
ON THE BRILL-NOETHER PROBLEM
FOR VECTOR BUNDLES

GEORGIOS D. DASKALOPOULOS AND RICHARD A. WENTWORTH

Abstract. On an arbitrary compact Riemann surface, necessary and
sufficient conditions are found for the existence of semistable vector bun-
dles with slope between zero and one and a prescribed number of linearly
independent holomorphic sections. Existence is achieved by minimizing
the Yang-Mills-Higgs functional.

1. Introduction

In this note we exhibit the existence of semistable vector bundles on
compact Riemann surfaces with a prescribed number of linearly independent
holomorphic sections. This may be regarded as a higher rank version of the
classical Brill-Noether problem for line bundles.

Fix a compact Riemann surface Σ of genus g ≥ 2 and integers r and d
satisfying

0 ≤ d ≤ r , r ≥ 2 .(1.1)

Then the main result may be stated as follows:

Main Theorem . Let k be a positive integer and suppose that r and d
satisfy (1.1). Then the necessary and sufficient conditions for the existence
of a semistable bundle of rank r and degree d on Σ with at least k linearly
independent holomorphic sections are k ≤ r and if d �= 0, r ≤ d + (r − k)g.

That such a criterion should hold was originally conjectured by Newstead.
By analogy with the classical situation of special divisors (cf. [1, 7]) one can
define the higher rank version of the Brill-Noether number:

ρk−1
r,d = r2(g − 1) + 1 − k(k − d + r(g − 1)) .(1.2)

Then ρk−1
r,d is the formal dimension of the locus W k−1

r,d in the moduli space of
semistable bundles of rank r and degree d. W k−1

r,d is defined as the closure of
the set of stable bundles with at least k linearly independent sections. Note
that the condition in the Main Theorem implies that ρk−1

r,d ≥ 1, except in
the trivial case d = 0 where W k−1

r,d is necessarily empty. The converse, in
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general, is not true. Thus, unlike the case of divisors, there are situations
where ρk−1

r,d ≥ 0 and W k−1
r,d = ∅.

By a dimension counting argument, we can also give a statement, first
proved by Brambila Paz, et. al., concerning the existence of stable bundles:

Corollary . (see [5]) For 0 < d < r and r ≤ d + (r − k)g, there exists
a stable bundle of rank r and degree d with at least k linearly independent
holomorphic sections.

Instead of the constructive approach to theorems of this type taken in
references [9, 10], we use a variational method. More precisely, we study
the Morse theory of the Yang-Mills-Higgs functional (cf. [3]). The idea is
simply the following: Let (Ai, �ϕi) be a minimizing sequence with respect
to the Yang-Mill-Higgs functional (2.1). Here, �ϕi = (ϕi1, . . . , ϕ

i
k) is a k-

tuple of linearly independent holomorphic sections with respect to Ai. If
the sequence converges to a solution to the k-τ -vortex equation, then for an
appropriate choice of τ the limiting holomorphic structure is semistable (cf.
[2]). Otherwise, we show that under the assumptions of the Main Theorem
there exist “negative directions” which contradict the fact that the sequence
is minimizing.

The energy estimates used closely follow [6]. However, an extra combina-
torial argument is needed to ensure that the bundles constructed have the
correct number of holomorphic sections, and this is where the assumption
r ≤ d + (r − k)g is needed.

Acknowledgements. We would like to thank L. Brambila Paz for introducing
us to this problem and for several useful discussions during the preparation
of this note. Finally, we are grateful for the warm hospitality of UAM,
Mexico and the Max-Planck Institute in Bonn, where a portion of this work
was completed.

2. The Yang-Mills-Higgs Functional

Let Σ, d, and r be as in the Introduction, and let k be a positive integer.
Let E be a fixed hermitian vector bundle on Σ of rank r and degree d. Let A
denote the space of hermitian connections on E, Ω0(E) the space of smooth
sections of E, and H ⊂ A×Ω0(E)⊕k the subspace consisting of holomorphic
k-pairs. Thus,

H =
{
(A, �ϕ = (ϕ1, . . . , ϕk)) : D′′

Aϕi = 0, i = 1, . . . , k
}

.

