C×R Spec(A) for

an R algebra A and similarly define C′A. Let ĈA denote the completion of CA along the sections

p. The sections p induce sections of ĈA, and Ĉ′A denotes its complement.

Consider the following:

(1) LC′,G(A) = Mork(C
′
A, G).

(2) LG(A) = G(Γ(Ĉ′A, O)).

Each τi determines a parabolic subgroup P (τi) ⊂ G, and we consider the standard para-
horic subgroup Pτ given by the inverse image of

∏n
i=1 P (τi) under the natural evaluation map

LG(A) −→ Gn. Proposition 6.3 of [12] shows that the R group LC′,G is relatively ind-affine and
formally smooth with connected integral geometric fibers over Spec(A). Observe that if n = 1
and λ = 0, and if t is a formal coordinate at the marked point p1, then LG gets identified with
the loop group LG and Pτ is the group of positive loops L+

G.

B.1.2. The central extension. Faltings ([27], and also [8, Lemma 8.3 ], [40]) constructed a pro-
jective representation of LG on H~λ = R ⊗ (

⊗
Hλi(g, `)) whose derivative coincides with the

natural projective action of the Lie algebra of LG. This gives us a central extension

(B.1) 1 −→ Gm −→ ”LG −→ LG −→ 1.

The extension ”LG splits over Pτ (see [60, Lemma 7.3.5]), and the central extension ”LG is

independent of the chosen representations ~λ. Moreover the extension (B.1) splits over LC′,G

([59], [12, Lemma 6.5]).

B.2. The relative uniformization and parabolic theta functions. Let P̂τ := Pτ × Gm.

The weight vectors ~λ give natural characters on P̂τ and the product of characters induces a line
bundle

L~λ
−→ Qτ := ”LG/P̂τ .

Moreover, from the uniformization theorems [12, 8, 24, 31], it follows that the quotient of Qτ
by LC′,G is isomorphic to the pullback ParG(τ )S of the stack ParG(τ ) to S. Now since the
extension in (B.1) splits over LC′,G, the line bundle L~λ

descends to a line bundle over the stack
ParG(τ ) which we will also denote by L~λ

. Observe that the line bundle L~λ
is trivialized along

the trivial section of ParG(τ ) over S, and such data determine the line bundle up to canonical
isomorphism. We will refer to the line bundle L~λ

as the Borel-Weil-Bott line bundle.

B.2.1. Parabolic determinant as the Borel-Weil-Bott line bundle. We now compare the parabolic
determinant of cohomology of the universal bundle with the line bundle L~λ

.

Recall from Definition A.6 the notion of the parabolic determinant Detpar,φ(τ ) of cohomology
associated to a family of parabolic G bundles on C → S and a suitable representation φ :
G → SL(V ). Now for the fixed n-pointed curve (C, p), it is known that the line bundles

L
⊗mφ
~λ

and Detpar,φ(τ ) on ParG(C,p, τ ) are isomorphic, where mφ is the Dynkin index of the

embedding φ. Since these line bundles are determined up to a normalizing factor, it follows that
the corresponding projective bundles are identified as

(B.2) Pπe∗ (Detpar,φ(τ )) ∼= Pπe∗
Ä
L
⊗mφ
~λ

ä
,

where πe : ParG(τ ) → Mg,n is the natural projection.
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B.2.2. Parabolic theta functions and conformal blocks. For any choice of formal parameters, the
ind-scheme Qτ can be identified with the product of affine flag varieties

∏n
i=1 LG/Pτi and the

line bundle L~λ
pulls back to the corresponding line bundle on LG/Pτi given by the character

λi. Now by Kumar [36] and Mathieu [42], we get that

(B.3) H0(Qτ , L~λ
) = H∗~λ.

We end this discussion with the following theorem (see [12, Theorem 1.7] and [39, Sec. 5.7])
which we will refer to as the universal identification of the parabolic theta functions and the
conformal blocks. In the case when S is a point, the result can be found in [8, 27, 37, 40].

Theorem B.1. The push-forward of L~λ
along the map πe : ParG(τ ) → Mg,n can be identified

canonically with the bundle of coordinate free conformal blocks V†~λ(g, `). Moreover, L~λ
descends

to a line bundle on Mpar,rs
G,τ , and (πe|Mpar,rs

G,τ
)∗L~λ

is isomorphic to V†~λ(g, `) provided the following

conditions hold:

• The genus of the orbifold curve determined by τ is at least 2, if G is not SL2.
• The genus of the orbifold curve is at least 3, if G = SL2.

Remark B.2. The last conditions ensure that for any smooth pointed curve (C, p), the codi-
mension of the moduli space Mpar,rs

G,τ (C,p) in the moduli stack ParG(C,p, τ ) is at least two. We

refer the reader to [19, App. C].
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