We also set G (resp. GC) to be the real (resp. complex) gauge groups, i.e. G

is the group of unitary automorphisms of E and GC is its complexification.
The groups G and GC then act on H.
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Given a real parameter τ , we define the Yang-Mills-Higgs functional:

fτ : A× Ω0(E)⊕k −→ R

fτ (A, �ϕ) = ‖FA‖2 +
k∑
i=1

‖DAϕi‖2 +
1
4

∥∥∥∥∥
k∑
i=1

ϕi ⊗ ϕ∗
i − τI

∥∥∥∥∥
2

− 2πτd(2.1)

In the above, the ‖ · ‖ denotes L2 norms. Notice that fτ is invariant with
respect to the action of G on H. Using a Weitzenböck formula we obtain
(cf. [3, Theorem 4.2])

fτ (A, �ϕ) = 2
k∑
i=1

‖D′′
Aϕi‖2 +

∥∥∥∥∥√−1ΛFA +
1
2

k∑
i=1

ϕi ⊗ ϕ∗
i −

τ

2
I

∥∥∥∥∥
2

,

and therefore the zero set of fτ consists of holomorphic k-pairs satisfying
the k-τ -vortex equations (cf. [2]):

√
−1ΛFA +

1
2

k∑
i=1

ϕi ⊗ ϕ∗
i −

τ

2
I = 0 .

Proposition 2.1. (i) The L2-gradient of fτ is given by

(
∇(A,�ϕ)fτ

)
1

= D∗
AFA +

1
2

k∑
j=1

(
DAϕj ⊗ ϕ∗

j − ϕj ⊗DAϕ
∗
j

)
(
∇(A,�ϕ)fτ

)
2,i

= ∆Aϕi −
τ

2
ϕi +

1
2

k∑
j=1

〈ϕi, ϕj〉ϕj

(ii) If (A, �ϕ) ∈ H, then under the usual identification Ω1(Σ, adE) �
Ω0,1(Σ,EndE), we have

(
∇(A,�ϕ)fτ

)
1

= −D′′
A

√
−1ΛFA +

1
2

k∑
j=1

ϕj ⊗ ϕ∗
j


(
∇(A,�ϕ)fτ

)
2,i

=
√
−1ΛFA(ϕi) −

τ

2
ϕi +

1
2

k∑
j=1

〈ϕi, ϕj〉ϕj

(iii) If (A, �ϕ) ∈ H is a critical point of fτ , then either (I) �ϕ ≡ 0 and A is a
direct sum of Hermitian-Yang-Mills connections (not necessarily of the same
slope), or (II) A splits as A = A′⊕AQ on E = E′⊕EQ, where (A′, �ϕ) solves
the k-τ -vortex equations and AQ is a direct sum of Hermitian-Yang-Mills
connections (not necessarily of the same slope).

Proof. (i) is a standard calculation, and (ii) follows from (i) via the Kähler
identities. We are going to prove (iii). If (A, �ϕ) is critical, then since√
−1ΛFA + 1

2

∑k
j=1 ϕj ⊗ ϕ∗

j is a self-adjoint holomorphic endomorphism,
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it must give a splitting A = A0⊕· · ·⊕A� according to its distinct (constant)
eigenvalues σ0, . . . , σ�. Write

√
−1ΛFA =


−1

2

∑k
j=1 ϕj ⊗ ϕ∗

j + σ0 I 0 · · · 0

0 σ1 I
...

...
. . .

0 · · · σ� I

 .

Thus,

0 =
√
−1ΛFA(ϕi) −

τ

2
ϕi +

1
2

k∑
j=1

〈ϕi, ϕj〉ϕj

= −1
2

k∑
j=1

〈ϕi, ϕj〉ϕj + σ0ϕi −
τ

2
ϕi +

1
2

k∑
j=1

〈ϕi, ϕj〉ϕj

=
(
σ0 −

τ

2

)
ϕi ,

from which we obtain either Case I or Case II, depending upon whether
�ϕ ≡ 0.

Next, recall (cf. [2, 4]) that H is an infinite dimensional complex analytic
variety whose tangent space at a point (A, �ϕ) is given by the kernel of the
differential defined by

d2 : Ω0,1(Σ,EndE) ⊕ Ω0(E)⊕k −→ Ω0,1(E)⊕k

d2(α, η1, . . . , ηk) = (D′′
Aη1 + αφ1, . . . , D

′′
Aηk + αφk)

As already noted, H is preserved by the action of the complex gauge group
GC, and the tangent space at (A, �ϕ) to the GC orbit is given by the image
of d1, where

d1 : Ω0(Σ,EndE) −→ Ω0,1(Σ,EndE) ⊕ Ω0(E)⊕k

d1(u) = (−D′′
Au, uφ1, . . . , uφk)

With this preparation, we have the following:

Proposition 2.2. If (A, �ϕ) ∈ H, then ∇(A,�ϕ)fτ is tangent to the orbits of
GC. In particular, ∇(A,�ϕ)fτ is tangent to H itself.

Proof. Set u =
√
−1ΛFA + 1

2

∑k
j=1 ϕj ⊗ϕ∗

j − τ
2I. By Proposition 2.1 (ii) we

have that ∇(A,�ϕ)fτ = d1(u), where d1 is the differential defined above. The
Proposition follows.

Because of Proposition 2.2, the critical points of the functional fτ re-
stricted to H are characterized by Proposition 2.1 (iii).

A solution (A(t), �ϕ(t)), t ∈ [0, t0) to the initial value problem(
∂A

∂t
,
∂�ϕ

∂t

)
= −∇(A,�ϕ)fτ , (A(0), �ϕ(0)) = (A0, �ϕ0) ,(2.2)
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is called the L2-gradient flow of fτ starting at (A0, �ϕ0). Notice that

d

dt
fτ (A(t), �ϕ(t)) = −

∥∥∇(A(t),�ϕ(t))fτ
∥∥2

,(2.3)

and so the energy decreases along the L2-gradient flow.

Proposition 2.3. Given (A0, �ϕ0) ∈ H, there is a t0 > 0 such that the
L2-gradient flow exists for 0 ≤ t < t0.

Proof. The proof is an application of the implicit function theorem as in
[8].

Finally, we recall from [3, 4, 2] that a holomorphic k-pair (A, �ϕ) ∈ H is
called τ -stable if for all holomorphic subbundles 0 �= F ⊂ E, µ(F ) < τ ;
and for all proper holomorphic subbundles Eϕ ⊂ E containing each ϕi,
µ(E/Eϕ) > τ . Here, µ denotes the Shatz slope µ = deg/rank. The version
of the theorem of Bradlow, Tiwari that we shall need is the following (see
[2] for more details):

Proposition 2.4. For generic values of the parameter τ , a holomorphic k-
pair (A, �ϕ) is τ -stable if and only if there exists a pair (Ã, �̃ϕ), related to
(A, �ϕ) by an element of GC, satisfying the k-τ -vortex equations:

√
−1ΛF

Ã
+

1
2

k∑
i=1

ϕ̃i ⊗ ϕ̃∗
i −

τ

2
I = 0 .

Moreover, such a solution is unique up to real gauge equivalence.

3. Technical Lemmas

In this section we collect several results needed for the proof of the Main
Theorem. Throughout, E will denote a holomorphic bundle of rank r and
degree d on the compact Riemann surface Σ.

Lemma 3.1. Let E be as above with 0 ≤ d ≤ r and h0(E) = k. If either (i)
E is semistable, or (ii) E satisfies the k-τ -vortex equation for some 0 < τ < 1
and E does not contain the trivial bundle as a split factor; then k ≤ r and
if d �= 0, r ≤ d + (r − k)g.

Proof. We first show that k ≤ r. Suppose k ≥ r. Thus, E has at least
r linearly independent holomorphic sections. If the sections generate E at
every point, then E � O⊕r; in which case d = 0 and k = r. Suppose the
sections fail to generate, so that we can find a point p ∈ Σ and a section of E
vanishing at p. Thus E contains O(p) as a subsheaf, which is a contradiction
to (ii) (see the definition of τ -stability above). If (i) is assumed, then E is
strictly semistable with d = r, and the bound k ≤ r follows from induction
on the rank. Note that the second inequality is also satisfied in this case.

Assume 0 < d < r. In both cases (i) and (ii) we obtain 0 → O⊕k π−→ E →
F → 0, where F is locally free. By dualizing and taking the resulting long
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exact sequence in cohomology, we find

0 −→ H0(F ∗) −→ H0(E∗) δ−→H0(O⊕k) −→ H1(F ∗) .

We are going to show that H0(E∗) = 0. The result then follows by the
Riemann-Roch formula. For (i), H0(E∗) = 0 by semistability. For (ii), note
first that δ = 0. For if not, there would be a section s : O → E∗ with
π∗ ◦ s = σ �= 0. But σ could not have any zeros, and so O would be a split
factor in E∗; hence, also in E. Secondly, we show that H0(F ∗) = 0. Let
L ⊂ F ∗ be a subbundle. Then τ -stability immediately implies c1(L∗) > τ >
0. Thus, in particular, F ∗ cannot contain O as a subsheaf. This completes
the proof.

Lemma 3.2. Let E1, E2 be holomorphic bundles of rank r1, r2 and degree
d1, d2, satisfying 0 ≤ µ1 = d1/r1 ≤ d2/r2 = µ2 ≤ 1. Suppose h0(E1) = k1 ≤
r1, h0(E2) = k2 ≤ r2, and

d2 + (r2 − k2 − 1)g < r2 ≤ d2 + (r2 − k2)g .

Furthermore,
• If d1 �= 0 assume r1 ≤ d1 + (r1 − k1)g, and k1r2 �= k2r1.
• If d1 = 0 and k1 = r1, assume r2 < d2 + (r2 − k2)g.

Then there exists a nontrivial extension 0 → E1 → E → E2 → 0 such that
h0(E) = k1 + k2.

Proof. If k2 = 0, the result follows from Riemann-Roch. Suppose k2 ≥ 1.
The condition that the k2 sections of E2 lift for some nontrivial extension is
k2h

1(E1) < h1(E1 ⊗ E∗
2). Notice that

h1(E1) = h0(E1) − d1 + r1(g − 1) = k1 − d1 + r1(g − 1)

h1(E1 ⊗ E∗
2) = h0(E1 ⊗ E∗

2) + r1r2(µ2 − µ1 + g − 1)

≥ r1r2(µ2 − µ1 + g − 1) ,

hence, it suffices to show that

k2(k1 − d1 + r1(g − 1)) < r1r2(µ2 − µ1 + g − 1) ,(3.1)

or equivalently, that

r1(d2 − r2 + (r2 − k2)g) − r2d1 + k2d1 − k1k2 + k2r1 > 0 .(3.2)

Now if k2 = r2 = d2, then (3.2) is trivially satisfied by the hypotheses.
Similarly for d1 = 0. So assume k2 ≤ r2 − 1, d1 �= 0. Write d2 = r2 − (r2 −
k2)g + p, where 0 ≤ p < g by assumption. On the other hand,

d1 ≤ r1
d2

r2
≤ (d1 + (r1 − k1)g)

r2 − (r2 − k2)g + p

r2

where if p = 0 then either the first or the second inequality is strict. This is
equivalent to

−d1p

g
+ k1p + (r1 − k1)(r2 − k2)(g − 1) ≤ r1p− r2d1 + k2d1 − k1k2 + k2r1 ,
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and < if p = 0. Therefore, (3.2) will follow from

−d1p

g
+ k1p + (r1 − k1)(r2 − k2)(g − 1) > 0 (≥ if p = 0.)(3.3)

Now if p = 0 then (3.3) is trivially satisfied. Assume that 1 ≤ p ≤ g − 1.
Then

−d1p

g
+ k1p + (r1 − k1)(r2 − k2)(g − 1)

> −d1 + r1p− (r1 − k1)p + (r1 − k1)(r2 − k2)(g − 1)

≥ (r1 − d1) + (r1 − k1)(r2 − k2 − 1)(g − 1)
≥ 0 ,

which proves (3.3), (3.2), and hence the Lemma.

In order to get an upper bound on the infimum of the Yang-Mills-Higgs
functional in the next section, we shall need the following construction and
energy estimate:

Lemma 3.3. Assume 0 < d < r, k ≥ 1, and r ≤ d + (r − k)g. Let F be a
holomorphic bundle of degree d and rank r − 1 with h0(F ) = k − 1. Then
there exists a non-split extension 0 → O → E → F → 0 with h0(E) = k.

Proof. The condition for all of the sections of F to lift is

(k − 1)h1(O) < h1(F ∗) ⇐⇒ g(k − 1) < d + (r − 1)(g − 1)

⇐⇒ r < d + (r − k)g + 1 ,

and hence the result.

Proposition 3.4 (cf. [6, Prop. 3.5]). Let E1, E2 be hermitian bundles with
slope µ1, µ2. Let A1, A2 be hermitian connections on E1, E2, and �ϕ1, �ϕ2 be
k1 and k2 tuples of holomorphic sections. Set k = k1 + k2. Let τ1, τ2 and
τ be real numbers satisfying µ1 ≤ τ1 ≤ τ < µ2 ≤ τ2, and assume that
(A1, �ϕ

1) and (A2, �ϕ
2) satisfy the τ1 and τ2 vortex equations, respectively.

Set E = E1 ⊕ E2, ϕi = (ϕ1
i , 0) for i = 1, . . . , k1, and ϕk1+i = (0, ϕ2

i ) for
i = 1, . . . , k2. Then there exist constants ε1, ε2, η > 0 such that for all

β ∈ H0,1 (Σ,Hom(E2, E1)) , �ψ ∈ Ω0(E)⊕k ,

with ‖β‖ = ε1, ‖�ψ‖ ≤ ε2, and(
Aβ =

(
A1 β
0 A2

)
, �ϕ + �ψ

)
∈ H ,

it follows that fτ (Aβ, �ϕ + �ψ) < fτ (A1 ⊕A2, �ϕ) − η.

Proof. By assumption,

√
−1ΛFA�

+
1
2

k�∑
j=1

ϕ�j ⊗ (ϕ�j)
∗ =

τ

2
I� , ( = 1, 2 .
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It follows that

√
−1ΛFA1⊕A2 +

1
2

k1∑
j=1

ϕ1
j⊗(ϕ1

j )
∗+

1
2

k2∑
j=1

ϕ2
j⊗(ϕ2

j )
∗− τ

2
I =

(
τ1−τ

2 I1 0
0 τ2−τ

2 I2

)
The argument of [6, pp. 715-716] shows that there is a constant ε1 such that
for β and Aβ as in the statement,

fτ
(
Aβ, ϕ

1
1, . . . , ϕ

1
k1 , ϕ

2
1, . . . , ϕ

2
k2

)
< fτ

(
A1 ⊕A2, ϕ

1
1, . . . , ϕ

1
k1 , ϕ

2
1, . . . , ϕ

2
k2

)
.

Now if we take ε2 sufficiently small the Proposition follows (note that which
norms we use is irrelevant, since β and �ϕ + �ψ satisfy elliptic equations, and
hence the L2 norm is equivalent to any other).

4. Proof of the Main Theorem

Necessity of the conditions follows from Lemma 3.1, and sufficiency for
d = 0 or d = r is clear as well, simply by taking direct sums of trivial line
bundles or effective divisors of degree 1, respectively. To prove sufficiency
in general, we shall proceed by induction on the rank. The case r = 2,
d = 1 is clear from a direct construction. Indeed, we may choose any non-
trivial extension 0 → O → E → L → 0 where degL = 1, and E will be
stable and have one non-trivial section. Assume the Main Theorem holds
for bundles of rank < r. We show that it holds for r as well. Let H∗ ⊂ H
denote the subspace of k-pairs (A, �ϕ = (ϕ1, . . . , ϕk)) such that the sections
ϕ1, . . . , ϕk are linearly independent. Fix τ as in Assumption 1 of [4], i.e.
µ(E) < τ = µ(E) + γ < µ+, where µ+ is the smallest possible slope greater
that µ = µ(E) of a subbundle of E (note that 0 < τ < 1 and that we also
normalize the volume of Σ to be 4π).

Lemma 4.1. Let m = infH∗ fτ . Then 0 ≤ m < π/(r − 1).

Proof. Let F be a vector bundle of degree d and rank r − 1. Then by the
inductive hypothesis, Lemma 3.2, and Proposition 2.4, we may assume there
exist hermitian connections A1 and A2 on O and F , respectively, and holo-
morphic sections ϕ1 �= 0 in H0(Σ,O), and ϕ2, . . . , ϕk linearly independent
sections in H0(Σ, F ), such that (A1, ϕ1) and (A2, ϕ2, . . . , ϕk) satisfy the τ1
and τ2 vortex equations, respectively, for τ1 = τ , τ2 = d/(r − 1) + γ. It
follows from Lemma 3.3 and Proposition 3.4 that there is a nontrivial ex-
tension β : 0 → O → E → F → 0, an η > 0, and a (smooth) �ψ such that
(Aβ, �ϕ + �ψ) ∈ H∗ and

fτ (Aβ, �ϕ + �ψ) < fτ (A1 ⊕A2, ϕ1, . . . , ϕk) − η

=
∥∥∥∥1
2

(
d

r − 1
− d

r

)
IF

∥∥∥∥2

− η <
π

r − 1
.
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Let (Ai, �ϕi) be a minimizing sequence in H∗. Thus, fτ (Ai, �ϕi) → m.
By weak compactness (more precisely, see the argument in [4, Lemma 5.2])
there is a subsequence converging to (A∞, �ϕ∞) in the C∞ topology. By
the continuity of fτ with respect to the C∞ topology, Propositions 2.3 and
2.2, and equation (2.3), it follows that (A∞, �ϕ∞) is a critical point of fτ . If
the holomorphic structure E∞ defined by A∞ is semistable, then by upper
semicontinuity of the dimension of the space of sections we are finished. We
therefore assume E∞ is unstable and derive a contradiction. According to
Proposition 2.1 (iii) we must consider the following cases:

�ϕ∞ = 0 , E∞ = E1 ⊕ · · · ⊕E�(I)

�ϕ∞ �= 0 , E∞ = Eϕ ⊕ E1 ⊕ · · · ⊕E�(II)

Set µj = µ(Ej), and assume µ1 < · · · < µ�. If µ� > 1, then

fτ (A∞, �ϕ∞) ≥ π(µ� − τ)2r� ≥ π(µ� − 1)2r� ≥
π

r�
≥ π

r − 1
> m ,

contradicting Lemma 4.1. Similarly, if µ1 < 0, then

fτ (A∞, �ϕ∞) ≥ π(µ1 − τ)2r1 ≥ π(µ1)2r1 ≥ π

r1
≥ π

r − 1
> m ;

also a contradiction. We therefore rule out these possibilities. We will
consider Cases I and II separately.

Case I . Let ki = h0(Ei). By upper semicontinuity,
∑�

i=1 ki ≥ k. If µ� = 1,
then we may replace E� by a Hermitian-Yang-Mills bundle Ê� with exactly
k̂� = r� sections. Hence, we may assume that

d� + (r� − k̂� − 1)g < r� ≤ d� + (r� − k̂�)g .

For 1 < i < (, the inductive hypothesis implies that we may replace Ei by a
Hermitian-Yang-Mills bundle Êi with

h0(Êi) = k̂i =
[
di + ri(g − 1)

g

]
,

the maximal number of sections allowed for di, ri, and g. Note that

di + (ri − k̂i − 1)g < ri ≤ di + (ri − k̂i)g .(4.1)

If µ1 �= 0, then we can replace E1 by Ê1 as above. If µ1 = 0, we may
replace E1 with O⊕r1 , with k̂1 = r1 ≥ k1 sections. By our choices of k̂i,∑�

i=1 k̂i ≥
∑�

i=1 ki ≥ k.
Let 0 ≤ µ1 < · · · < µs ≤ µ < µs+1 < · · · < µ� ≤ 1. Suppose first that

µs �= 0. By Lemma 3.2 there is a nontrivial extension 0 → Ês → G →
Ês+1 → 0, with h0(G) = k̂s + k̂s+1. Thus,

h0
(
Ê1 ⊕ · · · ⊕ Ês−1 ⊕G⊕ Ês+1 ⊕ · · · ⊕ Ê�

)
=

�∑
i=1

k̂i ≥ k .

On the other hand, by Proposition 3.4 there is a hermitian connection on
Ê1 ⊕ · · · ⊕ Ês−1 ⊕ G ⊕ Ês+1 ⊕ · · · ⊕ Ê� and linearly independent sections
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ϕ1, . . . , ϕk such that fτ (A, �ϕ) < fτ (A∞, 0) = m, contradicting the minimal-
ity of (A∞, 0).

Now suppose µs = µ1 = 0, µ < µi for 2 ≤ i ≤ (. If for any 2 ≤ i ≤ ( we
have ri < di + (ri − k̂i)g, then by Lemma 3.2 there is a nontrivial extension
0 → Ê1 → G → Êi → 0, with h0(G) = k̂1 + k̂i, and Proposition 3.4 yields a
contradiction as before. Suppose that for all 2 ≤ i ≤ (, ri = di + (ri − k̂i)g.
We claim that

∑�
i=1 k̂i > k. For if

∑�
i=1 k̂i = k, then

∑�
i=2(ri− k̂i) = r− k,

and hence

r >

�∑
i=2

ri =
�∑
i=2

di + (ri − k̂i)g = d + (r − k)g ;

a contradiction. Thus, we may replace Ê1 by a bundle Ê′
1 having k̂′1 = k̂1−1

sections. According to Lemma 3.2 there is a nontrivial extension 0 → Ê′
1 →

G → Ê2 → 0, with h0(G) = k̂′1 + k̂2, k̂′1 +
∑�

i=2 k̂i ≥ k, and Proposition 3.4
yields a contradiction as before.

Case II . First notice that by the invariance of the Yang-Mills-Higgs equa-
tions under the natural action by U(k), we may assume that ϕ∞

1 , . . . , ϕ∞
k

form an L2-orthogonal set of sections. In particular, we may assume that
there exists s ≤ k such that ϕ∞

1 , . . . , ϕ∞
s are linearly independent and

ϕ∞
s+1, . . . , ϕ

∞
k ≡ 0. Write Eϕ = E′

ϕ ⊕ O⊕t, where E′
ϕ contains no split

factor of O. Set ki = h0(Ei), kϕ = h0(Eϕ), k′ϕ = h0(E′
ϕ) = kϕ − t. By

upper semicontinuity, kϕ +
∑�

i=1 ki ≥ k. As in Case I, we may replace each
Ei by a Hermitian-Yang-Mills bundle Êi such that h0(Êi) = k̂i ≥ ki, and
(4.1) is satisfied for i = 1, . . . , (. On the other hand, since Eϕ satisfies the
k-τ -vortex equation for τ = µ + γ as above, it follows that E′

ϕ is τ -stable.
Therefore, 0 �= µ(E′

ϕ) ≤ µ = µ(E); and since τ < 1, we obtain from Lemma
3.1 that r′ϕ ≤ dϕ + (r′ϕ − k′ϕ)g. Finally, notice that since E∞ is unstable,
µ� > µ. We may now apply Lemma 3.2 to E′

ϕ and Ê� to obtain a nontrivial
extension 0 → E′

ϕ → G → Ê� → 0, with h0(G) = k′ϕ + k̂�. It follows that

h0
(
G⊕O⊕t ⊕ Ê1 ⊕ · · · ⊕ Ê�−1

)
= kϕ +

�∑
i=1

k̂i ≥ k .

By Proposition 3.4 there is a hermitian connection A on G⊕O⊕t⊕Ê1⊕· · ·⊕
Ê�−1 and linearly independent sections ϕ1, . . . , ϕk extending ϕ∞

1 , . . . , ϕ∞
s

such that fτ (A, �ϕ) < fτ (A∞, �ϕ∞) = m, again contradicting the minimality
of m. This completes the proof of the Main Theorem.

5. Proof of the Corollary

Let Bτ denote the set of gauge equivalence classes of solutions to the
k-τ -vortex equation for bundles of rank r and degree d, where τ is chosen
as in the proof of the Main Theorem. Let B∗

τ denote the open subset of
pairs (E,ϕ1, . . . , ϕk) such that the ϕi are linearly independent as sections
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of E. By the Main Theorem and Lemma 3.2 it follows that B∗
τ is non-

empty. One can therefore show as in [2, 4] that B∗
τ is a smooth complex

manifold of dimension r2(g − 1) + k(d− r(g − 1)) with a holomorphic map
ψ : B∗

τ → M(r, d), where M(r, d) is the moduli space of semistable bundles
of rank r and degree d and where the map ψ sends a pair [E, �ϕ] to [E]. Let
B′
τ ⊂ B∗

τ denote the subset where the bundle E is stable.

Proposition 5.1. Let W k−1
r,d denote the closure of ψ(B′

τ ) in M(r, d). If
B′
τ �= ∅, then every irreducible component of W k−1

r,d has dimension ρk−1
r,d =

r2(g − 1) + 1 − k(k − d + r(g − 1)).

Proof. Consider first a pair [E, �ϕ] ∈ B′
τ where h0(E) = k. Notice that B′

τ

is smooth. Moreover,

dim[E,�ϕ] B
′
τ = dimψ([E]) W

k−1
r,d + dimψ−1([E])

and the dimension formula holds, since dimψ−1([E]) = k2−1. Since h0(E) =
k is an open condition in W k−1

r,d , the Proposition follows from

Lemma 5.2. Suppose that E0 is a semistable (resp. stable) bundle of rank
r, degree d, 0 < d ≤ r, and h0(E0) = k ≥ 1. Then there exists a sequence
of semistable (resp. stable) bundles Ej of the same rank and degree with
h0(E) = k − 1 and Ej → E0 in M(r, d).

Proof. By Lemma 3.1, k ≤ r. The case where d = r and E0 is strictly
semistable is trivial. In the other cases, k < r, and we may write

β0 : 0 → O⊕k → E0 → F → 0 ,

where by assumption the connecting homomorphism δ0 : H0(F ) → H1(O⊕k)
is injective. Consider {Lt : t ∈ D} a smooth local family of line bundles
parametrized by the open unit disk D ⊂ C and satisfying L0 = O and
H0(Lt) = 0, t �= 0. Set Gt = Ok−1 ⊕ Lt. The semistability of E0 implies
that H0(F ∗ ⊗ Gt) = 0. Hence, {H1(F ∗ ⊗ Gt) : t ∈ D} defines a smooth
vector bundle V over D. Let β = {β(t) : t ∈ D} be a nowhere vanishing
section of V with β(0) = β0. Then β defines a smooth family of nonsplit
extensions 0 → Gt → Et → F → 0 and a smooth family of connecting
homomorphisms

δt : H0(F ) −→ H1(Gt) ⊂ Ω0,1(U) ,

where U is the trivial rank k, C∞ vector bundle on Σ. By assumption, δ0 is
injective; hence, δt is injective for small t. It follows that h0(Et) = k− 1 for
small t. Furthermore, since E0 is semistable (resp. stable) then Et is also
semistable (resp. stable) for small t.

Continuing with the proof of the Corollary, we first take care of a border-
line situation:

Lemma 5.3. If r = d+(r−k)g, 0 < d < r, then there exists a stable bundle
of rank r and degree d with k linearly independent holomorphic sections.
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Proof. Note that k < r. Let F be a stable bundle of rank r − k and degree
d. Consider an extension

β : 0 → O⊕k → E → F → 0 ,

obtained by choosing a basis for H1(F ∗). We claim that any such E is
stable. For suppose there is a proper semistable quotient E → Q → 0 with
µ(Q) ≤ µ(E). By the stability of F we also have µ(Q) ≥ 0. Let ( be the
rank of the image of the induced map O⊕k → Q. Note that by the choice
of β we cannot have Q � O⊕�, and so from Lemma 3.1 we obtain a locally
free quotient Q′ � Q/O⊕� of F . Again applying Lemma 3.1 we find

µ(Q′) =
degQ

rkQ− (
≤ µ(Q)

1 − µ(Q)
g ≤ µ(E)

1 − µ(E)
g = µ(F ) .

By the stability of F we must have Q′ � F , which contradicts the properness
of Q.

The proof of the Corollary is completed by the following

Lemma 5.4. Let d and r be as in the statement of the Corollary. We choose
k to be the maximal integer such that r ≤ d + (r − k)g. By Lemma 5.3, we
may also assume r < d + (r − k)g. Let B∗

τ ⊂ Bτ be as above. Then no
irreducible component of the image of B∗

τ under the map ψ can be contained
in M(r1, d1) × M(r2, d2) ⊂ M(r, d) for any choice of integers r1, r2, d1, d2

satisfying r1 + r2 = r, d1 + d2 = d, and d1/r1 = d2/r2 = d/r.

Proof. Assume the image of ψ is contained in such a locus; we shall derive
a contradiction. Let [E, �ϕ] ∈ B∗

τ , and suppose ψ(E, �ϕ) � E1 ⊕ E2. By
semicontinuity of cohomology, k ≤ k1 +k2, where ki = h0(Ei). On the other
hand, notice that d1 − (r1 − k1 − 1)g < r1, and d2 − (r2 − k2 − 1)g < r2,
since otherwise by Lemma 3.1, r ≤ d + (r − (k + 1))g, contradicting the
maximality of k. Now as in the proof of Lemma 3.2 (see (3.1)) we obtain

k2(k1 − d1 + r1(g − 1)) < r1r2(g − 1) − 1 ,(5.1)

k1(k2 − d2 + r2(g − 1)) < r1r2(g − 1) − 1 .(5.2)

On the other hand, we may assume that E1 and E2 are stable and non-
isomorphic (otherwise the inequalities are even sharper), and by Proposition
5.1 we may assume E1 ⊕ E2 lies in a subvariety S ⊂ M(r1, d1) × M(r2, d2)
of dimension at most ρk1−1

r1,d1
+ ρk2−1

r2,d2
. Finally, we have

dim[E,�ϕ] B
∗
τ ≤ dim[E1⊕E2] S + dimψ−1([E1 ⊕ E2]) .(5.3)

Since ψ−1([E1 ⊕ E2]) consists of extensions E of E2 by E1 such that the
sections of E2 lift, or vice versa, together with k sections of E, it follows
that

dimψ−1([E1 ⊕ E2]) = max

{
h1(E∗

1 ⊗ E2) − k1h
1(E2) + k2 − 1

h1(E∗
2 ⊗ E1) − k2h

1(E1) + k2 − 1 .
(5.4)
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By combining (5.3) and (5.4) we obtain either

k1(k2 − d2 + r2(g − 1)) ≥ r1r2(g − 1) − 1

or

k2(k1 − d1 + r1(g − 1)) ≥ r1r2(g − 1) − 1 ,

contradicting either (5.1) or (5.2). This completes the proof of the Lemma.
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